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Abstract
This paper aims at proposing an observer-based T-S fuzzy singular system. Firstly, we
give a general model of nonlinear singular systems. We use the T-S fuzzy control
method to form a T-S fuzzy singular system and we give the augmented system and
compact form of a T-S fuzzy singular system. Secondly, we design a T-S fuzzy observer
for the augmented system. In order to prove the parameters and state estimation
errors are globally stable for the T-S fuzzy observer, we construct a Lyapunov function
with T-S fuzzy form. Then we give the sufficient condition that the fuzzy control fuzzy
system is globally exponentially stable and give the controller gains. Finally, we give
two numerical examples for the observer, and the simulation results demonstrate the
effectiveness of the observer for the nonlinear singular system,through a comparison
of the literature (Zulfiqar et al. in Appl. Math. Model. 40(3):2301-2311, 2016).

Keywords: observer design; T-S fuzzy singular systems; nonlinear singular systems;
globally stable

1 Introduction
State feedback plays an important role in solving all kinds of complex problems in the
control systems. Many control system problems can be realized by introducing proper
state feedback, such as stabilization, decoupling, non-static error tracking, and optimal
control. But because the system state cannot be measured directly, or due to the limitation
of measuring equipment in economic or use, leading to the impossibility to actually get
all information of the system state variables, it is very difficult to realize a physical form of
state feedback. So the requirement of the state feedback in performance is incompatible
with a physical implementation. One of the ways to solve this problem is through the
reconstruction of the state of systems, and make the reconstruction of the state take the
place of the real state of systems, to satisfy the requirement of the state feedback. The
state reconstruction problem, namely the problem of observer design, is the way to solve
these problems. In this paper, we are able to design effective state observers for nonlinear
systems using the T-S fuzzy control method.

In the past  years, scholars have made a lot of research on the design of nonlinear
observers. In the early s, the famous Kalman filter [] and Luenberger observer []
led to the linear system state observer complete design method. Unlike the linear system,
nonlinear observer design is more complex. For nonlinear systems, there have no unified
analysis method until now. A currently popular method is to classify the system, firstly.
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Then the existence and the design of state observer for different types of nonlinear systems
are studied. For example, in accordance with the degree of nonlinearity of the system,
which system has been well studied, Lipschitz nonlinear systems [, ] only depend on
nonlinear systems of the output [, ], nonlinear systems of the multivariable meet the
circle criterion [], and we have the strict feedback stochastic nonlinear system [].

At present, the design of the nonlinear system is aimed at the particular nonlinear sys-
tem. Yi and Zhang [] developed an extended updated-gain high gain observer to make
a tradeoff between reconstruction speed and measurement noise attenuation. Huang et
al. [] propose a new method to design observers for Lur’e differential inclusion sys-
tems. Generally speaking, the structure of the observer for nonlinear systems can be sum-
marized as follows by several methods: the class of Lyapunov function method [, ],
differential geometric methods for designing [, ], the extended Luenberger observer
method [, ], and the extended Kalman filtering method [, ]. Chadli and Karimi
dealt with the observer design for Takagi-Sugeno (T-S) fuzzy models subject to unknown
inputs and disturbance affecting both states and outputs of the system []. Yin et al. pre-
sented an approach for data-driven design of fault diagnosis system []. Aouaouda et al.
were concerned with robust sensor fault detection observer (SFDO) design for uncertain
and disturbed discrete-time Takagi-Sugeno (T-S) systems using the H–/H∞ criterion [].
Zhao et al. proposed an input-output approach to the stability and stabilization of uncer-
tain Takagi-Sugeno (T-S) fuzzy systems with time-varying delay [].

Singular systems are also called differential algebraic systems, one has many theories
of research results in nearly  years, and one has many applications in the aviation,
aerospace, robotics, power system, electronic network, chemistry, biology, economy, and
other fields [–] at present; the study of the singular system is still an area of control
theory research of great interest at home and abroad. Singular systems describe a class
of more extensive actual system models. In particular, singular systems have an impulse
behavior, and they make relevant research becoming more complex and novel. Therefore,
it has important academic value and broad application background. At , Taniguchi et
al. made the normal fuzzy system extend to more general situations and put forward the
fuzzy singular system [, ], which use multiple local linear singular systems to approx-
imate a global nonlinear system, and it is easy to solve the problem of the control of global
nonlinear singular systems with the help of linear system analysis and the control method.

In this paper, firstly, we apply the T-S fuzzy method in nonlinear singular systems and
form a T-S fuzzy singular system. Secondly, in order to get a better state feedback, we
use the method of Lyapunov functions to design an observer with T-S fuzzy form. Then
we prove the parameters and state estimation errors are globally stable of the T-S fuzzy
observer, we give the sufficient condition that the fuzzy control fuzzy system is globally
exponentially stable, and we give the controller gains. Finally, simulation results are given
to illustrate the correctness of results and the effectiveness of the observer.

Notations The symbol R denotes the set of real numbers. Rn denotes the n-dimensional
Euclidean space. The superscript ‘T ’ stands for matrix transposition. A > , A <  denote
symmetric positive definite and symmetric negative definite, respectively. For a matrix
A, A–, ‖A‖, λmin(A), and λmax(A) denote its inverse, the induced norm, the minimum
eigenvalues, and maximum eigenvalues, respectively. C and C represent the continuous
and differentiable functions, respectively. �+ represent the generalized inverse matrix of
the matrix �.
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2 Preliminaries
Lemma  For proper dimension matrix v and v, there is a positive k and arbitrary matrix
norm ‖ • ‖ leading to the following equalities:

vT
 v + vT

 v ≤ k‖v‖ +

k
‖v‖.

Lemma  ([]) The singular value decomposition of C∗ is

C∗ = U

[
� rc×(n–rc)

(q–rc)×rc (q–rc)×(n–rc)

]
HT ,

where U ∈ Rq×q is an orthogonal matrix, � = diag[σ(C∗), . . . ,σrc (C∗)], σk(C∗), k = , ,
. . . , rc, refer to the singular value of C∗, rc = rank(C∗) ≤ q, and H ∈ Rn×n represents an or-
thogonal matrix. Then the pseudo-inverse C∗, which is denoted by C+, is

C+ = H

[
�– rc×(n–rc)

(q–rc)×rc (q–rc)×(n–rc)

]
UT .

Lemma  For any positive a, b, the following equation holds true:

 ≤ ab
a + b

≤ a.

Lemma  (Rayleigh-Ritz theorem) Let A∗ ∈ Rn×n be a positive definite, real, and symmet-
ric matrix. Then ∀x ∈ Rn, the following inequality holds:

λmin
(
A∗)‖x‖ ≤ xT A∗x ≤ λmax

(
A∗)‖x‖.

3 Problem statement
Consider a singular nonlinear system described by

{
Eẋ(t) = Ax(t) + Bu(t) + Df (x(t), u(t), t),
y = Cx(t),

(.)

where x(t) ∈ Rn is the state variable, y(t) ∈ Rp is the measured output, u(t) ∈ Rm is the
control input. f : Rn × Rm × R → Rf is an unknown continuous nonlinear function, E ∈
Rn×n is a singular matrix, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rn×f are indicative of the
known constant matrices.

System (.) is a classic nonlinear model and the nonlinear model is more troublesome
dealing with many problems, so we use the linear system to approximate the nonlinear
system according to the characteristics of T-S fuzzy control, so that the problem of the
nonlinear system is transformed into the problem of a linear system.

Model rule i:
If ξ(t) is Mi and · · · and ξq(t) is Miq

then{
Eẋ(t) = Aix(t) + Biu(t),
y = Cix(t),

i = , , . . . , r, (.)
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where Mij is a fuzzy set and r is the number of rules, Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈
Rp×n, ξ(t), ξ(t), . . . , ξi(t) are known premise variables that may be functions of the
state variables, we will use ξ (t) to denote the vector containing all individual elements
ξ(t), ξ(t), . . . , ξi(t). βi(ξ (t)) =

∏l
j= Mij(ξj) is the membership function of the system (.)

with respect to the ith plant rules.
According to the characteristics of T-S fuzzy approximation, we can approximate the

global nonlinear function with a number of local linear functions. So we can get the fol-
lowing model:

{
Eẋ(t) =

∑r
i= λi(ξ (t)){Aix(t) + Biu(t)},

y(t) =
∑r

i= λi(ξ (t))Cix(t),
(.)

where

⎧⎪⎨
⎪⎩

λi(ξ (t)) = βi(ξ (t))∑r
i= βi(ξ (t)) ,

λi(ξ (t)) ≥ ,∑r
i= λi(ξ (t)) = .

According to the system (.), the following augmented system is considered:

[
In 
 

][
ẋ(t)
ẍ(t)

]
=

r∑
i=

λi
(
ξ (t)

)[  In

Ai –E

][
x(t)
ẋ(t)

]
+

[

Bi

]
u(t),

ȳ(t) =
r∑

i=

λi
(
ξ (t)

)[Ci 
 Ci

][
x(t)
ẋ(t)

] (.)

and its compact form is defined by

{
Eż(t) =

∑r
i= λi(ξ (t)){Aiz(t) + Biu(t)},

ȳ(t) =
∑r

i= λi(ξ (t))Ciz(t),
(.)

where z(t) = [x(t) ẋ(t)]T ∈ Rn is the augmented state. E =
[ In 

 

] ∈ Rn×n, Ai =
[  In

Ai –E
] ∈

Rn×n, Bi =
[ 

Bi

] ∈ Rn×m, Ci =
[ Ci 

 Ci

] ∈ Rp∗n, i = , , . . . , r.
In order to facilitate the design of the observer, we have the following assumptions:
. The T-S fuzzy augmented system (.) is solvable and impulse free.
. The first-order derivative of the output vector is available.

. rank
[ E

�Ai
Ci

]
= n, i = , , . . . , r, the matrix � ∈ Rr×n is a full row rank, and

�[E  ] =  where rank([E  ]) = n + p.

4 Main results
In , Karimi [] presented a convex optimization method for observer-based mixed
H/H∞ control design of linear systems with time-varying state, input and output delays
and gave the delay dependent sufficient conditions for the design of a desired observer-
based control, that is, the linear matrix inequalities. Kao et al. [] focused on designing a
sliding-mode control for a class of neutral-type stochastic systems with Markovian switch-
ing parameters and nonlinear uncertainties.
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Consider the following continuous observer for the ‘subsystem’ of the augmented system
(.):

{
θ̇ (t) =

∑r
i= λi(ξ (t)){Niθ (t) + Hiu(t) + Li(a, b, c, ȳ(t)) + Jiȳ(t)},

z̄ =
∑r

i= λi(ξ (t)){Piθ (t) – Qi�Biu(t) + Fiȳ(t)}. (.)

Below we will explain the meaning of the parameters of system (.):
θ (t) ∈ Rq is the observer state vector, z̄(t) represents the estimation of ȳ(t). Li is the esti-

mator gain and continuous:

Li = –
γ‖X–

i ‖Si ˜̄y‖Si ˜̄y‖

‖Si ˜̄y‖ – ḣ(t)hi(t)
–

‖Ti‖Si ˜̄yz̄T z̄
‖Si ˜̄y‖‖z̄‖ – ḣ(t)hi(t)

, (.)

where ˜̄y(t) = z̄(t) – ȳ(t) is the output reconstruction error,

h : R+ → R+, h ∈ C,∀t ∈ R+, sup h(t) < ∞, sup ḣ(t) < ,

hi : R+ → R+, h ∈ C,∀t ∈ R+, hi(t) ≤ 
‖X–

i ‖γa + ‖Ti‖c

and the γ satisfy the following conditions:

NT
i Xi + XiNi +


γ

XiTT
i TiXi ≤ –Q, i = , , . . . , r,

where Ni is the Hurwitz matrix, Xi and Q are symmetric positive definite matrices.
According to the literature [], we get the relevant parameters:
R ∈ Rq×n is a full row rank matrix,


i =

⎡
⎢⎣

E
�Ai

Ci

⎤
⎥⎦ , �i =

⎡
⎢⎣

R
�Ai

Ci

⎤
⎥⎦ ,

σi = TiAi�
+

[
q×(r+p)

Ir+p

]
+ Yi

(
Iq+r+p – ��+)[q×(r+p)

Ir+p

]
,

Pi = R
+

[
n×(r+p)

Ir+p

]
+ Zi

(
In+r+p – 

+)[n×(r+p)

Ir+p

]
,

Ti = R
+

[
In

(r+p)×n

]
+ Zi

(
In+r+p – 

+)[ In

(r+p)×n

]
,

Ni = TiAi�
+

[
Iq

(r+p)×q

]
+ Yi

(
Iq+r+p – ��+)[ Iq

(r+p)×q

]
,

Ki = �+

[
Iq

(r+p)×q

]
+ Wi

(
Iq+r+p – ��+)[ Iq

(r+p)×q

]
,

[
Qi Fi

]
= �+

[
Pi

Ir+p

]
+ Wi

(
Iq+r+p – ��+)[ Pi

Ir+p

]
,

[
–ϕ Ji

]
= σi + NiPi,
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Hi = TiBi,

i = , , . . . , r,

where r = n – p, Y , Z, W are arbitrary matrices of appropriate dimension.

Theorem  For the T-S fuzzy observer (.), the parameters and state estimation errors
are globally stable, if the following equations (.)-(.) hold:

NiTiE – TiAi + JiCi = , (.)

[
Pi Qi Fi

]⎡⎢⎣
TiE
�Ai

Ci

⎤
⎥⎦ = In, (.)

and there exist positive γ, Xi = XT
i > , satisfying the following matrix inequality:

[
NT

i X + XNi XTi

TT
i X –γI

]
< . (.)

Proof First we define ε as the error of θ and TiEz. That is ε = θ – TiEz. According to (.)
and (.), we can obtain

ε̇j =
r∑

i=

λi
(
ξ (t)

){
Niεj + (NiTiE + JiCi – TiAi)z + (Hi – TiBi)u(t) + Li(a, b, c, ȳ)

}
,

j = , , . . . , r. (.)

According to (.) and the process of solving Hi, we can get

ε̇j =
r∑

i=

λi
(
ξ (t)

){
Niεj + Li(a, b, c, ȳ)

}
, j = , , . . . , r. (.)

By considering the equation

�
[
E  

]
⎡
⎢⎣

ż



⎤
⎥⎦ =

r∑
i=

�Aiz(t) + �Biu(t)

we have the equation

�
[
E  

]
= .

So

r∑
i=

�Aiz(t) + �Biu(t), i = , , . . . , r.
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That is,

�Aiz(t) = –�Biu(t), i = , , . . . , r. (.)

Using equation (.), θ and z̄, we can get

z̄ – z =
r∑

i=

λi
(
ξ (t)

){
Kiε + (KiTiE + Qi�Ai + FiCi – )z

}
, (.)

which can be rewritten as

z̄ – z =
r∑

i=

λi
(
ξ (t)

)
⎧⎪⎨
⎪⎩Kiεi +

[
Pi Qi Fi

]
⎡
⎢⎣

TiE
FiAi

Ci

⎤
⎥⎦ z – z

⎫⎪⎬
⎪⎭ . (.)

According to equation (.), the augmented state observation error is obtained:

z̃ =
r∑

i=

λi
(
ξ (t)

)
Kiεi, (.)

where z̃ = z̄ – z.
Here we are going to have a stability analysis. First, we construct a positive definite func-

tion as a Lyapunov function:

V (t) =
r∑

i=

{
λi
(
ξ (t)

)
εT

i Xiεi + ηa + ηc + h(t)
}

. (.)

By using (.), the time derivative of V is written:

V̇ (t) =
r∑

i=

r∑
j=

λ
i
{
εT

i
(
NT

j Xj + XjNj
)
εi + εT

i XjLi + ηaȧ + ηcċ + ḣ(t)
}

.

According to Lemma , we can get

V̇ (t) ≤
r∑

i=

r∑
j=

λ
i

{
εT

i

(
NT

j Xj + XjNj +

γ

XjTjTT
j Xj

)
εi

+ εT
i XjLi + ηaȧ + ηcċ + ḣ(t)

}
.

Then Xi = SiCiKi, i = , , . . . , r, where Si is computed using Lemma . So

V̇ (t) ≤
r∑

i=

r∑
j=

λ
i

{
εT

i

(
NT

j Xj + XjNj +

γ

XjTjTT
j Xj

)
εi

+  ˜̄yST
i Li + ηaȧ + ηcċ + ḣ(t)

}
.
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Using equation (.), we can obtain

V̇ (t) ≤
r∑

i=

r∑
j=

λ
i

{
εT

i

(
NT

j Xj + XjNj +

γ

XjTjTT
j Xj

)
εi

–
γaḣ(t)hi(t)‖X–

i ‖‖Si ˜̄y‖

‖Si ˜̄y‖ – ḣ(t)hi(t)
–

cḣ(t)hi(t)‖Ti‖‖Si ˜̄y‖‖ẑ‖
‖Si ˜̄y‖‖z̄‖ – ḣ(t)hi(t)

+ ḣ(t)
}

.

Because of hi(t) >  and sup ḣ(t) < , we combine with Lemma :

V̇ (t) ≤
r∑

i=

r∑
j=

λ
i

{
εT

i

(
NT

j Xj + XjNj +

γ

XjTjTT
j Xj

)
εi

+ ḣ(t)
(
 – γ

∥∥X–
i
∥∥ahi(t) – ‖Ti‖chi(t)

)}
;

hi(t) should satisfy this inequality:

hi(t) ≤ 
‖X–

i ‖aγ + ‖Ti‖c , i = , , . . . , r.

The result is the following inequality:

V̇ (t) ≤
r∑

i=

r∑
j=

λ
i

{
εT

i

(
NT

j Xj + XjNj +

γ

XjTjTT
j Xj

)
εi

}
.

Because
⎧⎨
⎩

NT
i Xi + XiNi + 

γ
XiTT

i TiXi ≤ –Q, i = , , . . . , r,[
NT

i X+XNi XTi

TT
i X –γI

]
< 

and by applying Schur lemma and Rayleigh-Ritz theorem, we can get

V̇ (t) ≤ –λmin(Q)
r∑

i=

λ
i ‖εi‖ ≤ . (.)

Therefore, the derivative of V is negative semi definite. According to the Lyapunov the-
orem, we can get the ε, z̃ and the parameters estimation errors are globally stable.

According to the above analysis, we proved the theorem. �

In view of the system (.), we give a kind of fuzzy control scheme.
Model rule i:

If ξ(t) is Mi and · · · and ξq(t) is Miq

then u(t) = Klx(t),
where l ∈ L := {, , . . . , r}, which can be rewritten as

u(t) =
r∑

l=

ul
(
ξ (t)

)
Klx(t). (.)
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The fuzzy control system consisting of the fuzzy system (.) and smooth controller
(.) can be rewritten as

θ̇ =
r∑

i=

r∑
l=

λiul
[
(Nl + HlKj)θ (t) + Ll

(
a, b, c, ȳ(t)

)
+ Jlȳ(t)

]
. (.)

Theorem  The fuzzy control system (.) is globally exponentially stable if there a set of
matrices Ql , l ∈ L, a set of symmetric matrices �l , l ∈ L, a set of matrices �li = �T

il , i, l ∈ L,
l < i, and a positive definite matrix X meets the following LMIs:

[
–X + �l XNT

l + QT
l HT

l
NlX + HlQl –X

]
< , l ∈ L, (.)

[
–X + �li XNT

l + QT
i HT

l
NlX + HlQi –X

]

+

[
–X + �il XNT

i + QT
l HT

i

NiX + HiQl –X

]
< , l, i ∈ L, l < i, (.)

� :=

⎡
⎢⎢⎢⎢⎣

� � · · · �r

� � · · · �r
...

...
. . .

...
�r �r · · · �rl

⎤
⎥⎥⎥⎥⎦ > , (.)

and the controller gains can be determined by

Kl = QlX–, l ∈ L. (.)

Proof First of all, we defined the Lyapunov function

V (x) = xT X–x, (.)

where the matrix X is positive definite [].
By applying the Schur complement to (.) and (.), respectively, one has

(NlX + HlQl)T X–(NlX + HlQl) – X + �l < , (.)




(NlX + HlQi + NiX + HiQl)T X–(NlX + HlQi + NiX + HiQl)

– X + �li + �il < . (.)

We define Ali = Nl + HlKi and B = Ll(a, b, c, ȳ) + Jlȳ, and we consider the Lyapunov func-
tion defined in (.). Because the form of the following function is a sum, in order to
facilitate the subsequent proof, we give the discrete form for the Lyapunov function:

�V (t) = V
(
θ (t + )

)
– V

(
θ (t)

)

=

[ r∑
l=

ulAliθ (t)

]T

X–

[ r∑
l=

ulAliθ (t)

]
– θ (t)T X–θ (t)
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=
r∑

l=

r∑
i=

λiulθ (t)T AT
li X–Ailθ (t) – θ (t)T X–θ (t)

=
r∑

l=

r∑
i=

u
l θ (t)T(AT

ll X–All – X–)θ (t)

+
r∑

l=

r∑
i=

λiulθ (t)T(AT
li X–Ail + AT

il X–Ali – X–)θ (t)

=
r∑

l=

r∑
i=

u
l θ (t)T(AT

ll X–All – X–)θ (t)

+
r∑

l=

r∑
l<i

λiulθ (t)T
[




(Ali + Ail)T X–(Ali + Ail) – X–
]
θ (t). (.)

Then using (.) and (.),

�V (t) ≤ –
r∑

l=

r∑
i=

u
l θ (t)T X–�lX–θ (t)

–
r∑

l=

r∑
l<i

ulλiθ (t)T(X–�liX– + X–�ilX–)θ (t)

≤ –

⎡
⎢⎢⎣

uθ

...
urθ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

X–�X– · · · X–�rX–

...
. . .

...
X–�rX– · · · X–�rX–

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uθ

...
urθ

⎤
⎥⎥⎦

≤ –k
r∑

l=

u
l θ (t)Tθ (t)

≤ –k
∥∥θ (t)

∥∥, (.)

where k > .
Thus the fuzzy control system (.) is globally exponentially stable and the controller

gains can be determined by (.). The proof is thus completed. �

5 Examples
Example  In , Mikania micrantha first appeared in Shenzhen. Mikania micrantha is
in vines and has the super ability to reproduce, climbing shrubs and trees, can quickly form
whole plant coverage, and the plants by destroying the photosynthesis suffocate. Mikania
micrantha can produce allelochemicals to inhibit the growth of other plants.

According to [], we give the model of the invasion of Mikania micrantha:

⎧⎪⎨
⎪⎩

ẋ(t) = rx(t)( – x(t)+y(t)
k ),

ẏ(t) = ry(t) – E(t)y(t),
 = E(t)y(t)c – m,

(.)

where x(t), y(t), E(t) denote the density of native species, the density of alien species (Mika-
nia micrantha), and the capture of the alien species (Mikania micrantha), respectively;
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r and r denote the intrinsic growth rate of native species and Mikania micrantha, re-
spectively; k represents environmental capacity of native species; m represents the cost
of artificial capture of Mikania micrantha; c represents unit capture cost of Mikania mi-
crantha.

The values of the settings in [] are r = ., k = , c = ., r = ., m = . So we can
get

⎧⎪⎨
⎪⎩

ẋ(t) = .x(t)( – x(t)+y(t)
 ),

ẏ(t) = .y(t) – E(t)y(t),
 = .E(t)y(t) – .

(.)

On account of the presence of saturation for the species population density, it is reasonable
to suppose x(t) ∈ [–d, d], y(t) ∈ [–d, d], d = , d = , and then the fuzzy state model
can be written as follows, which is appropriate for describing model system (.) as x(t) ∈
[–d, d], y(t) ∈ [–d, d]:

Rule : If x(t) is M and y(t) is M, then

ẼẊ(t) = ÃX(t) + B̃ũ(t).

Rule : If x(t) is M and y(t) is M, then

ẼẊ(t) = ÃX(t) + B̃ũ(t).

Rule : If x(t) is M and y(t) is M, then

ẼẊ(t) = ÃX(t) + B̃ũ(t).

Rule : If x(t) is M and y(t) is M, then

ẼẊ(t) = ÃX(t) + B̃ũ(t).

Here

X(t) =
[
x(t), y(t), E(t)

]T ,

Ẽ =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ ,

Ã =

⎡
⎢⎣

r – dr
k – r

k 
  
  

⎤
⎥⎦ =

⎡
⎢⎣

. –. 
  
  

⎤
⎥⎦ ,

Ã =

⎡
⎢⎣

r + dr
k

r
k 

  
  

⎤
⎥⎦ =

⎡
⎢⎣

. . 
  
  

⎤
⎥⎦ ,

Ã =

⎡
⎢⎣

  
 r –d

  dc

⎤
⎥⎦ =

⎡
⎢⎣

  
 . –
  .

⎤
⎥⎦ ,
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Ã =

⎡
⎢⎣

  
 r d

  –dc

⎤
⎥⎦ =

⎡
⎢⎣

  
 . 
  –.

⎤
⎥⎦ ,

B̃ = B̃ = B̃ = B̃ =

⎡
⎢⎣



m

⎤
⎥⎦ =

⎡
⎢⎣





⎤
⎥⎦ .

In order to observe the state variables, we add an output variable:

y(t) =
∑

i=

λ̃i
(
X(t)

)
C̃iX(t),

where

C̃ = C̃ = C̃ = C̃ =
[
  

]T .

According to the definitions and results of fuzzy models, the integral fuzzy model is
inferred as follows:

{
ẼẊ(t) =

∑
i= λ̃i(X(t))[ÃiX(t) + B̃iũ(t)],

y(t) =
∑

i= λ̃i(X(t))C̃iX(t),
(.)

where λ̃(X(t)) = 
 (– x(t)

d
), λ̃(X(t)) = 

 (+ x(t)
d

), λ̃(X(t)) = 
 (– y(t)

d
), λ̃(X(t)) = 

 (+ y(t)
d

).
According to (.), we can obtain matrices Ai, E, Bi, Ci, R, and �, i = , , , ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

     
     
     

. –.    
     
     

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

     
     
     

. .    
     
     

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

     
     
     
     
 . –   
  .   

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

     
     
     
     
 .    
  –.   

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

     
     
     
     
     
     

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bi =
[
     

]T ,

Ci =

[
     
     

]T

, i = , , , ,
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R =

⎡
⎢⎣

     
     
     

⎤
⎥⎦ , � =

[
     
     

]
.

The application of fourth chapter results in Ni, Hi, Li, Ji, Ki, Fi, Si, and Qi, i = , , , .
In addition, the following Xand γ must obey the Schur lemma:

X =

⎡
⎢⎣

. –. 
–. . 

  .

⎤
⎥⎦ and γ = ..

Below we give the functions h(t), hi(t) (i = , , , ) and the initial value:

h(t) = e–.t ,

hi(t) = .e–.t , i = , , , ,

x =
[
  .

]T ,

θ =
[
. . .

]T .

We give the state response diagram of the system, as shown in Figures , , and . The
red line in Figure  represents the state response of the x(t), and the blue line indicates the
observer’s estimation. Figure  shows the state response of y(t), and the value of the blue
line indicates the observer’s estimation. Figure , the red line, indicates the state response
of E(t), and the blue line indicates the observer’s estimation.

To illustrate the superiority of our design of the observer, we use for the state observer of
[] three state estimation of nonlinear singular systems. The red lines in Figure  show the
actual state response of the x(t), and the blue line the literature observer on the estimate
of the x(t); in Figure  red lines represent actual state response of the y(t), and the blue

Figure 1 The comparison of the actual and estimated states of x(t) by our observer.
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Figure 2 The comparison of the actual and estimated states of y(t) by our observer.

Figure 3 The comparison of the actual and estimated states of E(t) by our observer.

line shows the literature observer estimate states of y(t). In Figure  the red line shows
the actual state of E(t), and the blue line shows the literature observer on the estimate
of E(t).

Example  In view of system (.), we give the controller of the system (.).
Rule : If x(t) is M and y(t) is M, then

u = KX(t).
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Figure 4 The comparison of the actual and estimated states of x(t) by the observer of [1].

Figure 5 The comparison of the actual and estimated states of y(t) by the observer of [1].

Rule : If x(t) is M and y(t) is M, then

u = KX(t).

Rule : If x(t) is M and y(t) is M, then

u = KX(t).
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Figure 6 The comparison of the actual and estimated states of E(t) by the observer of [1].

Rule : If x(t) is M and y(t) is M, then

u = KX(t).

Here

X(t) =
[
x(t), y(t), E(t)

]T ,

X =

⎡
⎢⎣

. . 
. . .
 . .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ , Q =

⎡
⎢⎣

. . 
. . 
  .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ , Q =

⎡
⎢⎣

. . 
. . 
  .

⎤
⎥⎦ ,

K = QX– =

⎡
⎢⎣

. –. .
. –. .
. . –.

⎤
⎥⎦ ,

K = QX– =

⎡
⎢⎣

. –. .
. –. .
. . –.

⎤
⎥⎦ ,

K = QX– =

⎡
⎢⎣

. –. .
. –. .
. . –.

⎤
⎥⎦ ,
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Figure 7 The comparison of the error states of x(t) by adding the controller.

Figure 8 The comparison of the error states of y(t) by adding the controller.

K = QX– =

⎡
⎢⎣

. –. .
. –. .
. . –.

⎤
⎥⎦ .

After adding the controller, the graphics of the system (.) state variables are given in
Figures , , and .

6 Conclusions
In this paper, we mainly design the state observer-based T-S fuzzy singular system. We
use the T-S fuzzy control method to form a T-S fuzzy singular system. Then we give an
augmented system and T-S fuzzy compact form of singular system. Then we design a T-S
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Figure 9 The comparison of the error states of E(t) by adding the controller.

fuzzy observer for the system. In order to verify the global stability of the T-S fuzzy ob-
server with parameter and state estimation error, we construct a Lyapunov function of the
T-S fuzzy form. Finally, we consider two numerical examples, comparing in the simula-
tion observation the actual state and our observer is designed to estimate the state. From
the comparison of the results we see that our design for the observer is effective. In future
work, we intend to consider the following two main approaches of the literature. Kao et
al. [] devoted their work to investigating the problem of robust sliding-mode control
for a class of uncertain Markovian jump linear time-delay systems with generally uncer-
tain transition rates (GUTRs) and Noroozi et al. [] gave semiglobal practical integral
input-to-state stability (SP-iISS) for a feedback interconnection of two discrete-time sub-
systems.
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