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Abstract

Two types of matrix Lie algebras are presented. We make use of the first loop algebra
to obtain a new (1 + 1)-dimensional integrable discrete hierarchy, which generalizes a
result given by Gordoa et al., whose reduction is a discrete modified KdV system. Then
we produce another new (2 + 1)-dimensional integrable discrete hierarchy with three
fields under a (2 + 1)-dimensional non-isospectral linear problem. We again generalize
the (1 + 1)- and (2 + 1)-dimensional discrete hierarchies to obtain a positive and
negative integrable discrete hierarchy. In addition, we obtain a discrete integrable
coupling system of the (1 + 1)-dimensional discrete hierarchy presented in the paper
by enlarging such the loop algebras. Next, we apply the second matrix loop algebra
to introduce an isospectral problem and deduce a new integrable discrete hierarchy,
whose quasi-Hamiltonian structure is derived from the trace identity proposed by Tu
Guizhang, which can be reduced to some modified Toda lattice equations. A type of
Darboux transformation of a reduced discrete system of the latter integrable discrete
hierarchy is obtained as well. We introduce two types of operator-Lie algebras
according to a given spectral problem by a matrix Lie algebra and apply the r-matrix
theory to obtain a few lattice integrable systems, including two (2 + 1)-dimensional
lattice systems.

PACS Codes: 05.45.Yv; 02.30.Jr; 02.30.1k
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1 Introduction

It has been an important work to search for new lattice integrable systems, since such lat-
tice systems not only have rich mathematical structures, e.g., Lax pairs, Bicklund trans-
formations, Hamiltonian structures, soliton solutions, and so on, but also they have many
applications in mathematical physics, statistical physics, and quantum physics. Therefore,
one tries to seek for various integrable discrete systems via various methods including
mathematical and physical methods, such as the Ablowitz-Ladik lattice, the Toda lattice,
the Lotka-Volterra lattice, the differential-difference KdV equation, the Suris lattices, and
so on [1-10]. Fan and Yang [11] introduced an isospectral problem and derived a lattice
hierarchy which reduced to the Ablowitz-Ladik and the Volterra hierarchies, respectively.
As far as the (2 + 1)-dimensional integrable discrete systems and their some properties
are concerned, there are few works. For example, the (2 + 1)-dimensional Toda lattice was
presented and it was verified that it has a Lax pair, a Hamiltonian structure, and soliton so-
lutions [12]. Two (2 + 1)-dimensional integrable discrete hierarchies with three fields were
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constructed in terms of discrete zero curvature equations in [13]. Again in the case of a
(2 + 1)-dimensional non-isospectral linear problem, a new (2 + 1)-dimensional integrable
lattice hierarchy, which is a generalization of the discrete second Painlevé hierarchy, was
investigated in [14]. By introducing fourth-order Lax matrices, two (2 + 1)-dimensional in-
tegrable lattice hierarchies, which reduce to the two Mlaszak-Marciniak integrable lattice
hierarchies, were generated [15]. Tu [16] once applied the Lie-algebra method to deduce
the Toda lattice hierarchy and its Hamiltonian structure combined with the variational
method. By following the way proposed by Zhang et al. [17] one obtained some integrable
discrete hierarchies. One advantage for applying the Lie-algebra method to deduce in-
tegrable discrete hierarchies lies in adopting the well-known the Tu scheme [18], which
conveniently introduces linear spectral problems and manipulates similar steps as the case
of generating continuous integrable systems. Based on the scheme, Zhang and Tam [19]
obtained two integrable discrete integrable coupled systems of the Toda lattice, includ-
ing the linear and nonlinear discrete integrable couplings. All the works mentioned above
were performed under matrix Lie algebras. In the paper, we would like to employ the first
matrix loop algebra to generate (1 + 1)- and (2 + 1)-dimensional integrable discrete hi-
erarchies, which generalize some results obtained in [14], furthermore, we also obtain a
positive and negative integrable discrete hierarchy which implements the well-known re-
sults presented in [10, 13, 16,17, 19-22]. We again discuss a discrete integrable coupling of
the (1 +1)-dimensional integrable discrete hierarchy which possesses an arbitrary parame-
ter derived by using an enlarging matrix loop algebra. Finally, we apply the second matrix
loop algebra to generate a new integrable discrete hierarchy which can be reduced to a
generalized Toda lattice equation, whose quasi-Hamiltonian structure is obtained. Fur-
thermore, a Darboux transformation of a reduced differential-difference equation system
of the latter discrete hierarchy is obtained. We introduce a discrete-operator associated
algebra whose elements are just like the form

Eoz+n—1

L =1y nE"" + Ugini 4o+ U EY, —n<a<-1

Blaszak and Marciniak [23] discovered two types of operator Lie algebras based on the
above general associative algebra:

k=0: L=E*"4uyy1E" 4 o+ u EY, Ugen =1,

k=1: L=bg,E*" +ilgey B 1+ + E%, iy =1.
According to the operator Lie algebras, we shall introduce different isospectral problems
according to deforms of the spectral problem (54) to deduce various lattice integrable
systems, including the Toda lattice system, further we derive their Lax pairs by using the
r-matrix theory. In the following, we first recall the simplest matrix Lie algebra,

Al = Span{hl’hZJe;f};

where
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equipped with the commutative relations hhy = hy, hohy = hy,hihy = hohy = ee = ff =
0,me =e,eh; = 0,lnf =0,fln =f, hof = f,fhy = 0,hpe = 0,ehy = e, ef = hy,fe = hy, from
which we have [/, e] = e, [h1,f] = —f, [ha, €] = —e,[ha,f] =f,lefl =h=h — hy,[he] =
2e,[h,f] = —2f. The first loop algebra corresponding to the Lie algebra A; can be defined
as

Ay = span{hy(n), hy(n), e(n), f(n)},

where /(1) = A", hy(n) = o A" e(n) = e),f(n) = fA", n € Z.
The second loop algebra is given by

Ay = span{h (), hy(n), e(n),f (n)},

where (1) = A2, hy(n) = i A", e(n) = e, f(n) = fA21,

The purpose for recalling the above two-loop algebras aims at introducing spectral Lax
pairs, then with the help of various compatibility conditions, that is, various zero curva-
ture equations, to generate different discrete integrable hierarchies. It is remarkable that
the compatibility of some spectral Lax pairs can be transformed into Lax equations. Dis-
cussions of the tensorial form of the Lax pair equations were discovered in a compact and
geometrically transparent form in the presence of Cartan’s torsion tensor, therefore, three
dimensional spacetimes admitting Lax tensors were analyzed in [24]. Besides, Balean et
al. in [25] investigated the connection between Killing tensors and Lax operators, and two
examples, i.e., the Toda lattice system and the Rindler system, were analyzed in detail. Fur-
ther developments on discrete equations focus on fractional difference equations and their
different properties emerged. Wu et al. [26] showed that the Caputo-like delta derivative is
adopted as the difference operator and the master-slave synchronization for the fractional
difference equation was studied with a nonlinear coupling method. A lattice fractional dif-
fusion equation was proposed in Ref. [27], and the numerical simulation of the diffusion
procession was discussed for various difference orders. In addition, Wu et al. [28] pro-
posed the fractional logistic map and fractional Lorenz maps of Riemann-Liouville type
and the feedback control method was extended to discrete fractional equations. In Ref.
[29], by the use of the Riemann-Liouville differences on time scales, the Riesz difference
was defined in a consideration for discrete fractional modeling. Specially, the Adomian
decomposition method was adopted to solve the fractional partial difference equations
numerically. All the results presented in [24—29] could motivate us going on investigating
the generating discrete equations and discussing their properties applied to physical and
mathematical sciences.

2 Two integrable discrete hierarchies with three fieldsin 1+ 1and 2 + 1
dimensions
Tu in [16] proposed a method for generating discrete integrable hierarchies by the use of
loop algebras whose specific steps are as follows.
First introduce the spectral problem

1/fru-l = Unwrn 1//n,t = Vnwn'
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Then solve the stationary discrete zero curvature equation
(ET)U, — U,T =0,
where
re (d b) _ Z (um(n,t) b,,(n,t) ))\_m,
¢c -al = cn(nmt)  —a,,(n,t)

to obtain some recurrence relations among a,,, b, ¢,

Third, solve the discrete zero curvature equation

du,
dt

(EVI)U, - u,v™,

where

m
VI = (W), + A1) = Y Tk 4 Ay, 1),
i=0

Finally, apply the trace identity

8 ou, 0 .
—tr| W =27 —=AMu(WU,), i=12,...,p,
Su oA oA !

to deduce the Hamiltonian structure of the discrete integrable hierarchies obtained by the
discrete zero curvature equations. The above procedure for generating discrete integrable
systems is called the Tu scheme.

In the following, we shall apply the Tu scheme and the first loop algebra A; to generate
(1+1)- and (2 + 1)-dimensional integrable discrete hierarchies, then generalize them to a

unified model which is a positive and negative integrable discrete system.

2.1 A (1 + 1)-dimensional integrable discrete hierarchy
Consider an isospectral problem

WVH—I = Unw;ﬂ wn,t = Vanr (1)

where U, = s,/1(1) + hy(=1) + q,,€(0) + r,f(0), Vi, = A, (h1(0) — 12(0)) + B,,e(0) + C,f(0),
where

A=Y _ap™,  By=) baVN, Cu=) gh I )

j=0 j=0 j=0

Denoting A = E —1,Ef(n) = f(n + 1), E"\f(n) = f(n — 1), and solving the stationary discrete

Zero curvature equation

(AVn)U = [Um Vn] (3)
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yields

AsyAA, + 1, AB, = q,Cy — 1, By,
GnAA, + L\ IAB, = As,B, - 2q,A, — A7'B,,
s, AC, — 1, AA, = 2r,A, + 271C, — As,C,,
quAC, —A1AA, = r,B, - q,C,.

(4)

Substituting (2) into (4) gives rise to

splAaj + 1, Ab;j = qy,c; — 1,bj,
qn Ad]' + Ab] = Snbj+1 - 2q,,aj - b] (5)

$uACj1 — Ty Adj = 21,5 + ¢ — $,Cju1,

qnAcj — Aaj = 1,bj — qucja.

Taking the initial values by = ¢ = 0,40 =1, then we get from (5)

24y 21y —2quTu1
bl = ) = ) a=————
Sn Sp-1 SnSn-1

b _ 26]n+1 26]nrnqn+1 26]27“;471
2 — —

- 2 2 ’
SnSn+l $,Sn+1 $,Sn-1
2
=2qut,_1  2qu-1TuTn—2  2Tru
62 = 2 - 2 + )
SnSy-1 S§y-15n-2 Sn-18n-2
GnTn-2 nGn1Tn1Tn2 24274
ap=-2(E+1)——— +2(E+1) 5 t— g
$,Sn_18n—2 $uSy_1Sn-2 s

Remark 1 Equation (3) is similar to the stationary zero curvature equation of continuous

spectral problems
V. =[U,V].

Therefore, by the Tu scheme, we decompose equation (3) into the following form:

—(AVI) Uy + (U (V)] = (AVY) U~ (U (VI ], (6)
where
(Vi) =3 vad =22V, — (V) . (7)
j=0

The degree of the elements of the left-hand side of equation (6) is higher than -1, while
the right-hand side is smaller than 0. Thus, the degree of both sides of equation (6) is -1, 0.
Therefore, we obtain

—(AVY) Uy + [ U (V)] = (Aam)ha(-1) = $ubpmi1€(0) + SuEcif(0).
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Assuming V(m) = (V ) — am,h(0) + a,,h,(0), a direct calculation yields
~(AVIN U + U, V] = 53 Ay (1) = Ebye(0) + cf (0).

The compatibility condition of the following Lax pair:
Y = Unns Yty = Vo Vi

admits an integrable discrete hierarchy

Sy —s,Aa,,
qn = Eb,, . (8)
T —Cm

tm

Taking m = 2, equation (8) reduces to an integrable discrete system with three fields

2,2
Snp = 28,(E? = 1) 1002 9, (E? — 1) Drdellucdiind _ o, ATl
SnSp-1

SnSn-15n-2 Sn sn 18n-2
2
_ _2qn+2 2qn+17n+19n+2 2qn+lr" 9
Gnt = -2 T2
Sn+1Sn+2 Sy015n42 SnSp.q
2
[ 2ann_1 + 2qn-_1rp-1rn-2 _ 2rp-2
mt — 2 2 s s ’
Sns,_q Sy_15n-2 n-1Sn-2

which generalizes the positive part of a result in [14] except for constants.

Assuming m = 1, equation (8) reduces to the much simpler integrable discrete system

2qpn+1tn 2qnTpn-1

Syt =—c — T~
mt Sn+l sp-1 7
2qn+1
qnt = 5}7’: ’ (10)
_ —2ru1
Vn,[ = Snill .

It is easy to see that there exists an explicit relation among the three fields in (10) as follows:

Sn =qnln +f(n)

where f(n) is an arbitrary function with respect to variable #.
Let s, = 1, equation (9) becomes

Gnt = 2Gn+2 = 2Gn1 T qne2 — quprl T 11)

T'nt = 2‘];17"3,1 + 2qn1Tn-1"n-2 — 27p_2,
and
(E + 1)qutn- — (E + 1)quqn-1Tn-1n-2 — Goliyq = G 12)

where c is a constant independent of #, t. Equation (11) is a modified integrable discrete
KdV system with the constraint (12). In fact, substituting (12) into (11) yields a reduced
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integrable discrete mKdV system

qnt = 2%+2 - 2q;'1+1’"r1+1q;f1+2 - 2qu+lrnv

In+1 c
;:1 n-1— 2%+1'"n7”n—1 - 2q_n

rn,t=2

In the following, we discuss the quasi-Hamiltonian form of equation (8). A direct compu-
tation gives

u'= —1 Ay = 1 M )
" Sn=Gnln \—Ty )\Sn Pn \—Ty )Msn
1 (AlAn — Bty —quA, + )»s,,B,,)

w=v,u,'=—|(" |
Pn AT Cn + V,,A,, —ann - )\SnAn

Denoting (a, b) = tr(ab), we find that

n

< 8LI,,> 2714, - r,B, @uCr + As,A,
W, = Sy +

o Pn P2 ’
<W/ 8LI,,>:A,,—r,,B,,A <W 8LI,,>: AIC, + 1A,
’ Sn Pn ’ ' 9qn Pn ’

< ou, > ASyBy — qnAn
W, =
ory Pn

Substituting these results into the trace identity [16] yields

Ap—ruBuk
-1 "
B (A A, —1,B, - qnCy +);s,,A,,) Y i)&’ M , (13)
5Q, Pn P O\ rsuburgun
Pn
§ _ (38 8 3 \T
where 55~ = (5570 an? )

Inserting (2) into (13), one infers that

am=Tnbm+1

§ (%Cm — 1Syt + ZSnam> (- 2m) Cmg;am
aQn Pn n

Snbm+1=qnam
Pn

=(y - 2m)P,,.

It is easy to verify from the initial values in (5) that y = 0. Thus, we have

Pm _ 5Hm+1 ) Hm+1 _ rnsnbmﬂ —qnCm — 2snﬂm ) (14)
8Q, 2mpy
Therefore, equation (8) can be written in Hamiltonian form
—s, A
o S 8Hm+1
qn = | spbm — qn(E +Day, | =JPnm=] ’ (15)
8Qy
T'n —Cm

tm
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where
—Sutnqn A — Supnl 0 —Surnl\
] = _qirnE - qnan 0 Sn— ann(E + 1)
Vn(;on"'ann) —Pn 7'5

is not obviously a Hamiltonian operator.

Remark 2 Equation (15) is only a form of Hamiltonian structure. Perhaps it becomes a
Hamiltonian structure by introducing various modified terms A, in generating the inte-
grable hierarchy (8); of course, if changing the modified terms A,,, the discrete hierarchy is
also changed. As to this question, we shall discuss it as presented in [10] in the forthcoming

time.

2.2 A (2 + 1)-dimensional integrable discrete hierarchy
Consider the following (2 + 1)-dimensional discrete non-isospectral linear problem [13—
15]:

EWn()”) = Unllfn(k):

(16)
D) = (1) X2 + Vi (3),
where the spectral parameter A = A(y, £) satisfies a non-isospectral condition
b = ()2, + B, 17)

here w(1) and B(1) are two functions to be determined. The compatibility condition of
(16) along with (17) reads

al,

U, U,
"~ o) —2 — B(x AV u, - [u,, vim]. 18
a7 ~OW, BOI—E + (AV) Uy = [, V"] (18)
Assume

w(r) =A%, B =31 Baj1r ¥,
An =3 a(ny, )", B, =3 bi(n,y, )A>" 4, (19)
C,= Z;ZO ¢j(m,y, A2+,

The discrete stationary equation of (18) admits the following:

Sy + Sulag + ryAby — gquc —1,b1 = 0,
Gny + qnlag + Abg + s,by — 2g,a0 — by = 0,
Tny +SnAct — ryAag + 2ryao + co —$,¢1 = 0,

—Bom-1+ quAcy — Aag + 1,by — 41 = 0,
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_snﬂZm—2j+3 + S,,,Aﬂj + TnAbj —qnCj — anj =0,
qnlaj+ Ab; + s,bj. — 2g,a; — b = 0, (1)
Sul\cj1 — Ty Aaj + 2rya; — ¢ — $ycjy1 = 0,
—Bom-2j-1 + GuAci1 — Adj + rpbj — qucia =0, j=1,2,...,m-1,
SuAay, + 1y Aby, — quCh — by, = 0,
anﬂm + Abm - 2qnam - bm =0, (22)
—rpAdy, + 2r,ay, + ¢, =0,
Aa,, =0.
Assume
m
(V7). = Yo"V =32V, = (Vi)
j=0
_(AVVEM))+U" + [u”’ (Vlgm))Jr]
= _w(}\)un,y + lg(}\)un,k =(qnAay + Aby, — 24,40, — b,y)e(0)
+ (2rpam — ryAay + ¢)f (0) — (Aay)hy(-1). (23)
Suppose
V((;;’) - (V,(lm))+ +A,= (V,Y”))+ — 11 (0) + a,,h5(0). (24)
Substituting (23), (24) into equation (18) replacing V™ by V((:; ) gives
Suty = —$pAdy,
dntm = Ebm - anﬂm; (25)

Tty = Cm + 4T n G,

which is a (2 + 1)-dimensional integrable discrete hierarchy. In the following, we consider
some of its reductions. Taking by = ¢y = 0,49 =1 in (20), we can deduce from (21) and (22)
that

1 271 + Ty,
by = _(zqn - q;q,y)r = _u)
Sn Sn-1

29T 7 e
a1 = g — —2A-l<m . u)

SnSn-1 SnSn+l SnSn-1

Let m = 2, equation (25) reduces to a new (2 + 1)-dimensional integrable discrete coupled
system

rnqn+l n 2qn+lrn+lrnqn+2 + qn+1rn+1rnqn+2,y

Snty = —Sulay = —P3s, + 2n +1)B3 5
Sn+l S415n+2

2 2 2
6qn+1rn —Gyu1"nYny 2Gn1qni2ln — n"nqn+2,y

2 2
SnSy1 S+15n+2

Page 9 of 28
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2 2 2
qnln- + 2 Gy + Gl 1Gny

2
Sp-1 SuSn_1

+(2n-3)Bs

6Gnqn-1"n-1"n-2 — gn"n-19n-1"n-2y + 2qnTn-2 + qn'n-2y

2
$-15n-2 Sn-18n-2
4ann—l Tnqn+1 qnln-1
S Ry N R A G (26)
Sp-1 SnSn+l SnSn-1
qn+1 2qni1Tni1qni2 + ni1Tn+1qn+2,y
Gnt, = Eby = 2quar = (2n +1)B3 = 2B3ngy, + 5
Tnl Sp+15n+2
6q;%1+1rn —Gni1lny 2qn+1qn+2 —Gni1qn+2y E qnln-1
- 3 - 5 +2B3qu(E +1)——
SnSys1 S415n+2 SnSn-1
aq3r?_ GnGn-1"n-1"n-2
- 5 4 ag,(E + 1) T
SuSn-1 SnSy-18n-2
4%+1 Ynqn+1 qnln-1
- T EATH L ) 2g,R(an), (27)
Sn+l SnSn+l SnSn-1
rp- 2"5_1% + 73,_1qn,y 6%—1 Tp-1rp-2 — qn—lrn—l rn—2,y
Tugy = C2 + 4rya; = (3 —2n)ps - 5 + 5
Sp-1 SnSy_1 Sy_15n-2
2ry_o + I'y_o qnln-1
- T 4nBsr, — 4r,(E +1)(3 - 2m)
Sy-18n-2 SnSn-1
8rudira qnGn1Tn1Tn2
2—;”1 —8ry(E+1) e
S1Sn-1 SnSy-15n-2
164u7nTn-1 "nnily | Gntn-1
¢ 2AnTnlnd poy g1 (Tnfnely  Infncly ) g Riay). (28)
SnSn-1 SnSn+l SnSn-1

When taking Aa, = 0, we may take a; = «, 83 = 0,s, = 1, equations (26)-(28) reduce to

qnt = Eby — 2aq,,

(29)
Tnt = Ca +4ary,
which can be written as
Gntnt — Tnqne = 60, 1y,.
If g, # 0, we have
rn = qug(n,)e*", (30)

where g(n,y) # 0 is an arbitrary function independent of time ¢. Hence, equation (29) can

be reduced to a (2 + 1)-dimensional integrable discrete equation

g, )qns + 208(n,9)q, = Ca,

-
here ¢, = Z;.
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2.3 A positive and negative integrable discrete hierarchy
Based on [14], we introduce a (2 + 1)-dimensional non-isospectral linear problem

wnﬂ = U wn’ n = thl(l) + qne(o) + rr(f(o) + hZ(_l) +pnh2(1),
o oW B2+ VY A= 0(W)Ay + (L),

where

Vi = A" hy(0) + Dy (0) + B™e(0) + CY£(0),

m

m m-1
Aglm) _ Zﬂj)‘-zm_zj + Z&jk—(zm—z;‘)’ Zb . 20m=j)+ Z —(2m-— 2;+1
j=0 j=0

j=1

m m m m-1
_ ZC/)\Z(m—j)H + ZE/)\—(Zm—ZJH)’ qum) _ Zd]')‘Zm_ZI + Zdj)\'—(Zm—Zj),
j=1 j=1 j=0 j=0

m

()= 22"+ 07 BO) =Y (o 4z ga ).
j=2

The compatibility condition of (31) has the same form as equation (18). Substituting the U,
and V" in (31) into equation (18), combining the operation relations of the loop algebra
A leads to

su(E —1)ag = —Suy, qnEao + pub1 — qudo — $,b1 = —qny,
spEcy + ryEdy — a0 — ppcy = —Tuy,

qnEci + Edy + p,Ady —r,by —dy =0

$u(E = D)aj + r,Ebj — q,Cj = $,00m_2j41,

qnEci + puAd; + Ed;_y — r,bj = 200,j.1, (32)
SuEcj + ruEdj — rpa; — pucia — ¢ =0,

qnEaj + Ebj + p,Ebj.y — s,bj —q,d;j =0, j=1,2,...,m—1,

SnEcy + rnEdy 1 — PuCm — Tn@m-1 — cme1 = 0,

PrEby — $uby + quEa, 1 — qudm-1 =0,

Ad, +p,,Az_im_1 +qnEcy, — Fubm = a1,

sp(E = 1)ag + rnEby — qucy = —Sny»

rnEdy — rydg — ¢ = —Fny

quEey + Ady + p,Ady —1,by = —p,y,
Ady = —pyy,

$u(E —1)a; -_F 1Ebji1 = @uCist = $uQ1-2ms2)» (33)
$nEC; + 1ryEd; — 1,a; — ¢ji1 — puCj = 0,

4nEa; + Ebj,y + puEbj — s,b; — q,d; = 0,

4nES; + Edj — by + puEdyy — dj — pudis = a1, j=1,2,...,m—1,

rnEbm - qnam =S$p-1,

Eém - Snl;m—l +pnl_7m—l - qn('_im—l =0.
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The corresponding (2 + 1)-dimensional positive and negative integrable discrete hierarchy

is obtained as follows:

Suty = Sn(E = L)ay, + rEby — @uCpm,

rn,tm = rnEdm —Vnlm — Cm + (SnE _pn)am;

_ (34)
ntym = anam + Ebm - qndm + (an - Sn)bm;
pn,tm = ancm +pn(E - l)dm - rnbm; m Z 2
qnEcy — ruby, = 0. (35)

Given some initial values in terms of (32) and (33), we could obtain some explicit
(2 + 1)-dimensional positive and negative integrable discrete hierarchies as long as
Qo> Byny Coss oy Emy and by, are obtained. Here we only discuss the case where p,, = 0. It
is easy to see that (34) reduces to

Sty = Sn(E = 1)ay, + rEby — uCpm,
Pty = TnEdy — Tl — C + $,ECy, (36)

nt,y = GnEam + Eby — qudy — $,bym.

Equation (35) is an obvious generalization of equations (2.18) and (2.19) presented in [14].
Specially, when taking m = 2, (35) becomes the following:

Sn, = Sp(E —1)ay + r,Eby — gq,co,
Tnty = Tudy — 1ydy — €2 + $,ECy, (37)

Ant, = GuEas + Eby — g,udy — s,b»,
and (35) turns to
ryby = qnEcs. (38)

From (32) and (33), we can compute that

Sn Pn

qn, qn , —15n+l, qn
by =T InpaZdy e g

Sn Sn Sn+l Sn
Ty, -1 1 . _15n, Tn-1
R R A Y
Sp-1 Sp-1 Sn Sp-1

aq=- ()

(E—Day = 8, = — 8ty Gnlncty | Tt po xSy | @il gy

SnSn+l SnSn-1 SnSn+l Sn SnSn+l
ann—l _ _ Sn, ann—l
- T ETATT - g+ g,
SnSn-1 Sn SnSn-1
Y > 1 (on)y
a = A 8;1: bl =q4n-1— qn—l,y + qn—lA )
Pn
- _1Pn, 12048y + 03quTy
=Tyt Ty + 1, AT dy= a1/ 2

Pn Pn
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1
— -1
Aal = —\"T"uSuqn-1+ rnannﬂ,y - rnann—lA
n

Pny

+ an;qrnﬂ + annrnﬂ,y
n

+ annrnJrlEA_l @
o

n

2 2
—Gy"n"nily — qn’,qn-1y — X_3G4uTn — ('InrnA(ann)

n

= qnrnA (q,,lrnAl @) +0_1S, }

Substituting the related results obtained above into (37), we can get one (2 +1)-dimensional
positive and one negative discrete hierarchy with three fields; here we do not write it down
again.

When taking d, = 0, the (2 + 1)-dimensional integrable discrete system (37) reduces to a

(1 + 1)-dimensional discrete system as follows:

nqn+1 nqn+1 _ 20[15,, + A3qyuty
Sey = 18y +oz(m+1)—— — ——EA Y (uinioiiat s L0
Sn+l Sp+1 Pn

" SnA[ann_l A_l (26(18,, + as%’%)]
Pn

SnuSn-1
Ty Ty 2018, + o3qyt,
3nqnnl+qnnlA1( lnp 3qn n>’ (39)
n

Sp-1 Sn-1

61n’”n4n+1EA_1 (20!15,,, + o3quln

) - 011”%1 - a—Sannqn—l
Pn

Gnty = 1(n+1)g, +
SnSn+1

— quR(dy) = $uSy1qu-2 — 031 = 1)S, Gt + SuTu>_ ) + SpGn101, (40)

Pty = _1( + 1)1y + Q_3GnFylps1 + rnE(R(dz)) —aqnry,
rn annrn—l -1 20515;1 + a3ann rn
t|l—— A ———— | —azn + 8,Se1F a2
Sp-1 SnSn-1 Pn Sp-1

- Snrn+lrn+2qn+2 + 03 (Vl + Z)Snrnﬂ - SrzE(rnle): (4'1)

where

R(dZ) = A_l{rnsn—lqn—Z + rnrn—lq;zq,l - (rnqn—l - anrn)f'_ll

—qnSn+1Sn+2 + ann+1rn+2qn+2}’

_ 41

a=A p_[annrm—l _annA(ann)_a—lsn _a—Bann] .
n

When taking s, = 1, equations (39)-(41) can reduce to a new modified integrable discrete

system. Specially, if we take various values of the parameters o, 3,21, and «_3, we can

get different three-field discrete systems. For example, assume o3 = o3 = -1 = @_3 = 0,

equations (39)-(41) reduce to

qn+lrn ann—l ‘Inrn—l
Sppy = — + + s, Al — |,
Sn Sn-1 SnSn-1

GnVn"n-1  Tn-1
2P

SnSn-1 Sp-1

r}’l,lz = + S$uSn+1n+2 — Snrn+1rn+2qn+2

1 q;«snrnﬂ - annA(ann)
Pn

+ rnEA_l {rnsn—lq;q—Z + rnrn—lqﬁfl + (QnErn - rnqn—l)A_
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S$nnTns1 = GunA(gnTn)

_1°nYn"n+ nl'n n'n

_Qnsn+1rn+2 +ann+lrn+2qn+2} _SnrnJrZEA o )
n

annq;ﬁl qn+l

SnuSn+1 Sn+1

2
qnity = = S$uSn-19n-2 + Sutnq,_1

-1 2
- an {rnsn—lqn—2 + V'uln-19y,-1 — GnSn+1¥n+2 t GuVne1Vne2qn+2

an;qrrnl - annA(q;qrn)) }
Pn

anl’lr}’l+l - annA(ann))

On '

+ (anrn - rnqn—l)A_l(

+ Guo1Sy A7 (

Remark 3 If we could made use of the constrained condition (39) when deducing the
above integrable discrete systems, the local integrable discrete equations could be ob-

tained, here we do not go into that investigation again.

2.4 Adiscrete integrable coupling system

Obviously, the integrable discrete system (34) is an expanding integrable hierarchy, how-
ever, it is not a discrete integrable coupling. Because nonlinear integrable couplings could
lead to new integrable systems different from the original ones, it has been an interest-
ing work for us to seek new integrable couplings, specially discrete integrable couplings.
In this section we could have discussed the discrete integrable couplings of the (2 + 1)-
dimensional positive and negative integrable discrete hierarchy obtained in the paper;
however, for the sake of simpler computations, we only want to investigate discrete nonlin-
ear integrable couplings of the positive part of equation (35). It is remarkable that equation
(35) is different from equation (8) - why is that so? Actually, we can verify that if eliminating
the constrained condition (36) according to the Tu scheme, equation (35) is just equiva-
lent to equation (8). Therefore, in the following, we apply the Tu scheme to deduce some
discrete integrable couplings of the integrable discrete system (8). For this purpose, we
must enlarge the Lie algebra A; as done in [19]: Take

Q = span{Hy, Hy, E, F, T, T», T3, T4},

where
Hl _ h1 0 ) Hz _ h2 0 ’ E= e O ) F= f 0 ’
0 hl 0 h2 0 e 0 f
0 h 0 h 0 0
T = ', T, = ), Ts = ¢ , Ty = f .
0 h1 0 h2 0 e 0 f
We denote
Q = SpaH{Hsz,E, F, T, T2, Ts, T4}, Q = Q1 (&) Qz,
here Q; = span{Hy, Hy,E, F}, Q; = span{T1, T, T3, T4}. It is easy to verify that

[Q2, Q2] C Qo [Q1, Q2] C Qo (42)
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which implies the Lie group corresponding to the Lie algebra Q is a symmetric space [20].
Usually, in the case of a symmetric space, the obtained integrable couplings according to
the Tu scheme are nonlinear. First of all, we investigate an analog of equation (8) in terms
of the Tu scheme which contains an arbitrary parameter. Then we further discuss its dis-
crete integrable coupling system. Based on the above idea, we deduce discrete integrable
couplings of equation (46).

Assume
A=Y "apd,  B=Y) bpd,  C=) cr7, (43)
j=0 j=0 jz0

which is different from (2). Substituting (43) into equation (3) yields

spAaj + r,Abj = gu¢j — r,bj,
anCj+2 - Adj = —(qnCjs2 + rnbj+21 (44)
qn Aﬂj + Ab} = S,,bj+2 - anﬂj - bj

SnACjya — rAaj = —$,,Cjya + ¢ + 2q,a;,

which is similar to equation (5), but the terms of odd numbers in (44) are all taken to
be zero. Equation (6) has various degrees of elements of loop algebra which are -1,0,1,
different from the case where we took (2). Hence, one infers that

_(Avn)+ Un + [urn (Vn)+]
= (snAﬂm+2 + VnAbm+2 + rnbm+2)hl(_]-)
+ (('In ACyin = Tubpio + anmz)hz(—l) + (SuAcya + Sncm+2)f(0) — $uby42€(0)
=P, (45)
Remark 4 Equation (45) could have terms such as s, Acy.1f (1), gnAcms1ba(1),. .., here we

omit them due to equation (44).
Take

VI = (Vi) + (@ + 0)h3(0) = @y (0),

where
(Ve = Y A"V =Y [ai(m(m —j) = ha(m = ) + bje(m —j +1) + if (m —j + 1),
j=0 j=0

o is an arbitrary constant. A direct calculation reads
—(AVI) U, + [Uy, V] = $uBarhi (1) + (6 — 01)f(0) + (=Ebyy + 0q,)e(0) = T
Hence, the zero curvature equation

Uy, — (AVI)U, + U, VIP] =0

n
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admits an integrable discrete hierarchy

Sty = =S8, Adyy,
qn,tm = Ebm — 0y, (46)

Pty =—Cm + Oy

Comparing equation (46) with equation (8), there is no difference except for the param-
eter o as regards the forms. In the following, we only deduce a simple discrete integrable
coupling system of equation (46). A loop algebra of the enlarging Lie algebra Q can be
given by

Q= span{H1(n),Hg(n),E(n),F(n), T;(n),i=1,2,3, 4},
where

Hin)=Hp",  E(m)=EM',  F(m)=F",

Ti(n)=T;A", j=1,2;i=1,2,3,4.

Applying the loop algebra Q we introduce a Lax pair as follows:

U, = s,H (1) + Hy(-1) + g,E(0) + 7, F(0) + u; T1 (1) + 13 T3(0) + u3T4(0),

_ (47)
Vn :An(Hl(O) - HZ(O)) + BnE(l) + CnF(l) + FnTS(l) + Gn T4~(1);
where
Ay=Y"apd,  B,=) brl,  Cy=) gr,
j=0 j=0 j=0
F,=) fr7,  Gy=) g
j=0 j=0
Solving the discrete stationary zero curvature equation
(A‘_/n)un = [I:[m ‘_/n] (4'8)

shows that the first part is equation (44), the second part is as follows:

uiAaj + uz Abj + r, Af; + us Af; = qugj — ruf; + uac + usg — uzb; — uzf],
Us A + quAg + U Agj = —qngj + 1'f; — Uacj — Usg + ush; + usfj,
MgAﬂj - Aﬁ =Sufjs2 —ﬁ + Ltlb]'+2 + u]ﬁ+2 — 2142611‘, (49)

—MgAdj + ulAc,+2 + SnAg]urz + ulAngrz

= =Spgjr2 + & — 1Cjra — t1Gjra + 2U3g).

Equation (48) decomposes into two parts

_(A‘_/n)+l:ln + [[Im Vn] = (A‘_/n)—l:[n - [I:[nv ] (50)
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Similar to the discussion as above, one infers that

—(AV,), Uy + (U, V]
=Py + [ Ay + U3 Abyrss + 1y Afinsa + 2Usfinia — Gnms2
+ s = UaCmia — Uagms2 + Usbms2] T1(=1) + [ ACimsa + 2qn Agms2
+ Up A2 = Tnfims2 + UaCmia + UaGms2 — Usbmia — Usfmia] To(-1)
— (Snfmsa + U1bims2 + U1fini2) T3(0)

+ (U1 ACms2 + 85 Dgmsa + 201 Agme2 + Sngms2 + U1Cm+2) Ta(0).
Thus, the discrete zero curvature equation

Uy, — (AVI) U, + [, VIP] =0

n

admits a discrete integrable coupling of equation (46):

Sty = _snAam;
qnty, = Ebm —04n
Tnty = —Cm + 0Ty,
Uty = U1 Ady,

U, = —Efin —ous,

Uz, = usEa,, + ous.

3 Applications of the second loop algebra
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(52)

In the section we shall apply the Tu scheme and the second loop algebra A; to deduce a

new integrable discrete hierarchy whose quasi-Hamiltonian form will be derived from the

trace identity proposed by Tu [16] when « = 0. This is a new application of the Tu scheme.

3.1 A new integrable discrete hierarchy and its reductions
Consider the following isospectral problems:

llfn+1 = unwm Un :pnhl(l) + ahl(o) + thZ(O) + qne(o) + V,(f(O),

= (A1) + Dh(1) + Be(0) + T O)

where

A=) aint)h,  B=> bimt)r 7,

j=0 j=0
C=Y gmor™, — D=) dinor?.
j=0 j=0

The stationary discrete zero curvature equation

(AVn)U = [Um Vn]

(54)

(55)

(57)
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admits

(A%p, + @) AAX? + 1, ABA? = q,C\? — r,,BA?,
quAAN? +5,AB) = BA(\*p, + ) + g,D)\3 — q,A\3 —5,B),

(58)
(A3p, + 2)AC + r,ADA3 = 1, AX® +5,Ch — C(A3p,, + a)) — r, D)3,
qnACA? +5,AD)A? = r,BA? — q,CA2.
Substituting (56) into (58) yields
Pnlajg +aAa; + 1, Ab; = g, — 14by,
qnAajg + 8, Ab; = p,bjy + abj + q,dj. — quaj.q — Subj, (59)

Pnlia1 + A AC + 1, Adjyy = TG + $4Cj — PuCinl — AC; — Tydj,

anCj+1 + SnAde = rnbj+1 —qnCjs1-

Taking a¢ = 0, solving the above equations, we find that

Vy— Yy— Yy—
Ad():()—)d():l, boz—@ C0=—n1, al_qnnl dlz—qn”1+8,
pn—l

Pn ’ - PnPn- ’ PnPn-

from
pnbl = an(ll + SnEbo — qndl — Olbo,

we have

W’n%ﬂ q;%,rn—l q;'1+15n Qn(Ol - 5}9;1)

BT 2
n+l PuPn-1 PnPni1 by

’

2
InTy1 qn-1"n-1"n-2 A 1=0Pp-1"n-1 _ Sp-1"n-2

qnEcy = ryby — s, Ady — ¢ = ,... equation (57)

b2y Pnabl 2 Pro1Pn-2
can be decomposed into
—(AV) Uy + (U, (V)] = (AVY) Uy - (U (VI ], (60)
where
m
(V,E"’))+ = Z(aj(n, O (m +1—-j) +di(n, )hy(m + 1) + bij(n, t)e(m — j) + ¢;f (m —j))
=0
5 - (V).

It is easy to see that the degrees of the left-hand side of (60) are higher than 1, while for
the right-hand side they are smaller than 2. Therefore, the degrees of both sides are 1,2.
Thus, we have

_(AVV(lm))+u" + [U”’ (Vi’(IM))+]

=pnAam+1h1(1) + (anﬂmA _pnbm+1 - qndm+1 + qnﬂm+1)e(0)
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+ (pnACmH + 1 Adyi — Thlma + PnCm+1 + rndm+1)f(0)
= ppAdy1hi (1) + (=s,Aby, + aby,, — syb,,)e(0) + (—a Acy, + 8,6 — ¢y, )f (0)

Letting V() = (V,(,m))+ + dy41h2(0), a direct calculation gives

—(AV) U, + Uy, Vi)
:pnAamth(l) - SnAdm+lh2(0) + (qndm+l + abm - SnEhm)e(O)
+ (1, Edyyi1 + SuCm — @Ecy,)f(0).

Hence, the discrete zero curvature equation

Un,tm - (A‘/(n))un + [um V(n)] =0
admits the following integrable discrete hierarchy of evolution equations:

(61)

Puty = _pnAﬂmH)
Sty = SnAder
nty = Pnbm+1 — qnEam,

rn,tm = Fnlm+1 _anCWH-l'
When m = 0, we get a reduction of equation (61) which is a generalized Toda lattice equa-

(62)

tion
_ 9n'n-1 _ 4n+l'n
pn’t Pn-1 Pn+l ’
_ qnSn’n-1 Snr'nqn+1
Sn,t - -
PnPn-1 PnPn+l
— 4n"n-1 In+1Sn gn(a=8pn)
= - +
qnt PnPn+l Pn+l ) Pn ’
_ qnintn-1 _ Gn1Tptqntntn-1 + Spnrn—ary + Snln-1
PnPn+l Pn Pn-1 "

Tt = PnPn-1
When « =8 =5, = 0, equation (62) reduces to a simpler nonlinear integrable discrete sys-

tem
(63)

P = n'n-1 _ qn+l'n
mt Pn-1 Pn+l

_ @i
Int PnPns1’
7 — dn'n’n-1 _ ql’Hl’%"'annrn—l
mt PnPn-1 PnPn+1 :
In the following, we deduce a quasi-Hamiltonian form of the integrable discrete hierarchy

(61). It is easy to see that
Y1) + (=g, C + aD)hy(1) + p,Dh>(2)

W= V,U," = i[(snA
M
+ (puB — quA)e(1) + aBe(0) + s,Cf (0) — r,,Df(l)],

where

M =as, + (pnsy — q,,rn)kz.
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A direct calculation reads
ol
tr(Wa—)L"> =M [20p,(AsuA*> = 1,BA?) + 14(~q,AX° + aBA + p,BAY)

+qn($4Ch — r,DA?)],

= M2 %(s, A - r,B)A2,

=M1 (s,CA - r,D2>),

tr(W 5 ) =M™ (~g.CA* + aDA* + p,D1A*),
S

9
tr<W 3 ) = M'A(~guAX> + aB) + p,BLY).
T

When « = 0, substituting the above results and (56) into the trace identity shows that

i <2pn5nam+l _pnrnbm+1 - annﬂm+1 + qnsncm - anndmﬂ )
Su PuSn —qnln

Snm+1=Tnbmil
PnSn—qn'n
Pnlm+1=GnCm
—(— PnSn—qn’n
- ( 2m + y) SnCm=rndm+1
PnSn—qn'n
Prnbms1=qnam1
PnSn—qn'n

Therefore, equation (61) can be written when « = 0:

pn _Pn A"lm+1 _pn Aamﬂ
"y Sn _ Syl _ SuA\di1
" qn pnbm+l - anam-d pnbm+1 - anﬂmH
T tm @1 _anCm+1 rnEde —SuCm
-pP:A 0 0 —PurnA Snlmsl — Fubms1
~ 0 s2A uSnA 0 Prnlni1 — GuCom
- qnPn — qnan 0 0 PnSn — q;qrnE SnCm — rndm+1
0 —Suty + Spl'nE —pusy + quryE 0 bl — Gnlmi

Snlm+l — rnbm+l

ndm+ “Yntm
—g| P = dnm | (64)
Sncm_rndmﬂ

nDmil = Gnlmi

Therefore, equation (64) can be written as

Pn $n@ms1 — Fnbma

s, = Sn =7 Pndm+1 —qnCm :]8Hm+l (65)
qn $1Cm — T'nlma du
T'n D1 — qnlm+1

tm
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where

H 2pnsndm+l _pnrnbmﬂ - annamﬂ + annCm - anndm+1
m+l = ’

(=2m + V)(pnsn - ann)

the constant y can be determined by some initial values of equation (59).

3.2 A Darboux transformation of equation (63)
In order to conveniently deduce the Darboux transformation of equation (63), we first
recall the general scheme for Darboux transformations. For spectral problems

Vn
n+l = Un ’ - = Vn n
Vea= Uy 2=V

one makes a transformation of the eigenfunction
vfn =T, 1,Dru
then the above spectral problems are transformed to

Ay

=Ty + T, V)T,
dr ( ¢t ) n v

EYu(A) = T U, T, 0r(R),

Denote
[[n(ﬁmén) = Tn+1unT,;1’ Vn(ﬁmén) = (Tn,t + TnVn)T;Zl-

We hope to construct the matrix T, by the use of such the eigenfunctions so that
T,al,T, Yand (T, + T, V)T, ! have the same structures as U/, and V;,. With this purpose,
we should take various matrices T, according to the given different spectral problems.

To obtain the Darboux transformations of equation (63), we rewrite its Lax pair as fol-
lows:

Y1 = U, u, :Pnhl(l) + qne(o) + rr(f(o)¢ (66)

ay.(A)
dt

Vi ¥ns Vi = aohi(1) + doha(1) + boe(0) + cof (0)) + dih2(0). (67)

We first make a transformation of the eigenfunction

Y =Ty (68)

By equation (68), equations (66) and (67) can be transformed into

IZ‘VH—I = Tn+lun T;;l&n = I:In&nr (69)
dvr, L
(,Z = (Tn,t + Tnvn)Ty:l'Wn = Vnd’n' (70)

Suppose ¥, = (Vi Wou) s dn = (P14, P2,) T are two linear independent eigenfunctions of
the spectral problems (66) and (67) corresponding to the solutions p,, g,,r,. We want to
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construct the matrix T), by using such the two eigenfunctions so that {I, and V,, have the
same structures as U, and V,,. For this purpose, we take the matrix 7}, as follows:

T - Ata, b ’
ko A +d,
where a,, by, ¢,, and d,, will be expressed by v, ¢,. Assume that A1, 1, are two arbitrary
distinct solutions of det T}, = 0. Set

@n _ ¢1n 1/’1}1 , &)n _ an>n)
¢2n l[f2n

then when A takes the values A; (i = 1,2) the two column vectors in T, and ®,, are linear
dependent, which means that

_ MAg(ap(mr—en (m)hp)

n = - hy
P
BT o (mh—ax(n)iy’ (71)

022y (m)ara ()
Cn = - (g ?

d. = Mg (e (M —ag(m)ra)
T ag(mar—ar(mrg

here

Vi) — an(Xi)
Yivn(hi) — pra(rs)”

a;(n) = i=1,2,

where y; are suitable constants chosen. From (66), we can easily have

whi i .
ai(n+1) = —5— _ ) s, (72)
_)‘ipn + Oli(”)in wi(n)

Thus, one infers that

_ MM —pavirg)

Anil = "o —mvain
byt = pipa(22-23)
V12 —pivake’ (73)
v (A -A3)
Cn+1 N

v 1 —povihy’
dy = MAz(pavidi—pvaha)
n Vo U1k~ V1A

Theorem Assume U, = P (1) + g,e(0) + 7,£(0), then we have

pl’l :pm én = qn _pnbn: ;n =TIy +19nCn+1, (74)

which is a set of new solutions of equations (66) and (67). The proof of the theorem is similar
to that presented in [15, 30] and [31] by using (71)-(73), here we omit it.

Remark 5 Just like discussions for the applications of the loop algebra A;, we could also
investigate the integrable couplings of the integrable discrete hierarchy (61) and the associ-
ated (2 + 1)-dimensional integrable discrete systems for further applications of the second
loop algebra A;, here we do not again go into details in this paper.
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4 Reductions of the isospectral problem (54) and some applications

In this subsection, we shall deform the isospectral problem (54) to obtain the well-known
parametrized Toda lattice equation and other new lattice integrable systems including
(2 +1)-dimensional lattice equations and their Lax pairs by applying the r-matrix method
[23, 30]. In the following, we recall the notion on r-matrix. A r-matrix from g to itself is
defined by [20]

rk:g—g 1k=Psx—Py, (75)

where k = 0,1. P4 represents a projection operator from g to a Lie subalgebra

g<k = {Zuifi}.

ik
Similarly,
Py =1-P

stands for a projection operator from g to a Lie subalgebra g« = {>_,_, #;E'}. In addition,
we have the fact

& = 8=k D Lguk-
According to the general scheme in [23], we obtain two hierarchies of flows on g:

Ly, = [P<(L7),L], k=0,1 (76)
Equation (54) can be written as

Epr=rpp¥n +an + qua,  EVo =1 + s, (77)
When s, = 0, we have

Yy =E' . (78)

Substituting (78) into the first equation of (77) yields

Ep, 'y =M +ap, + %fn—lf_l%,

n

which can be simplified to

U EY + vl + woE N = Ay, (79)

qnTn-1

1 1
where ¥ = Y, u, = p,i1, Ve = —ap,, Wy = — o

Denote

L=u,E+v,+w,EL (80)
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It can be verified that all the operators like (80) consist of a Lie algebra g if #, = 1 and if
equipped with a commutator

(L1, L] = Lily — LoLy. (81)
Now we take k = 0, = 1; equation (76) gives rise to the simplest lattice system

Wn,tl = (1 - Eil)v}’n

Vg = (E = Dwy,.

Taking s, = —E, the second equation of (77) gives

1
Yy = Ern_lE‘lwl. (82)

Inserting (82) into

E*Yr1 = Apun + B + @urn it + Gusuir

leads to the following form:

EXY = u,EV + aEV + v, ¥ + w,E Ny, (83)
where ¥ = ;.
Denote

L=E>—u,E-v,-w,E™,
then (83) becomes

ELy =ay. (84)
Denote

L=E'L=E+u,+v,E" +w,E?,
then equation (84) becomes

Ly = ai. (85)

If we regard the parameter « as a spectral parameter and let « = A, then (85) is just right
an isospectral problem of the spatial part

Ly = . (86)
When k = 0, equation (76) reduces to

L, = [P-o(E9),E]. (87)
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Set g =1, it is easy to calculate that

Upg = (E—=1)v,,
Vn,t1 = (E - 1)Wn + Vn(l - E_l)un—ly (88)

Wit = Wn(un - un—Z)r

which is a three-field integrable system. When taking w, = 0, equation (88) reduces to the
well-known reparameterized Toda lattice equation:

Ungy = (E—1)vy, Vi = V(1= E7 )ty
Taking g = 2, one infers that
Poo(L?) = E? + (ty + tps1)E + U + Vi + Va1
Equation (87) admits the following new three-field lattice system:

Upty = Wnia — Wy t+ (E=D[vn(un + ty41)],
ity = Wn+1(un + Mn+1) - Wn(un—l + un—Z) + Vn(E - 1)(Vn—1 +Vy + Mﬁ_l), (89)

Wity = Wy [(E2 - 1)(Vn—l tVy2 t M%,_z)]-

In the following, we shall deduce the Lax pairs of the lattice systems (88) and (89). Set
V1 = E724, Yy = EW, Y3 = ¥, then the spectral equation (86) gives

Evr3 = (A —u) 3 — valra — wyiby,
EYn =,
EWZ = WSI

which is equivalent to the following spectral problem:

W, =UY, (90)

01 0
Where‘l”=(1ﬁll/f2ﬂﬁ3)T,U=( 0 0 1 )

—Wy —Vy A—uUy

When g =1, we represent A; = on(i), one infers that

Ay = Yo + UV,
A1y = Y3 + U1,
A1z = A3 — vty — Wy,

which conclude that the temporal part of the Lax pair for equation (88) is presented as

Vi=| 0wy 1]4. (91)
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As for g = 2, similarly we can obtain the time part of the Lax pair for equation (89) as

follows:
2 1
V-2 +Vu1t+t Uy, » Up-1+ Uy
Vy = -W, Vi1 + U2, At |- (92)
—(A + uy)w, AV — UV — Wy A2+,

4.1 (2 + 1)-Dimensional lattice systems and Lax pairs
In the following, we want to deduce (2 + 1)-dimensional integrable lattice equations which

correspond to the (1 + 1)-dimensional lattice systems (88) and (89). Set

VC=) amF, i=12,.., (93)

i>j

where a;(#) are to be determined from the following equation via the recurrent procedure
[21]:

[VC,L-9,]=0, (94)
then we have the following (2 + 1)-dimensional lattice hierarchy:
Ly = [P=0(VC),L-3,)], (95)

where P-o(VC) = 3. aj(n)E.
We take

L=L- 0y, L=E +uy,+v,E' + w,E2, VC = ag(n) + a1(n)E + ax(n)E2,
then from (94) we have
ay(n) =y, + Uy, ao = Hity + vy + Vi1 + Hityy, a(n) =1,

where H = (E — 1)"Y(E + 1). Therefore, equation (95) admits the following (2 + 1)-

dimensional lattice system:

Mn,tl = Vn+1(un + un+1) + Wyt — Wy — Vn(un + Mn—l)
+ Huyy + Vi + Vip1,y + Hityyy, (96)
Vit = ValE = Dlttpo1 + (E + D)vpe1 + ttyory] + (E — D)Wy + wpty1),

Wiy = Wa(E = 1)(E™ + E72)[Huty + Vi Vi1 + Hityy).
Similar to the previous calculations, we obtain a Lax pair of equation (96) as follows:
0 0 1
U= 1 o o ,
—Vy —=Wp A=ty +dy

5 aog(n-1)-vy —Wwy ay(n=1)+r—up+dy
Vi= ( a1(n-2)  ap(n-2) 1 ) .

ar(myvp-wyy1 —a1(mwy (a1 (”)+1)(A_Mn+1+3y)_"n+1

(97)
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According to [23, 30], we can also derive a (2 + 1)-dimensional lattice system correspond-
ing to the (1 + 1)-dimensional lattice equation (89) as follows:

Unty = (E—=Dvyai(n—1) + ay(n)Wy.o — wpas(n — 2) + agy,
ity = Vn(E - 1)1'10 (Vl - 1) + al(n)WrHl - Wndl(n - 2): (98)

Wity = W,,(ao(l’l) —ao (I’l - 2)))

where

ax(n) = Uy + Ups1 + Ups2,

a1(n) = Vi + Vi1 + Ut (E = 1) thypn = [(E = 1) 7' J(E = D)7HE + Dy
+ (E= 1) (s + tha1 + Uni2)y,

ao(n) = ty(E = 1) a1(1) + Wy + W1 + Wi + Ui Visd + UnVn

+ (E - 1)_1(Mn+1 t Vni2 + UnVps2 — Vnlhpsl — Vnun—l) + (E - 1)_1 (ﬂl(n))y'

It is easy to obtain the Lax pair of equations (98)
0 0 1

L[: 1 0 0 )

Yy Wy A—Up+0y

Vi V12 Vi3
Vo=lai(n-2) ao(n-2)-w, ay(m)+ri—u,+9, |,
Va1 V3o V33

where

Vii=ao(n—1) +ax(n —1)v, = Wy — (A = 1 + 0)) Vs,
Vig =as(n—1w, — (A = ty41 + 3y)Wm
Vis = ay(n—1) + as(n = 2)(h = thy + 3y) + (A = thar + 0y)> = Vi1,
Va1 = ay(m)vy — ap(m)(A — thy1 + 0))V — ap(mWpi1 — (A — Uiz + 0y) (A — g1 + 0,V
+ V2 — (A = U2 + 0y) Wy,
V3a = —a1(m)wy, — an(n)(A = tps1 + 0)) Wy + WyVipi2 — (A — g + 0))(A — Uyi1 + 0y) Wy,
Vaz = ag(n) + ar(m)(A — uy, + 9y) + ar(m)(A — tyi + 0)) (A — 1y, + 9y) — Az (M) Vi
— Wis2 = Via(A — 1+ 0y) + (A — th + 0y) (A — ttyp1 + 0)) (A — 14, + 0)
— (A = tps2 + 0)) V1.
Remark 6 We have obtained the Lax pairs of equations (88), (89), (96), and (98), from
which we could investigate their infinite conservation laws and different Darboux trans-

formations just like in the ways presented before. Hence we do not want to go into a dis-
cussion of them again in this paper.
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