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Abstract
In this paper, a predator-prey system with Michaelis-Menten functional response on
time scales is investigated. First of all, we generalize the semi-cycle concept to time
scales. Second, we obtain the uniformly ultimate boundedness of solutions of this
system. Our results demonstrate that when the death rate of the predator is rather
small without prey, whereas the intrinsic growth rate of the prey is relatively large, the
species could coexist in the long run. In particular, if T =R or T = Z, some
well-known results have been generalized. In addition, for the continuous case, we
provide a new idea to prove its permanence. Finally, a numerical simulation is given
to support our main results.
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1 Introduction
The permanence is based on a global criterion for the coexistence of species, which de-
scribes a numerical technique for assembly of ecological communities of Lotka-Volterra
form []. During the last few years, the permanence of ecological models has been dis-
cussed by many authors [–]. In [, , , ], the comparison method was used, and
some sufficient conditions of permanence of biological systems were established. In [],
by using the semi-cycle and related concepts, they discussed the permanence of a discrete
biological system.

To the best of our knowledge, the permanence of biological system on time scales was
first discussed by Zhang and Zhang []. Using the theory of differential inequality, they
obtained the permanence of a cooperation system with feedback controls on time scales.
But for the system itself, we could verify that some additional conditions in [] may not
be necessary. For further study, in [], Li and Wang obtained a permanence result for a
multispecies Lotka-Volterra mutualism system by establishing some dynamic inequalities
on time scales.
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In the following we shall use the notation

l = min
{

[,∞) ∩T
}

, Iω = [l, l + ω] ∩T,

f M = sup
t∈T

f (t), f m = inf
t∈T

f (t), f =

ω

∫

Iω
f (s)�s,

where f is a periodic rd-continuous function with period ω in T. We assume that s +ω ∈ T

for any s ∈ T.

Remark . For any t > l, t ∈ T, we have t – ρ(t) ≤ ω.

Proof For any t > l, ρ(t) ∈ T, then ρ(t) + ω ∈ T, if t – ρ(t) > ω, then ρ(t) + ω < t, this implies
ω = , we arrive at a contradiction. Thus t – ρ(t) ≤ ω holds. �

As is well known, predator-prey systems play an important role in ecosystems [–, –
, –]. We find that there are few papers discussing the permanence of these systems
on time scales.

In this paper, we are concerned with the following predator-prey system with Michaelis-
Menten functional response:

{
x�

 (t) = a(t) – b(t) exp{x(t)} – c(t) exp{x(t)}
β(t) exp{x(t)}+γ (t) exp{x(t)} ,

x�
 (t) = –d(t) + f (t) exp{x(t)}

β(t) exp{x(t)}+γ (t) exp{x(t)} ,
t ∈ T

k , ()

with the initial condition

x(t), x(t) ∈R, t ∈ T,

on time scales T, where a, b, c, d, f ,β ,γ ∈ Crd(T,R) are positive ω-periodic functions. The
� stands for the delta derivative.

Let x(t) = exp{x(t)}, y(t) = exp{x(t)}, β(t) = , if T = R, then () reduces to the continu-
ous predator-prey system

{
x′(t) = x(t)[a(t) – b(t)x(t) – c(t)y(t)

x(t)+γ (t)y(t) ],
y′(t) = y(t)[–d(t) + f (t)x(t)

x(t)+γ (t)y(t) ],
t ∈R. ()

In [], Fan et al. studied some basic problems of system (), such as positive invariance,
permanence, non-persistence, extinction, dissipativity, and globally asymptotic stability.
The methods they used were comparison theorems, coincidence degree theory, and the
Lyapunov functional. Much attention has been paid to this predator-prey system or its
analogs in [–, –]. In [], Fan and Li considered the permanence of the general de-
layed ratio-dependent predator-prey model

{
x′(t) = x(t)[a(t) – b(t)x(t)] – c(t)g( x(t)

y(t) )y(t),
y′(t) = y(t)[–d(t) + e(t)g( x(t–τ )

y(t–τ ) )],
t ∈R, ()

where g(u) is monotonic increasing and there exists a constant k such that limu→+∞ g(u) =
k, by using comparison theorems. They obtained the following.
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Theorem . Assume
(C) a > mc;
(C) ke > d

hold, here m = supz∈[,+∞){g(z)/z}. Then system () is permanent.

Let N(k) = exp{x(k)}, N(k) = exp{x(k)}, β(k) = , if T = Z, then () is reformulated as

{
N(k + ) = N(k) exp{a(k) – b(k)N(k) – c(k)N(k)

N(k)+γ (k)N(k) },
N(k + ) = N(k) exp{–d(k) + f (k)N(k)

N(k)+γ (k)N(k) },
k ∈ Z, ()

this predator-prey system or its other forms has attracted the attention of many authors
[–]. Fan and Li [] considered the permanence of a delayed discrete predator-prey model
with Holling-type III functional response

⎧
⎨

⎩

N(k + ) = N(k) exp{b(k) – a(k)N(k – [τ]) – α(k)N(k)N(k)
N

 (k)+m(k)N
 (k) },

N(k + ) = N(k) exp{–b(k) + α(k)N
 (k–[τ])

N
 (k–[τ])+m(k)N

 (k–[τ]) },
k ∈ Z, ()

the comparison theorem, and the theory of population equation. They obtained the fol-
lowing.

Theorem . Assume
(B) mb > α;
(B) α > b;
(B) (b(k))M < 

hold. Then system () is permanent.

In fact, (B) is not necessary. In [], by using the semi-cycle and related concepts, Fan
and Li considered permanence of the system (), and obtained the following.

Theorem . Assume
(H) a > c/γ ;
(H) f > d

hold. Then system () is permanent.

In recent years, the existence of periodic solutions of predator-prey systems on time
scales has been obtained by coincidence degree theory in many articles [–], since the
existence result could be obtained by coincidence degree theory both in the continuous
case and the discrete case. Fazly and Hesaaraki [] obtained the existence of periodic so-
lutions of nonautonomous predator-prey dynamical system with Beddington-DeAngelis
functional response by coincidence degree theory. Tong et al. [] investigated the exis-
tence of periodic solutions of a predator-prey system with sparse effect and Beddington-
DeAngelis or a Holling III functional response. By using a continuation theorem based on
coincidence degree theory, they obtained sufficient criteria for the existence of periodic
solutions for the system.

Since the permanence of this system has been obtained by the comparison theorem
in the continuous case, while it has been obtained by semi-cycle concept in discrete case.



Yu et al. Advances in Difference Equations  (2016) 2016:319 Page 4 of 14

Also, in order to delete the additional condition (B) and the additional conditions of The-
orem . in [], we need to extend the semi-cycle concept of the discrete case to that of
time scales.

Noticing that system () and () is derived from () by exponential transformations,
x(t) = exp{x(t)}, y(t) = exp{x(t)}, and N(k) = exp{x(k)}, N(k) = exp{x(k)}, respectively,
when T = R and T = Z. Obviously, when solutions of system () are uniformly ultimate
bounded, systems () and () are both permanent, and the contrary also holds true. Thus,
our aim is to prove the uniform ultimate boundedness of solutions of system () by using
the semi-cycle concept on time scales instead of comparison theorems. Our result is an
unification and extension of a continuous and discrete analysis.

The rest of the paper is organized as follows. In Section , we state some basic prop-
erties about time scales, and generalize the semi-cycle concept to time scales. Section 
is devoted to the uniform ultimate boundedness of solutions of system (). A discussion
is presented in Section . The final section of the paper contains a numerical example
supporting the result.

2 Preliminary
First we will give some definitions about time scales before presenting our main result (see
[, ]).

Definition . A time scale is an arbitrary nonempty closed subset T of the real num-
ber R.

Definition . For t ∈ T we define the forward jump operator σ : T → T, and the back-
ward jump operator ρ : T→ T, by

σ (t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

respectively.

Throughout this paper we often assume a ≤ b, a, b ∈ T, and define the interval [a, b] in
T by

[a, b] := {t ∈ T : a ≤ t ≤ b}.

Definition . Assume f : T→ R is a function and let t ∈ T
k , where throughout the paper

T
k =

{
T\(ρ(supT), supT], if supT < ∞,
T, if supT = ∞.

Then we define f �(t) to be the number (provided it exists) with the property that, given
any ε > , there exists a neighborhood U of t such that

∣∣[f
(
σ (t)

)
– f (s)

]
– f �(t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈ U .

We call f �(t) the delta (or Hilger) derivative of f at t.
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The following lemmas will be useful to prove our main result. Their proofs are similar
to [], we omit them here.

Lemma . The equation

{
x�(t) = a(t) – b(t) exp{x(t)},
x() = x > ,

has at least one periodic solution x(t) if a(t), b(t) are both ω-periodic rd-continuous func-
tions and a > , b(t) > ; moreover, the inequalities

x(t) ≤ ln(a/b) + aω, x(t) ≥ ln(a/b) – aω

hold.

Lemma . Assume that d, f , β , γ are all positive ω-periodic rd-continuous functions,
then, for any positive constant M, the equation

{
x�(t) = –d(t) + f (t)M

β(t)M+γ (t) exp{x(t)} ,
x() = x > ,

has at least one periodic solution x(t) provided with d < f /β ; moreover, the inequalities

x(t) ≤ ln
(
(f /βM/d – M)/

(
γ (t)/β(t)

)m)
+ dω,

x(t) ≥ ln
(
(f /βM/d – M)/

(
γ (t)/β(t)

)M)
– dω

hold.

Similar to the definition of semi-cycle in discrete case (see []), we give the definition
of a semi-cycle on time scales.

Definition . A positive semi-cycle of a rd-continuous function f : T → R consists of a
‘string’ of terms {f (t), t ∈ [s, t], s, t ∈ T}, all greater than or equal to . A negative semi-cycle
of a rd-continuous function f : T → R consists of a ‘string’ of terms {f (t), t ∈ [p, q], p, q ∈
T}, all less than or equal to .

3 The uniform ultimate boundedness
Before giving our main result, we list the definition of uniform ultimate boundedness.

Definition . Solutions of () are said to be uniformly ultimate bounded if there exist
two constants λ and λ such that, for any initial condition (x(), x())T ∈R

,

λ ≤ lim
t→∞ inf xi(t) ≤ lim

t→∞ sup xi(t) ≤ λ, i = , .

Here we say ‘uniformly’, because λ and λ are independent on (x(), x())T.

We now state the main result as follows.
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Theorem . Assume
(A) a > c/γ ;
(A) d < f /β

hold. Then the solutions of system () are uniformly ultimate bounded.

Proof We will prove λ ≤ lim inft→∞ xi(t) ≤ lim supt→∞ xi(t) ≤ λ, λ and λ are constants,
i = , . Thus, we divide the proof into four parts.

Part . lim supt→∞ x(t) ≤ K, that is to say, x(t) is uniformly ultimate bounded above.
From (), when t is sufficiently large, we know

x�
 (t) ≤ a(t) – b(t) exp

{
x(t)

}
, ()

and construct the following auxiliary equation:

y�
 (t) = a(t) – b(t) exp

{
y(t)

}
. ()

Note that a(t), b(t) are positive ω-periodic functions, we can see a > . By Lemma .,
() has at least one ω-periodic solution, denote it as y∗

 (t), we have

y∗
 (t) ≤ ln(a/b) + aω, y∗

 (t) ≥ ln(a/b) – aω. ()

From () and (), we have

(
x(t) – y∗

 (t)
)� ≤ –b(t) exp

{
x(t)

}
–

(
–b(t) exp

{
y∗

 (t)
})

= –b(t)
(
exp

{
x(t)

}
– exp

{
y∗

 (t)
})

= –b(t) exp
{

y∗
 (t)

}(
exp

{
x(t) – y∗

 (t)
}

– 
)
,

let u(t) = x(t) – y∗
 (t), then

(
u(t)

)� ≤ –b(t) exp
{

y∗
 (t)

}(
exp

{
u(t)

}
– 

)
. ()

Now, the proof has two cases according to the oscillating property of u(t). First we
assume that u(t) does not oscillate about zero, then u(t) will be either eventually positive
or eventually negative. If the latter holds, then

x(t) < y∗
 (t) ≤ ln(a/b) + aω. ()

If the former holds, then (u(t))� < , which means that u(t) is eventually decreasing, also
in terms of its positivity, we know that limt→∞ u(t) exists. Then () yields limt→∞ u(t) = ,
which leads to

lim
t→∞ sup x(t) ≤ ln(a/b) + aω. ()

Now we assume u(t) oscillates about zero, by (), we know that u(t) ≥  implies
(u(t))� ≤ . Thus, by the semi-cycle concept, we let u(t) ≥ , for t ∈ [sα , tα], sα , tα ∈ T,
α ∈L, where L is an index set, and the interval [sα , tα] satisfies:
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(a) For any α,β ∈L, if α 
= β , [sα , tα] ∩ [sβ , tβ ] = ∅.
(b) If sα is left-scattered, then u(ρ(sα)) < .
(c) If sα is left-dense, then there exists a hollow left neighborhood Ů–(sα) of sα such

that u(t) < , for t ∈ Ů–(sα).
(d) If tα is right-scattered, then u(σ (tα)) < .
(e) If tα is right-dense, then there exists a hollow right neighborhood Ů+(tα) of tα such

that u(t) < , for t ∈ Ů+(tα).
Notice that lim supt→∞ u(t) = lim supα→∞ u(sα). If sα is left-scattered, by integrating ()

over the set [ρ(sα), sα], we have

u(sα) – u
(
ρ(sα)

) ≤
∫ sα

ρ(sα )

[
–b(t) exp

{
y∗

 (t)
}(

exp
{

u(t)
}

– 
)]

�t,

by (b), it follows that

u(sα) ≤
∫ sα

ρ(sα )
b(t) exp

{
y∗

 (t)
}
�t < ∞, ()

if and only if

sα – ρ(sα) ≤ ω, ()

it is easy to see () holds from Remark ..
If sα is left-dense, we choose t ∈ Ů–(sα), such that sα – t ≤ ω. By integrating () over

the set [t, sα], we have

u(sα) – u(t) =
∫ sα

t

[
–b(t) exp

{
y∗

 (t)
}(

exp
{

u(t)
}

– 
)]

�t,

notice that u(t) < , it follows that

u(sα) ≤
∫ sα

t

b(t) exp
{

y∗
 (t)

}
�t < ∞. ()

Then from () and (), u(t) = x(t) – x∗
 (t) is uniformly ultimate bounded above, thus

lim
t→∞ sup x(t) ≤ ln(a/b) + aω + aω exp(aω) := K. ()

Therefore from (), (), and (), x(t) is uniformly ultimate bounded above.
Part . k ≤ lim inft→∞ x(t), that is to say, x(t) is uniformly ultimate bounded below.
Also from (), when t is sufficiently large, we know

x�
 (t) ≥ a(t) – c(t)/γ (t) – b(t) exp

(
x(t)

)
, ()

and construct the following auxiliary equation:

z�
 (t) = a(t) – c(t)/γ (t) – b(t) exp

(
z(t)

)
. ()
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From (A) and Lemma ., () has at least one ω-periodic solution, denote it as z∗
 (t),

we have

z∗
 (t) ≤ ln

(
(a – c/γ )/b

)
+ aω, z∗

 (t) ≥ ln
(
(a – c/γ )/b

)
– aω. ()

From () and (), we have

(
x(t) – z∗

 (t)
)� ≥ –b(t) exp

{
x(t)

}
–

(
–b(t) exp

{
z∗

 (t)
})

= –b(t)
(
exp

{
x(t)

}
– exp

{
z∗

 (t)
})

= –b(t) exp
{

z∗
 (t)

}(
exp

{
x(t) – z∗

 (t)
}

– 
)
,

let u(t) = x(t) – z∗
 (t), then

(
u(t)

)� ≥ –b(t) exp
{

z∗
 (t)

}(
exp

{
u(t)

}
– 

)
, ()

from () and (), we know when t is sufficiently large,

u(t) ≤ ln
(
a/(a – c/γ )

)
+ aω + aω exp(aω) := M. ()

Now, the proof has two cases according to the oscillating property of u(t). First we
assume that u(t) does not oscillate about zero, then u(t) will be either eventually positive
or eventually negative. If the former holds, then

x(t) > z∗
 (t) ≥ ln

(
(a – c/γ )/b

)
– aω. ()

If the latter holds, then (u(t))� > , which means that u(t) is eventually increasing, also in
terms of its negativity, we know that limt→∞ u(t) exists. Then () yields limt→∞ u(t) = ,
which leads to

lim
t→∞ inf x(t) ≥ ln

(
(a – c/γ )/b

)
– aω. ()

Now we assume u(t) oscillates about zero, by (), we know that u(t) ≤  implies
(u(t))� ≥ . Thus, by the semi-cycle concept, we let u(t) ≤ , for t ∈ [pα , qα], pα , qα ∈ T,
α ∈L, where L is an index set, and the interval [pα , qα] satisfies:

(a) For any α,β ∈L, if α 
= β , [pα , qα] ∩ [pα , qα] = ∅.
(b) If pα is left-scattered, then u(ρ(pα)) > .
(c) If pα is left-dense, then there exists a hollow left neighborhood Ů–(pα) of pα such

that u(t) > , for t ∈ Ů–(pα).
(d) If qα is right-scattered, then u(σ (qα)) > .
(e) If qα is right-dense, then there exists a hollow right neighborhood Ů+(qα) of qα

such that u(t) > , for t ∈ Ů+(qα).
Notice that lim inft→∞ u(t) = lim infα→∞ u(pα). If pα is left-scattered, by integrating

() over the set [ρ(pα), pα], we have

u(pα) – u
(
ρ(pα)

) ≥
∫ pα

ρ(pα )

[
–b(t) exp

{
z∗

 (t)
}(

exp
{

u(t)
}

– 
)]

�t,
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by (b), from (), it follows that

u(pα) ≥
∫ pα

ρ(pα )

[
–b(t) exp{M} exp

{
z∗

 (t)
}]

�t,

from Remark ., we can see

pα – ρ(pα) ≤ ω,

then u(tn) is lower bounded.
If pα is left-dense, we choose t ∈ Ů–(pα), such that pα – t ≤ ω. Notice that u(t) > ,

by integrating () over the set [t, pα], we have

u(pα) – u(t) ≥
∫ pα

t

[
–b(t) exp

{
z∗

 (t)
}(

exp
{

u(t)
}

– 
)]

�t,

from (), we have

u(pα) ≥
∫ pα

t

[
–b(t) exp{M} exp

{
z∗

 (t)
}]

�t,

in this case, u(pα) is also lower bounded.
Then u(t) = x(t) – z∗

 (t) is uniformly ultimate bounded below, hence

lim
t→∞ inf x(t) ≥ ln

(
(a – c/γ )/b

)
– aω – (a – c/γ )ω exp(aω + M) := k. ()

Thus from (), (), and (), x(t) is uniformly ultimate bounded below. Then Part 
holds.

Therefore, from Part  and Part , x(t) is uniformly ultimate bounded, we can assume
m ≤ exp{x(t)} ≤ M for any t ∈ [T,∞) ∩T, where T is sufficiently large.

Part . k ≤ lim inft→∞ x(t), that is to say, x(t) is uniformly ultimate bounded below.
From (), when t is sufficiently large, we know

x�
 (t) ≥ –d(t) +

f (t)m
β(t)m + γ (t) exp{x(t)} , ()

and we construct the following auxiliary equation:

z�
 (t) = –d(t) +

f (t)m
β(t)m + γ (t) exp{z(t)} , ()

from Lemma . and (A), we find that () has at least one ω-periodic solution, denote
it as z∗

(t), we have

z∗
(t) ≤ ln

(
(f /βm/d – m)/

(
γ (t)/β(t)

)m)
+ dω,

z∗
(t) ≥ ln

(
(f /βm/d – m)/

(
γ (t)/β(t)

)M)
– dω.
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From () and (), we have

(
x(t) – z∗

(t)
)� ≥ f (t)m

β(t)m + γ (t) exp{x(t)} –
f (t)m

β(t)m + γ (t) exp{z∗
(t)}

=
f (t)mγ (t)(exp{z∗

(t)} – exp{x(t)})
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)})

=
f (t)mγ (t) exp{x(t)}(exp{z∗

(t) – x(t)} – )
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)}) .

Similarly, let v(t) = x(t) – z∗
(t), then

(
v(t)

)� ≥ f (t)mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)}) . ()

Now, the proof has two cases according to the oscillating property of v(t). First we
assume that v(t) does not oscillate about zero, similar to u(t) in Part , we obtain

lim
t→∞ inf x(t) ≥ ln

(
(f /βm/d – m)/

(
γ (t)/β(t)

)M)
– dω. ()

Now we assume v(t) oscillates about zero, by (), we know that v(t) ≤  implies
(v(t))� ≥ . Thus, by the semi-cycle concept, we let v(t) ≤ , for t ∈ [pα , qα], pα , qα ∈ T,
α ∈L, where L is an index set, the interval [pα , qα] satisfies (a)-(e) by replacing u(t) in
Part  with v(t).

Notice that lim supt→∞ v(t) = lim supα→∞ v(pα). By a similar analysis to Part , if pα is
left-scattered, integrating inequality () from ρ(pα) to pα , we have

v(pα) – v
(
ρ(pα)

) ≥
∫ pα

ρ(pα )

f (t)mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)})�t,

by (b), it follows that

v(pα) ≥
∫ pα

ρ(pα )

[
–

f (t)mγ (t) exp{x(t)}
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)})
]
�t

≥
∫ pα

ρ(pα )

[
–

f (t)m
γ (t) exp{z∗

(t)}
]
�t,

by Remark ., v(pα) is lower bounded.
If pα is left-dense, we choose t ∈ Ů–(pα), such that pα – t ≤ ω. By integrating () over

the set [t, pα], we have

v(pα) – v(t) =
∫ pα

t

f (t)mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)})�t,

notice that v(t) > , hence

v(pα) ≥
∫ pα

t

[
–

f (t)mγ (t) exp{x(t)}
(β(t)m + γ (t) exp{x(t)})(β(t)m + γ (t) exp{z∗

(t)})
]
�t

≥
∫ pα

t

[
–

f (t)m
γ (t) exp{z∗

(t)}
]
�t,

in this case, v(pα) is also lower bounded.
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Then v(t) = x(t) – z∗
(t) is uniformly ultimate bounded below, hence

lim
t→∞ inf x(t) ≥ ln

(
(f /βm/d – m)/

(
γ (t)/β(t)

)M)
– dω

– mf /γω
(
γ (t)/β(t)

)M
exp(dω)/(f /βm/d – m) := k. ()

Thus from () and (), x(t) is uniformly ultimate bounded below.
Part . lim supt→∞ x(t) ≤ K, that is to say, x(t) is uniformly ultimate bounded above.
Also from (), when t is sufficiently large, we know

x�
 (t) ≤ –d(t) +

f (t)M
β(t)M + γ (t) exp{x(t)} , ()

and we construct the following auxiliary equation:

y�
 (t) = –d(t) +

f (t)M
β(t)M + γ (t) exp{y(t)} , ()

from Lemma . and (A), we find that () has at least an ω-periodic solution, denote it
as y∗

(t), we have

y∗
(t) ≤ ln

(
(f /βM/d – M)/

(
γ (t)/β(t)

)m)
+ dω,

y∗
(t) ≥ ln

(
(f /βM/d – M)/

(
γ (t)/β(t)

)M)
– dω.

()

From () and (), we have

(
x(t) – y∗

(t)
)� ≤ f (t)M

β(t)M + γ (t) exp{x(t)} –
f (t)M

β(t)M + γ (t) exp{y∗
(t)}

=
f (t)Mγ (t)(exp{y∗

(t)} – exp{x(t)})
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)})

=
f (t)Mγ (t) exp{x(t)}(exp{y∗

(t) – x(t)} – )
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)}) .

Similarly, let v(t) = x(t) – y∗
(t), then

(
v(t)

)� ≤ f (t)Mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)}) , ()

from () and (), we know, when t is sufficiently large,

v(t) ≥ ln

(
f /βm/d – m

(γ (t)/β(t))M–m(f /βM/d – M)

)
– dω

– mf /γω
(
γ (t)/β(t)

)M
exp(dω)/(f /βm/d – m) := m. ()

Now, the proof has two cases according to the oscillating property of v(t). First we as-
sume that v(t) does not oscillate about zero, similar to u(t) in Part , we obtain

lim
t→∞ sup x(t) ≤ ln

(
(f /βM/d – M)/

(
γ (t)/β(t)

)m)
+ dω. ()
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Now we assume v(t) oscillates about zero, by (), we know that v(t) ≥  implies
(v(t))� ≤ . Thus, by the semi-cycle concept, we let v(t) ≥ , for t ∈ [sα , tα], sα , tα ∈ T,
α ∈ L, where L is an index set, the interval [sα , tα] satisfies (a)-(e) by replacing u(t) in
Part  with v(t).

Notice that lim supt→∞ v(t) = lim supα→∞ v(sα). By a similar analysis to Part , if sα is
left-scattered, integrating inequality () from ρ(sα) to sα , we have

v(sα) – v
(
ρ(sα)

) ≤
∫ sα

ρ(sα )

f (t)Mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)})�t,

by (b), from (), it follows that

v(sα) ≤
∫ sα

ρ(sα )

f (t)Mγ (t) exp{x(t)} exp{–m}
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)})�t

≤
∫ sα

ρ(sα )

f (t)M exp{–m}
γ (t) exp{y∗

(t)} �t < ∞. ()

If sα is left-dense, we choose t ∈ Ů–(sα), such that sα – t ≤ ω. By integrating () over
the set [t, sα], we have

v(sα) – v(t) =
∫ sα

t

f (t)Mγ (t) exp{x(t)}(exp{–v(t)} – )
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)})�t,

notice that v(t) < , hence

v(sα) ≤
∫ sα

t

f (t)Mγ (t) exp{x(t)} exp{–m}
(β(t)M + γ (t) exp{x(t)})(β(t)M + γ (t) exp{y∗

(t)})�t

≤
∫ sα

t

f (t)M exp{–m}
γ (t) exp{y∗

(t)} �t < ∞. ()

Then from () and (), v(t) = x(t) – y∗
(t) is uniformly ultimate bounded above, thus

lim
t→∞ sup x(t) ≤ ln

(
(f /βM/d – M)/

(
γ (t)/β(t)

)m)
+ dω

+ Mf /γω
(
γ (t)/β(t)

)M
exp(dω – m)/(f /βM/d – M) := K. ()

Thus from () and (), x(t) is uniformly ultimate bounded above.
Therefore, from Part  and Part , x(t) is uniformly ultimate bounded.
Finally, we choose λ = min{k, k}, λ = max{K, K}. This completes the proof of Theo-

rem .. �

4 Discussion
In Theorem ., if we let T = R and T = Z, respectively, then the result is exactly changed
into Theorem . (by the comparison theorem) and Theorem . (by the semi-cycle the-
ory). That is, we provide a unified method to study the permanence for the continuous
system and discrete system. In addition, we give a new method to investigate the perma-
nence for the continuous system.
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From the proof of Theorem ., we can easily see that our methods can also be used to
study the following generalized predator-prey system with functional response:

{
x�

 (t) = a(t) – b(t) exp{x(t)} – c(t)h(exp{x(t) – x(t)}),
x�

 (t) = –d(t) + e(t)g(exp{x(t) – x(t)}), ()

here h(u) = g(u)/u, where g(u) is monotonic increasing and there exists a constant k such
that limu→+∞ g(u) = k. The coefficient functions are all bounded.

As is well known, the permanence of the periodic biological system is closely associated
with the existence for the periodic solutions of the system, in general, when the periodic
system is permanent, then there must exist at least one positive periodic solution. By a
similar analysis to that in Fan and Wang [], we can obtain the following remark.

Remark . Assume (A), (A) hold, then system () has at least one ω-periodic solution.

This shows that the conditions for uniform ultimate boundedness of solutions are the
same as that for the existence of periodic solutions of the system.

5 Numerical example
In this section, we give a numerical example to support our main result. Assume that
a(t) = . + . sin(π t), b(t) = . + . sin(π t), c(t) = . + . cos(π t), d(t) = . +
. sin(π t), f (t) = . + . cos(π t), γ (t) = . + . cos(π t), β(t) = . + . cos(π t),
and T =

⋃∞
k=[k, k + ]. In this case, we can see

⎧
⎪⎪⎨

⎪⎪⎩

x(k) = x(k – ) + a(k – ) – b(k – ) exp{x(k – )}
– c(k–) exp{x(k–)}

β(k–) exp{x(k–)}+γ (k–) exp{x(k–)} ,
x(k) = x(k – ) – d(k – ) + f (k–) exp{x(k–)}

β(k–) exp{x(k–)}+γ (k–) exp{x(k–)} ,

here k = , , , . . . . In applying a numerical analysis using Matlab, we assume that x() =
., x() = ., and then obtain Figure . It is easy to see x(t), x(t) are uniformly ultimate
bounded. We also obtain the relationship between x(t) and x(t) (see (B) of Figure ). Our
numerical simulation supports our theoretical findings (see the figures). We conclude that
it is valid for any initial condition (x(), x())T ∈ R

.

Figure 1 For the initial conditions x1(0) = 4.7, x2(0) = 4.8. ‘◦’ represents x1(t), ‘∗’ represents x2(t).
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