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Abstract
In this paper, we study the existence of solutions for a class of nonlinear higher-order
fractional differential equation with fractional nonlocal boundary condition by using
the monotone iterative technique based on the method of upper and lower solutions
and give a specific iterative equation about its solutions.
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1 Introduction
We consider the existence of solutions for the following nonlinear fractional differential
equation with nonlocal boundary value condition:

⎧
⎨

⎩

CDα
+ u(t) = f (t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)),  < t < ,

u(j)() = , u(n–)() = ρIγ

+ u(), j = , , . . . , n – ,
()

where n –  < α < n is a real number, n ≥ , CDα
+ , CDβi

+ , i = , , . . . , n – , i –  < βi < i is
the standard Caputo fractional derivative, Iγ

+ is the standard Riemann-Liouville integral,
 < γ , and  < ρ < �(n + γ ). The nonlinear term f : [, ] ×R

n → R is continuous.
The boundary value problem of fractional equations has emerged as a new branch in the

fields of differential equations for their deep backgrounds. In recent years, it is popular
and important because the subject of fractional calculus frequently appears in various
fields such as physics, chemistry, biology, economics, control theory, signal and image
processing, and blood flow phenomenon. For more details about fractional calculus and
fractional differential equations, we refer the reader to the monographs by Miller and Ross
[], Heikkila et al. [], Podlubny [], Hilfer [], and Kilbas et al. [], the survey by Agarwal
et al. [], and the papers [–]. Many scholars have studied the existence for nonlinear
fractional differential equations with a variety of boundary conditions; see [–] and the
references therein. However, sometimes it is better to impose integral conditions because
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they lead to more precise measures than those proposed by a local condition; then, it
is greatly important to obtain specific solutions when a solution exists. For this reason,
the aim of this paper is to study the existence of solutions for problem () by using the
monotone iterative technique based on the method of upper and lower solutions, to obtain
the existence of solutions for problem () by establishing a comparison theorem, and to
give a specific iterative equation. For monotone iterative technique, which is based on the
method of upper and lower solutions, see recent papers [–].

2 Preliminaries
Let I = [, ]. We denote by C(I) the Banach space of all continuous functions u(t) on I
with norm ‖u‖C = maxt∈I |u(t)|. Generally, for n ∈ N, we use Cn(I) to denote the Banach
space of all nth-order continuously differentiable functions on I with norm

‖u‖Cn = max
{‖u‖C ,

∥
∥u′∥∥

C , . . . ,
∥
∥u(n)∥∥

C

}
.

Let C+(I) denote the cone of all nonnegative functions in C(I). Let ACn be the Banach
space of all absolutely continuous functions u(t) on I differentiable up to order n with norm

‖u‖ACn = max
{

max
t∈I

∣
∣u(t)

∣
∣, max

t∈I

∣
∣CDβi

+ u(t)
∣
∣, i = , , . . . , n – , i –  < βi < i

}
.

Definition  If g ∈ C([a, b]) and q > , then the Riemann-Liouville fractional integral is
defined by

Iq
a+ g(t) =


�(q)

∫ t

a
(t – s)q–g(s) ds,

where �(·) is the gamma function.

Definition  Let q ≥  and n = [q] + . If g ∈ ACn[a, b], then the Caputo fractional deriva-
tive of order q of g defined by

CDq
a+ g(t) =


�(n – q)

∫ t

a
(t – s)n–q–u(n)(s) ds

exists almost everywhere on [a, b] ([q] is the integer part of q).

Lemma  Let h ∈ C(I). Then the linear boundary value problem (LBVP)
⎧
⎨

⎩

CDα
+ u(t) = h(t),  < t < ,

u(j)() = , u(n–)() = ρIγ

+ u(), j = , , . . . , n – ,
()

has a unique solution

u(t) =
∫ 


G(t, s)h(s) ds := Sh(t), ()

where

G(t, s) =

⎧
⎨

⎩

(t–s)α–

�(α) + tn–(–s)α+γ –ρ�(n+γ )
�(n)(�(n+γ )–ρ)�(α+γ ) ,  ≤ s ≤ t ≤ ,

tn–(–s)α+γ –ρ�(n+γ )
�(n)(�(n+γ )–ρ)�(α+γ ) ,  ≤ t ≤ s ≤ .

()
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Moreover, the solution operator S : AC(I) → AC(n–)(I) is a completely continuous linear
operator.

Proof We may deduce equation () equivalent to an integral equation

u(t) = Iα
+ h(t) + c + ct + ct + · · · + cn–tn–. ()

Since u(j)() = , we deduce that cj = , j = , , . . . , n – . Therefore, taking the derivatives
of equation () gives

u(n–)(t) = Iα–(n–)
+ h(t) + �(n)cn–,

and we have

Iγ

+ u(t) = Iα+γ

+ h(t) + cn–Iα+γ

+ tn–.

Because of the integral boundary condition u(n–)() = ρIγ

+ u(), we have

cn– =
ρ�(n + γ )

�(n)(�(n + γ ) – ρ)
Iα+γ

+ h().

Substituting the values of cj, cn–, j = , , . . . , n – , into (), we obtain

u(t) = Iα
+ h(t) +

tn–ρ�(n + γ )
�(n)(�(n + γ ) – ρ)

Iα+γ

+ h(),

which can be written as

u(t) =


�(α)

∫ t


(t – s)α–h(s) ds

+
tn–ρ�(n + γ )

�(n)(�(n + γ ) – ρ)�(α + γ )

∫ 


( – s)α+γ –h(s) ds

=
∫ t



(
(t – s)α–

�(α)
+

tn–( – s)α+γ –ρ�(n + γ )
�(n)(�(n + γ ) – ρ)�(α + γ )

)

h(s) ds

+
∫ 

t

tn–( – s)α+γ –ρ�(n + γ )
�(n)(�(n + γ ) – ρ)�(α + γ )

h(s) ds

=
∫ 


G(t, s)h(s) ds.

From expression () we easily see that S : AC(I) → AC(n–)(I) is a completely continuous
linear operator. This completes the proof. �

Lemma  Let h ∈ C+(I). Then the unique solution u = Sh of LBVP () has the following
properties:

u(t) ≥ , CDβ
+ u(t) ≥ , CDβ

+ u(t) ≥ , . . . , CDβn–
+ u(t) ≥ .
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Proof By expression () of the solution of LBVP () we easily see that u(t) ≥ . Next, we
show that CDβi

+ u(t) ≥ , i = , , . . . , n – .
From () we have

CDβi
+ u(t) =


�(i – βi)

∫ t


(t – s)i–βi–u(i)(s) ds, ()

where

u(i)(s) =
∫ 


G(i)

s (s, r)h(r) dr,

and G(i)
s (s, r) is the ith-order partial derivative of G(s, r) to s, which is given by

G(i)
s (s, r) =

⎧
⎨

⎩

(s–r)α––i

�(α–i) + sn––i(–r)α+γ –ρ�(n+γ )
�(n–i)(�(n+γ )–ρ)�(α+γ ) ,  ≤ r ≤ s ≤ ,

sn––i(–r)α+γ –ρ�(n+γ )
�(n–i)(�(n+γ )–ρ)�(α+γ ) ,  ≤ s ≤ r ≤ .

()

Consequently, () becomes

CDβi
+ u(t) =


�(i – βi)

∫ t



∫ 


(t – s)i–βi–G(i)

s (s, r)h(r) dr ds. ()

From () we see that

G(i)
s (s, r) ≥ , s, r ∈ I, i = , , . . . , n – .

Combining () and this inequality, we have

CDβi
+ u(t) ≥ , i = , , . . . , n – ,

and the proof is completed. �

Now, by expression () of the solution to LBVP () we easily see that problem () is
equivalent to the integral equation

u(t) =
∫ 


G(t, s)f

(
s, u(s),C Dβ

+ u(s),C Dβ
+ u(s), . . . ,C Dβn–

+ u(s)
)

ds := Tu(t). ()

Therefore, the solution of problem () is equivalent to the fixed point of operator T . Next,
we give a comparison theorem.

Lemma  (Comparison result) If u(t) ∈ ACn(I) satisfies

⎧
⎨

⎩

CDα
+ u(t) ≥ ,  < t < , n –  < α < n,

u(j)() = , u(n–)() ≥ ρIγ

+ u(), j = , , . . . , n – ,

then u(t) ≥ , t ∈ I .
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Proof By Lemma  we know that LBVP () has a unique solution u(t) =
∫ 

 G(t, s)h(s) ds.
From () it is easy to verify that Green’s function G(t, s) ≥ , t, s ∈ I . Let h(t) ∈ C+(I). Then
u(t) ≥ , t ∈ I . �

According to the comparison result of Lemma , we give the definition of upper solution
and lower solutions.

Definition  If v ∈ ACn(I) satisfies

⎧
⎨

⎩

CDα
+ v(t) ≤ f (t, v(t),C Dβ

+ v(t),C Dβ
+ v(t), . . . ,C Dβn–

+ v(t)),  < t < ,

v(j)() = , v(n–)() ≤ ρIγ

+ v(), j = , , . . . , n – ,

then we call v a lower solution of problem (). If w ∈ ACn(I) satisfies

⎧
⎨

⎩

CDα
+ w(t) ≥ f (t, v(t),C Dβ

+ w(t),C Dβ
+ w(t), . . . ,C Dβn–

+ w(t)),  < t < ,

w(j)() = , w(n–)() ≥ ρIγ

+ w(), j = , , . . . , n – ,

then we call w an upper solution of problem ().

3 Main results
Theorem  Let v, w be lower solution and upper solutions of problem () such that v(t) ≤
w(t) for all t ∈ I . Assume that the nonlinear term f : [, ] × R

n → R is continuous and
satisfies the following assumption:

(H) For all t ∈ I , x, y ∈ [v, w] and xi, yi ∈ [CDβi
+ v,C Dβi

+ w], i = , , . . . , n – , such that
x ≥ y, xi ≥ yi, we have

f (t, x, x, x, . . . , xn–) ≥ f (t, y, y, y, . . . , yn–).

Then problem () has a minimum solution u and maximum solution u between v and w.

Proof Denote

D =
{

u ∈ ACn–(I) | v ≤ u ≤ w,C Dβi
+ v ≤C Dβi

+ u ≤C Dβi
+ w, i = , , . . . , n – 

}
.

Then D ⊂ ACn–(I) is a nonempty, convex, and closed set. Define the operator F : D →
AC(I) as follows:

F(u)(t) = f
(
t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)
)
, t ∈ I, u ∈ D. ()

From the continuity of f we easily see that F : D → AC(I) is a continuous operator that
maps bounded sets into bounded sets. By Lemma  we know that the composite mapping
S ◦ F : D → ACn–(I) is a completely continuous operator. Therefore, by (), for every
u ∈ D, we have Tu = (S ◦ F)(u), and T : D → ACn–(I) is a completely continuous operator.
Then the solution of problem () is equivalent to the fixed point of operator T defined
by (). We the proof in three steps.

Step : T : D → D is an increasing operator.
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For u ∈ D, suppose that x = Tu = (S ◦ F)(u). Letting h = F(u), we know that x = Sh is a
solution of LBVP (). Then x ∈ ACn(I) satisfies

⎧
⎨

⎩

CDα
+ x(t) = f (t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)), t ∈ I,

x(j)() = , x(n–)() = ρIγ

+ x(), j = , , . . . , n – .
()

Thus, using the definition of upper and lower solutions and condition (H), we have

CDα
+ (w – x)(t) ≥ f

(
t, w(t),C Dβ

+ w(t),C Dβ
+ w(t), . . . ,C Dβn–

+ w(t)
)

– f
(
t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)
) ≥ ;

(w – x)(j)() = , (w – x)(n–)() ≥ ρIγ

+ (w – x)(), j = , , . . . , n – .

Then, by Lemma  we have

(w – x) ≥ , CDβi
+ (w – x) ≥ , i = , , . . . , n – .

Further, we have

x ≤ w, CDβi
+ x ≤C Dβi

+ w, i = , , . . . , n – .

Similarly,

CDα
+ (x – v)(t) ≥ f

(
t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)
)

– f
(
t, v(t),C Dβ

+ v(t),C Dβ
+ v(t), . . . ,C Dβn–

+ v(t)
) ≥ ;

(x – v)(j)() = , (x – v)(n–)() ≥ ρIγ

+ (x – v)(), j = , , . . . , n – .

From Lemma  we have

(x – v) ≥ , CDβi
+ (x – v) ≥ , i = , , . . . , n – .

Namely,

v ≤ x, CDβi
+ v ≤C Dβi

+ x, i = , , . . . , n – .

Hence,

v ≤ Tu ≤ w, CDβi
+ v ≤C Dβi

+ (Tu) ≤C Dβi
+ w, i = , , . . . , n – . ()

This implies that T : D → D.
For every u, u ∈ D, and

v ≤ u ≤ u ≤ w, CDβi
+ v ≤C Dβi

+ u ≤C Dβi
+ u ≤C Dβi

+ w.
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Assume that x = Tu and x = Tu, this implies that x and x satisfy (), respectively.
Then, from condition (H) we have

CDα
+ (x – x)(t) = f

(
t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)
)

– f
(
t, u(t),C Dβ

+ u(t),C Dβ
+ u(t), . . . ,C Dβn–

+ u(t)
) ≥ ;

(x – x)(j)() = , (x – x)(n–)() ≥ ρIγ

+ (x – x)(), j = , , . . . , n – .

By Lemma  we have

x – x ≥ , CDβi
+ (x – x) ≥ , i = , . . . , n – ,

namely,

Tu ≤ Tu, CDβi
+ (Tu) ≤C Dβi

+ (Tu), i = , . . . , n – .

Therefore, T is an increasing operator.
Step : Problem () has solutions between v and w.
Define two iterative sequences {vn} and {wn} starting from v = v and w = w, respec-

tively, by the following procedure

vn = Tvn–, wn = Twn–, n = , , . . . . ()

This implies that {vn}, {wn} satisfy the following monotonous conditions

v ≤ v ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w ≤ w, ()
CDβi

+ v ≤C Dβi
+ v ≤ · · · ≤C Dβi

+ vn ≤C Dβi
+ wn ≤ · · · ≤C Dβi

+ w ≤C Dβi
+ w, ()

where i = , . . . , n – . Namely, {vn}, {CDβi
+ vn} are increasing sequences in [v, w],

[CDβi
+ v,C Dβi

+ w], and {wn}, {CDβi
+ wn} are decreasing sequences in [v, w], [CDβi

+ v,C Dβi
+ w],

respectively. By the compactness of T we easily see that {vn}, {wn} ⊂ T(D) are relatively
compact in ACn–(I), which means that they have at least one uniformly convergent sub-
sequence, respectively. From the monotonicity of {vn}, {wn} we obtain that {vn}, {wn} are
convergent in ACn–(I), which implies that there exist u, u ∈ ACn– such that vn → u,
wn → u. Since D is a convex closed set, we also obtain u, u ∈ D. Further, by the continuity
of T we know that u = Tu, u = Tu. Therefore, u and u are solutions of problem ().

Step : We show that u and u are minimum and maximum solutions between v and w,
respectively.

Suppose that u ∈ D is an arbitrary solution of problem (). Then u satisfies

v ≤ u ≤ w, CDβi
+ v ≤C Dβi

+ u ≤C Dβi
+ w, i = , , . . . , n – . ()

Applying to T to (), we have

Tnv ≤ Tnu ≤ Tnw, CDβi
+

(
Tnv

) ≤C Dβi
+

(
Tnu

) ≤C Dβi
+

(
Tnw

)
, i = , , . . . , n – .
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Further, we have

vn ≤ u ≤ wn, CDβi
+ vn ≤C Dβi

+ u ≤C Dβi
+ wn.

Letting n → ∞, we obtain

u ≤ u ≤ u, CDβi
+ u ≤C Dβi

+ u ≤C Dβi
+ u, i = , , . . . , n – .

Thus, we see that u, u are minimum and maximum solutions between v and w, respec-
tively. The proof is complete. �

By the proof procedure of Theorem , we have the following result.

Corollary  Let v, w be lower and upper solutions of problem () such that v(t) ≤ w(t)
for t ∈ I . Assume that the nonlinear term f : [, ] × R

n → R is continuous and satisfies
assumption (H). Then using the linear iterative equation starting from u = v and u = w,
respectively,

⎧
⎨

⎩

CDα
+ un(t) = f (t, un–(t),C Dβ

+ un–(t), . . . ,C Dβn–
+ u(t)),  < t < ,

u(j)
n () = , u(n–)

n () = ρIγ

+ un(), j = , , . . . , n – ,

we define iterative sequences {vn}, {wn}. By this procedure we can obtain

lim
n→∞ vn(t) = u, lim

n→∞ wn(t) = u,

lim
n→∞

(CDβi
+ vn(t)

)
=C Dβi

+ u, lim
n→∞

(CDβi
+ wn(t)

)
=C Dβi

+ u,

uniformly for every t ∈ I , where u, u are minimum and maximum solutions between v and
w, i = , , . . . , n – .
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