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Abstract
We consider a discrete competition model of plankton allelopathy with infinite
deviating arguments of the form

x1(k + 1) = x1(k) exp
{
K1 – α1x1(k) – β12

n∑
s=–∞

K12(n – s)x2(s)

– γ1x1(k)
n∑

s=–∞
f12(n – s)x2(s)

}
,

x2(k + 1) = x2(k) exp
{
K2 – β21

n∑
s=–∞

K21(n – s)x1(s) – α2x2(k)

– γ2x2(k)
n∑

s=–∞
f21(n – s)x1(s)

}
.

By using an iterative method we investigate the global attractivity of the interior
equilibrium point of the system.
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1 Introduction
The aim of this paper is to investigate the stability property of the following two-species
discrete competition model of plankton allelopathy with infinite deviating arguments:

x(k + ) = x(k) exp

{
K – αx(k) – β

n∑
s=–∞

K(n – s)x(s)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}
, (.)
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x(k + ) = x(k) exp

{
K – β

n∑
s=–∞

K(n – s)x(s) – αx(k)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}
,

together with the initial conditions

xi(s) = φi(s) ≥ , xi() > , s = . . . , –k, –k + , . . . , –, –, i = , , (.)

where the coefficients Ki,αi, βij, and γi, i, j = , , are all positive constants,
∑+∞

j= Kij(n) = ,
and

∑+∞
j= fij(n) = .

During the last decades, many scholars proposed and studied the competitive system
with the effect of toxic substances, and numerous excellent results have been obtained;
see [–] and the references therein.

The main motivation for this work comes from a paper by Chen, Xie, and Wang [],
where they studied the stability property of the following competition model of plankton
allelopathy with infinite delay:

ẋ(t) = x(t)
[

K – αx(t) – β

∫ t

–∞
K(s)x(t – s) ds

– γx(t)
∫ t

–∞
f(s)x(t – s) ds

]
,

ẋ(t) = x(t)
[

K – β

∫ t

–∞
K(s)x(t – s) ds – αx(t)

– γx(t)
∫ t

–∞
f(s)x(t – s) ds

]
.

(.)

In [], it was shown that if the coefficients satisfy the inequality

α

β
>

K

K
>

β

α
, (.)

then x(t) → x∗
 and x(t) → x∗

 as t → +∞.
Its well known that discrete-time models governed by difference equations are more

appropriate than the continuous ones when the populations have nonoverlapping genera-
tions. By applying the idea of Chen [] we could establish the corresponding discrete-type
competition system (.). For system (.), we may conjecture that under assumption (.),
the system can admit a unique globally attractive positive equilibrium. Unfortunately, this
may not be true. Indeed, for the most simple single-species model, that is, the continuous
logistic model

ẋ = x(a – bx),

the system admits a unique positive equilibrium, which is globally attractive, whereas for
the discrete model

x(k + ) = x(k) exp
{

a – bx(k)
}

,
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to ensure that the model admits a unique positive equilibrium, some additional restriction
on the coefficients is needed; otherwise, the system may admit chaotic behavior, which
could not be observed in the continuous-time case. Also, in the study of the stability prop-
erty of the mutualism model, Yang, Xie, and Chen [] showed that some additional con-
dition should be added to ensure the global stability of the system. Hence, it becomes an
interesting and challenging task to investigate the stability property of system (.).

The aim of this paper is to obtain a set of sufficient conditions that ensure the global
attractivity of system (.). More precisely, we prove the following result.

Theorem . Assume that (.) holds and that Ki ≤ , i = , . Then the unique interior
equilibrium E∗(x∗

 , x∗
) of system (.) is globally attractive, that is,

lim
k→+∞

xi(k) = x∗
i , i = , .

We will prove this theorem in the next section.

2 Proof of the main result
The interior positive equilibrium E∗(x∗

 , x∗
) of system (.) satisfies the following equations:

⎧⎨
⎩

K – αx – βx – γxx = ,

K – αx – βx – γxx = .
(.)

Concerning with the positive solution of system (.), similarly to the analysis of Lemma .
in [], we have the following:

Lemma . If (.) holds, then system (.) has a unique interior positive equilibrium
E∗(x∗

 , x∗
).

Lemma . ([]) Let f (u) = u exp(α – βu), where α and β are positive constants. Then
f (u) is nondecreasing for u ∈ (, 

β
].

Lemma . ([]) Assume that a sequence {u(k)} satisfies

u(k + ) = u(k) exp
(
α – βu(k)

)
, k = , , . . . ,

where α and β are positive constants, and u() > . Then:
(i) if α < , then limk→+∞ u(k) = α

β
;

(ii) if α ≤ , then u(k) ≤ 
β

, k = , , . . . .

Lemma . ([]) Suppose that functions f , g : Z+ × [,∞) → [,∞) satisfy f (k, x) ≤
g(k, x) (f (k, x) ≥ g(k, x)) for k ∈ Z+ and x ∈ [,∞) and that g(k, x) is nondecreasing with
respect to x. Suppose that {x(k)} and {u(k)} are nonnegative solutions of the difference equa-
tions

x(k + ) = f
(
k, x(k)

)
, u(k + ) = g

(
k, u(k)

)
,
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respectively, and x() ≤ u() (x() ≥ u()). Then

x(k) ≤ u(k) (x(k) ≥ u(k)) for all k ≥ .

Lemma . ([]) Let x : Z → R be a nonnegative bounded sequence, and let H : N → R
be a nonnegative sequence such that

∑∞
n= H(n) = . Then

lim inf
n→+∞ x(n) ≤ lim inf

n→+∞

n∑
s=–∞

H(n – s)x(s)

≤ lim sup
n→+∞

n∑
s=–∞

H(n – s)x(s) ≤ lim sup
n→+∞

x(n).

Lemma . Let f (x) = a–bx
c+dx , x > , be the strictly decreasing function of x, where a, b, c, d

are positive constants.

Proof Since

f
′ (x) = –

ad + bc
(c + dx) > ,

the conclusion of Lemma . immediately follows. �

Now we are in the position to prove the main result of this paper.

Proof of Theorem . Let (x(k), x(k)) be an arbitrary solution of system (.) with initial
condition (.). Denote

Ui = lim sup
k→+∞

xi(k), Vi = lim inf
k→+∞

xi(k), i = , .

We claim that U = V = x∗
 and U = V = x∗

.
Condition (.) implies that there exists a small enough positive constant ε >  such that

K – β( K
α

+ ε)

α + γ( K
α

+ ε)
– ε > , (.)

K – β( K
α

+ ε)

α + γ( K
α

+ ε)
– ε > . (.)

By the first equation of system (.) we have

x(k + ) ≤ x(k) exp
{

K – αx(k)
}

. (.)

Consider the following auxiliary equation:

u(k + ) = u(k) exp
{

K – αu(k)
}

, k = , , , . . . . (.)

Because of K ≤ , according to (ii) of Lemma ., we obtain u(k) ≤ 
α

for all k ≥ , where
u(k) is an arbitrary positive solution of (.) with initial value u() > . By Lemma .,
f (u) = u exp(K –αu) is nondecreasing for u ∈ (, 

α
]. According to Lemma ., we obtain
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x(k) ≤ u(k) for all k ≥ , where u(k) is the solution of (.) with initial value u() = x().
According to (i) of Lemma ., we obtain

U = lim sup
k→+∞

x(k) ≤ lim
k→+∞

u(k) =
K

α
. (.)

From (.) and Lemma . we have

lim sup
k→+∞

k∑
s=–∞

K(k – s)x(s) ≤ lim sup
k→+∞

x(k) ≤ K

α
, (.)

lim sup
k→+∞

k∑
s=–∞

f(k – s)x(s) ≤ lim sup
k→+∞

x(k) ≤ K

α
. (.)

Hence, for ε >  defined by (.)-(.), it follows from (.)-(.) that there exists k > 
such that

x(k) <
K

α
+ ε

def= M()
 for k > k,

k∑
s=–∞

K(k – s)x(s) <
K

α
+ ε

def= M()
 for k > k, (.)

k∑
s=–∞

f(k – s)x(s) <
K

α
+ ε

def= M()
 for k > k.

From the second equation of system (.) we have

x(k + ) ≤ x(k) exp
{

K – αx(k)
}

. (.)

Similarly to the analysis of (.)-(.), for the same ε > , it follows from the second equa-
tion of system (.) that there exists k > k such that

x(k) <
K

α
+ ε

def= M()
 for k > k,

k∑
s=–∞

K(k – s)x(s) <
K

α
+ ε

def= M()
 for k > k, (.)

k∑
s=–∞

f(k – s)x(s) <
K

α
+ ε

def= M()
 for k > k.

Inequalities (.), together with the first equation of system (.), show that, for k > k,

x(k + ) = x(k) exp

{
K – αx(k) – β

n∑
s=–∞

K(n – s)x(s)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}

≥ x(k) exp
{

K – αx(k) – βM()
 – γx(k)M()


}

. (.)
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Inequality (.) shows that, under assumption (.), for the same ε > , we have  < K –
βM()

 < K ≤ . Thus, similarly to the analysis of (.)-(.), we obtain

lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


. (.)

From (.) and Lemma . we have

lim inf
k→+∞

k∑
s=–∞

K(k – s)x(s) ≥ lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


, (.)

lim inf
k→+∞

k∑
s=–∞

f(k – s)x(s) ≥ lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


, (.)

that is, for ε >  defined by (.), there exists k > k such that

x(k) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k,

k∑
s=–∞

K(k – s)x(s) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k, (.)

k∑
s=–∞

f(k – s)x(s) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k.

It follows from (.) and the second equation of system (.) that

x(k + ) = x(k) exp

{
K – β

n∑
s=–∞

K(n – s)x(s) – αx(k)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}

≥ x(k) exp
{

K – βM()
 – αx(k) – γx(k)M()


}

. (.)

From (.), similarly to the analysis of (.)-(.), for ε >  defined by (.), there exists
k > k such that

x(k) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k,

k∑
s=–∞

K(k – s)x(s) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k, (.)

k∑
s=–∞

f(k – s)x(s) >
K – βM()



α + γM()


– ε
def= m()

 >  for k > k.
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From (.) and the first equation of system (.) we have

x(k + ) = x(k) exp

{
K – αx(k) – β

n∑
s=–∞

K(n – s)x(s)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}

≤ x(k) exp
{

K – αx(k) – βm()
 – γx(k)m()


}

. (.)

It follows from (.) and (.) that

 ≥ K ≥ K – βm()
 > K – βM()

 > . (.)

Therefore, similarly to the analysis of (.)-(.), we have

lim sup
k→+∞

x(k) ≤ K – βm()


α + γm()


. (.)

From (.) and Lemma . we have

lim sup
k→+∞

k∑
s=–∞

K(k – s)x(s) ≤ lim sup
k→+∞

x(k) ≤ K – βm()


α + γm()


, (.)

lim sup
k→+∞

k∑
s=–∞

f(k – s)x(s) ≤ lim sup
k→+∞

x(k) ≤ K – βm()


α + γm()


. (.)

Hence, for ε >  defined by (.)-(.), it follows from (.)-(.) that there exists k > k

such that

x(k) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k,

k∑
s=–∞

K(k – s)x(s) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k, (.)

k∑
s=–∞

f(k – s)x(s) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k.

It follows from the second equation of system (.) that

x(k + ) = x(k) exp

{
K – αx(k) – β

n∑
s=–∞

K(n – s)x(s)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}

≤ x(k) exp
{

K – αx(k) – βm()
 – γx(k)m()


}

. (.)
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Similarly to the analysis of (.)-(.), there exists k > k such that

x(k) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k,

k∑
s=–∞

K(k – s)x(s) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k, (.)

k∑
s=–∞

f(k – s)x(s) <
K – βm()



α + γm()


+
ε


def= M()

 for k > k.

Inequalities (.), together with the first equation of system (.), imply

x(k + ) = x(k) exp

{
K – αx(k) – β

n∑
s=–∞

K(n – s)x(s)

– γx(k)
n∑

s=–∞
f(n – s)x(s)

}

≥ x(k) exp
{

K – αx(k) – βM()
 – γx(k)M()


}

. (.)

Inequality (.) shows that, under assumption (.), for the same ε > , we have  < K –
βM()

 < K – βM()
 < K ≤ . Thus, similarly to the analysis of (.)-(.), we obtain

lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


. (.)

From (.) and Lemma . we have

lim inf
k→+∞

k∑
s=–∞

K(k – s)x(s) ≥ lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


, (.)

lim inf
k→+∞

k∑
s=–∞

f(k – s)x(s) ≥ lim inf
k→+∞

x(k) ≥ K – βM()


α + γM()


, (.)

that is, for ε >  defined by (.), there exists k > k such that

x(k) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k,

k∑
s=–∞

K(k – s)x(s) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k, (.)

k∑
s=–∞

f(k – s)x(s) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k.

It follows from (.) and the second equation of system (.) that

x(k + ) ≥ x(k) exp
{

K – βM()
 – αx(k) – γx(k)M()


}

. (.)
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From (.), similarly to the analysis of (.)-(.), for ε >  defined by (.), there exists
k > k such that

x(k) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k,

k∑
s=–∞

K(k – s)x(s) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k, (.)

k∑
s=–∞

f(k – s)x(s) >
K – βM()



α + γM()


–
ε


def= m()

 >  for k > k.

Repeating the previous procedure, we get four sequences M(n)
i , m(n)

i , i = , , n = , , . . . ,
such that, for n ≥ ,

M(n)
 =

K – βm(n–)


α + γm(n–)


+
ε

n
,

M(n)
 =

K – βm(n–)


α + γm(n–)


+
ε

n
,

m(n)
 =

K – βM(n)


α + γM(n)


–
ε

n
,

m(n)
 =

K – βM(n)


α + γM(n)


–
ε

n
.

(.)

Using Lemma . and induction, similarly to the analysis on p.  of [], we can show
that the sequences M(n)

i , i = , , are strictly decreasing and the sequences m(n)
i , i = , , are

strictly increasing. Also,

m(n)
i < xi(t) < M(n)

i for t ≥ Tn, i = , .

Therefore,

lim
t→+∞ M(n)

i = xi, lim
t→+∞ m(n)

i = xi, i = , . (.)

Letting n → +∞ in (.), we obtain

x =
K – βx
α + γx

, x =
K – βx
α + γx

,

x =
K – βx

α + γx
, x =

K – βx

α + γx
.

(.)

Equalities (.) are equivalent to

K – αx – βx – γxx =  = K – αx – βx – γxx,

K – αx – βx – γxx =  = K – αx – βx – γxx.
(.)
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Note that (x, x) and (x, x) are positive solutions of (.). By Lemma ., system (.) has
a unique positive solution E∗(x∗

 , x∗
). Hence, we conclude that

xi = xi = x∗
i , i = , ,

that is,

lim
t→+∞ xi(k) = x∗

i , i = , .

Thus, the unique interior equilibrium E∗(x∗
 , x∗

) is globally attractive. This completes the
proof of Theorem .. �

3 Example
In this section, we give an example to illustrate the feasibility of main result.

Example . Consider the system

x(n + ) = x(n) exp

{
. – .x(n) – .

∞∑
s=

e – 
e

e–sx(n – s)

– .x(n)
∞∑

s=

e – 
e

e–sx(n – s)

}
,

x(n + ) = x(n) exp

{
. – .x(n) – .

∞∑
s=

e – 
e

e–sx(n – s)

– .x(n)
∞∑

s=

e – 
e

e–sx(n – s)

}
.

(.)

Corresponding to system (.), we have K = .,α = .,β = .,γ = ., K = .,α =
.,β = .,γ = .. Hence,

α

β
=

.
.

=  >
K

K
=




>
β

α
=




.

Also,

K = . < , K = . < .

Hence, all the conditions of Theorem . are satisfied, and it follows from Theorem . that
system (.) admits a unique globally attractive positive equilibrium. Figure  supports this
assertion.

4 Conclusions
Stimulated by the work of Chen, Xie, and Wang [], we propose a discrete competition
model of plankton allelopathy with infinite deviating arguments. We focus our attention
on the stability property of the positive equilibrium of the system since it represents the
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Figure 1 Dynamic behaviors of the solution
(x1(n), x2(n)) of system (3.1), with the initial
conditions (x1(s), x2(s)) = (0.8, 0.4), (0.5, 0.5),
(1.5, 1.5), s = . . . , –n, –n + 1, . . . , –1, 0.

stable coexistence of the two species. With the additional restriction on the coefficients
of the system Ki ≤ , i = , , using the iterative method again, we finally proved that the
positive equilibrium is globally attractive. Also, since the conditions of Theorem . are
independent of delay and the coefficients of the toxic substance term, we can draw the
conclusion that, under the assumptions of Theorem ., the delay and toxic substance are
harmless for the stability of the interior equilibrium of system (.).
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