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1 Introduction

Nonlinear difference equations and systems have been studied a lot in the last few decades
(see, e.g., [1-29]). Two of the topics of recent interest are symmetric and closely related
systems (see, for example, [3, 6-12, 15, 16, 19, 20, 22, 23, 26-29]), whose investigation
was considerably influenced by some papers by Papaschinopoulos and Schinas (see, for
example, [8—10]), and the solvable difference equations and systems (see, for example, [3,
14, 18-22, 24-29] and the references therein). For some classical methods for solving the
equations and systems see, for example, [1, 30-33]. It has been shown recently that many
nonlinear equations and systems can be solved by transforming them to linear ones (see,
for example, [3, 14, 18, 21, 24, 25] and the related references therein).

Some of the equations and systems that we have studied recently, such as the ones in
[17] and [23] (see also [13]), are obtained by adding constants to the right-hand sides of
some product-type equations/systems or by taking the maximum of some constants and
the right-hand sides of the equations/systems. This means that they are related to the
product-type ones, which are usually some kind of boundary cases. The case of positive
initial values and multipliers is simple, since in that case the equations/systems can easily
be treated by one of the simplest transformation methods. The case of complex initial
values is more complex due to the fact that complex functions need not be single valued.
Hence, our methods in [3, 18, 21] and other related papers cannot be applied. This has
motivated us to start investigating product-type systems on the complex domain. In a
series of papers, see [19, 20, 22, 26—29], we have obtained some results in the area (during
the study of the equation in [21] we came across a product-type equation). In our first
papers on the topic (see [20, 22, 26]) the systems have not had coefficients different from
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one. However, not long after that we have introduced two coefficients and also got solvable
systems (this was done for the first time in [19], and somewhat later in [27-29]). We have
also observed the fact that there are only a few solvable product-type systems of difference
equations with two dependent variables. Hence, our aim is to describe all such product-
type systems and present formulas for the general solutions for each of them.

This paper complements our previous results on the solvability of product-type systems

of difference equations with two dependent variables, by studying the following one:
— b _ c d
Zy = 0Zy (W, 5, Wy = BW, oz, 1, neNy, 1)

where a,b,c,d € Z, «, € C and z_;,w_5,w_; € C. To do this we will modify ideas and
methods from our previous papers, for example, the ones in [19, 27-29].

If the initial values belong to the following set:
{zo,woa,w) €C? iz =0 0rwp =0o0rw =0},

and if some of the exponents a, b, ¢, d are negative, then such solutions are not defined.
Hence, this set of initial values will not be taken into consideration. Besides, if @ = 0 or
B =0, we get z, = 0 and w,, = 0 for every n € Ny, respectively, which are quite simple
cases, or also obtain solutions which are not well defined, so, we will also assume that

a #0 # B. We use the convention Zﬁ:k a; = 0, when [ < k, throughout the paper.

2 Main results
Our main results are presented here. The following three cases will be considered sepa-
rately:

(i) ¢=0, ac=bd;

(if) ¢+#0, ac = bd,;

(iii) ac # bd.

Clearly, in case (i) from ¢ = 0 and ac = bd it immediately follows that bd = 0, but we
have chosen to write ac = bd at this point, to point out that the whole analysis essentially
depends on the values of the quantities ¢ and ac — bd, that is, if they are equal to zero or
not.

First, we will consider case (i), then case (iii) and at the end case (ii), for the presentational

reasons.

Theorem 1 Assume thata,b,d € Z,c=0,bd=0,a,8 € C\{0}andz_1,w_5,w_1 € C\{0}.
Then the following statements hold.
(@) Ifa #1, then the general solution to system (1) is given by the following formulas:

1 n+l n n-1
zy =0 @ b= 2 wl_"; wé‘f , n=>2, ()
and

1—gh
Wy = Ta B, n=2. (3)
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(b) Ifa =1, then the general solution to system (1) is given by the following formulas:
Zy = a”*lﬁb(”‘l)z,lwljzwljl, n>2, (4)
and
Wy =a® Bz, n>2. (5)
Proof Since ¢ = 0, we have
Zy = azﬁflwsz, W, = ﬂz,‘il, n € Ny. (6)
From (6) and bd = 0 is obtained
zo=af’Z, n=2. (7)
From (7) we easily get
2= @), 0z

which, along with

2
7 = Wt (8)
yields
no n=2 j  n+l n n-1
2y = a0 ? P el b s, 9)

By using equation (9) along with the formula for the sum of the geometric progression
we see that equation (2) holds when a # 1, while equation (4) is directly obtained for a = 1.
From (9), the equality w, = 8z |, and the condition bd = 0, we obtain

1 3 _ .
— adZ;l:o “’ﬁl*bdz,”:o ﬂlchclz” thﬂ” lwbda” 2

Wy 2 -1

n-1_j n
L TR gt (10)
By using equation (10) along with the formula for the sum of the geometric progression

we see that equation (3) holds when a # 1, while equation (5) is directly obtained for a = 1,
completing the proof of the theorem. O

Theorem 2 Assume that a,b,c,d € 7, ac # bd, o, B € C\ {0} and z_1,w_y,w_1 € C\ {0}.
Then system (1) is solvable in closed form.

Proof Since «, 8 € C\ {0} and z_;,w_5,w_; € C\ {0}, using (1) it easily follows that z,, # 0
for n > -1 and w,, #0 for n > -2. Thus, from (1) we have

ne N(), (11)
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and
b N,
/3 n 2Zn 1 "€ No.

From (11) and (12) we get

1-c ¢, bd-ac
Zp2 =0 ﬂ Zn+1z Z,1 » HNE N().
Let i = a'~¢p?,
a =a, b =c, ¢ =bd - ac, y =1

Then

b
Zua = W20 202, nmeN.

From (15) is obtained
Zr = W (22t 20 ,) )z,

by )lb] Cl

ajay+by Zblﬂl o1 ca

— pital
=M Z n-2

_ Y2 A2 by _c2
= W22, 12 s

for n € N, where

ay =aia; + bl, bz = bldl + ¢y, Cy = (14, Y2 =) tai.

Suppose that
Zuig = Wk Pk gk
n+2 = n+2—k“n+1-k“n-k’
fora k e Nand everyn >k -1, and

ax = aag-1 + br, by = hyax_1 + cx1, Ck = C1k-1,

Yk = Yk-1 + Q-1

From (15) with # — n — k and (18), it follows that

ok ay b _a a b
Zns2 = W (l’LGJrl—kzn—kzn—k—l) 241 an k

_ yk+akza1ﬂk+bk biag+ck, c1ak
=p n+l-k “n-k n—k-1

Ykl kel Pkl Skl
=W Zyi1-kZn—k “n-k-17

for n > k, where

Aks1 = aray + by, bisy = by + ¢k, Ck+1 i= C1aks

Yi+1 = Yk + Gk

Page 4 of 12

(13)

(14)

(15)

17)

(18)

(19)
(20)

(21)

(22)
(23)
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Equalities (16), (17), (21), (22), (23), and the induction show that (18), (19), and (20), hold
for every k,n € N such that 2 < k < n + 1. Note that (18) holds also for k = 1.
For k = n + 1, (18) becomes

a b ¢
Zpes = Mﬂ’nﬂ z n+l Zon+1 Z—Tl

_ (alfclgb)yml (almzﬁwfgwljl)anﬂ (OlZlebz)bﬂHZch

2
_ Q=yp1+(A+a)ays1+bys1 pbyns1 4 api1+aby+cn
- n+ n+ n+ ,3 n+ 271

X Wiga;ﬂl +bby 1 wbﬂnﬂ

_ - b b
= g3 cymlﬂbymlzé_l;ius Cap+1 W_;MZ w_ﬁllml’ n € N, (24)

where we have also used the fact zy = az%,w?,, (8), (19), and (20).
Further note that (19) implies that (ax)«>4 is a solution to the equation

ax = ddi_1 + brax_s + c1di_s. (25)

Since ¢; # 0, from (25), we get

ax — mag-1 — biago
ai-3 = c ’ (26)
1

from which it follows that we can calculate g, for every non-positive /, that is, for k < 3.
A direct calculation shows that

aog = 1, aj1=ad_y= 0. (27)
Moreover, it is shown that (ax)k>—-2, (br)k>-2, (ck)k>—2 are solutions to (25) such that

a_p = 0, a1 = 0, ag = 1;
b,z = O, b,l = 1, b() = 0;

C_o = 1, Cc_1 = 0, Co = 0;
respectively, whereas (yi)i>_2 satisfies (20) and
Yy2=y1=% =0, y=1 (28)

From (20) and since a¢ = 1, we get

k-1

Yk = Z a;. (29)

The solvability of (25) shows that for (ax)i>_> can be found a closed form formula.
Therefore, using equation (29) and known formulas for the following sums:

S(y{q)(c) = Zkl;k, me NO) (30)
k=1
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where j = 0,2 (see, e.g., [31, 33]), the closed form formula for (yi)xen is easily obtained.
This along with (24) shows the solvability of (13).
From (1), we also have

d Wn
2= , neN, (31)
! BW,
and
2 =al7 wh,, neN,. (32)

Equalities (31) and (32) yield

Waet = @B wAiwe  whdac e N, (33)
We have
wo = B’ 27, (34)

Similarly as above we get
Ak bi . ck
Wy = P*wS o ow S oW, m>=k -1, (35)

where 1 = a?BY%, (ar)ken, (bi)xen and (cx)xen are defined by (14) and (19), whereas (yi)ken
satisfies (20) and (28), so it is given by (29).
From (35) with k = n + 1 and (34) is obtained
Anil, buil Cnil

Wnil = T)y”” Wo W1 W

— (adﬂl—a)%ﬁl (ﬁwingl)anﬂ Wlinlﬂwc—nzﬂ

- adyn-d ﬁ(l—ﬂ)yrﬁl +an+1 Zil‘leHl Wi‘zztﬂl +Cn+l an+1

= qDni1 g2 Zs_lslzm e (36)
for n € Ny.

The solvability of (25) along with (27) shows that for (ax)x>_2 we can find a closed form
formula, from which along with (29) the formulas for y, can also be obtained, as described
above. These facts along with (36) imply the solvability of equation (33). It is not difficult
to show that formulas (24) and (36) really represent solutions to system (1). Thus, system
(1) is also solvable in this case, as claimed. a

Corollary 1 Consider system (1) with a,b,c,d € Z, ac # bd, o, € C \ {0}, and
z_1,W_g,w_1 € C\ {0}. Then the general solution to system (1) is given by (24) and (36),
where (ay)ren Satisfies equation (25) with initial conditions (27), while (yx)ken is given by
(29) and can be found by using formulas for the sums in (30).

Theorem 3 Assume that a,b,c,d € Z, ¢ #0, ac = bd, a, 8 € C\ {0} and z_;,w_p,w_; €
C\ {0}. Then the following statements hold.
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(@) Ifa® #—4c and a + ¢ #1, then the general solution to system (1) is given by the

following formulas:
a(xz71))\;1“7,;(1171)13*1+(1142)(17c) b(xzfl)xff(xrnxgmrxz
Zy =0 (.1 -1) (o -1) (A -22) 13 (1 -Do-Dr-22)
1+l 1+l
VA LBV L ST,
M- M- SRS
X Z_y w_,y w_;

and
Oo-DM (DA eag—ay  clp-DA
Wy=0o (A1-D02-D(1-22) B
k{z;l_;;ﬂl qu;l_;gﬂ Ciil_in
1=%2 1=%2 1752
Xz w_, w_]
where
N a+a*+4c
1,2 = .

(b) Ifa® #—4c and a + ¢ = 1, then the general solution to system (1) is given by the

following formulas:

anttl +((c=1)n=2)A1 +(1-c)n+l+c n—l—n)\1+)»{l

1

O -D(A2-D(A1-22)

Zy=a (1-1)? B 1-x)2
and
n—(n+l)k1+A{’+l ck{’+((u—1)n+a—2)kl+(l—a)n+l
— (1-21)2 B (1-21)2
Al CA{“Ll S
A1 A1 A1
Xz, w_, wi',
where
)\,1 =—C

(c) If a* = —4c and a + ¢ #1, then the general solution to system (1) is given by the

following formulas:

am ()i +lc  1-mi L1t

1 1

Z, =« (1-21)% B (1-11)%

a(m+ Ay b(n+1)r] bnkf’l
Z w_ w_,

and

1—(n+1)){‘+n}~f*1 c(n—l))\i'—cn){‘_l +l-a

Wy =« a2 g (1-21)?

d(n+1)A]  c(n+1)A] cnkiq'l
z4 w, wi',
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(37)

(39)

(40)

(41)

(44)
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where
a
A== 45
1= (45)
(d) Ifa® = —4c and a + c = 1, then the general solution to system (1) is given by the
following formulas:
(l—c)n2+(c+3)n+2 (n-Dn
R N N T (46)
and
nn+l)  (n+1)(Q-a)n+2)
wa=al 7 g gy o, (47)

Proof Similar to the proof of Theorem 2 we have z,, # 0 for n > -1 and w,, # 0 for n > -2,
and for every such solution (13) holds, from which, along with the condition ac = bd, it
follows that

Zypy = BbZE 2, (48)

for n € Ny.
Let v = a!™¢B?,

a = a, b =c, =1 (49)
Then

Zua = V120 2 (50)
for n € Ny.

From (50) is obtained

y a 21 a E
Znr =V (v202, ) )

_ 5/1+fl1 ﬁ1&1+£1 glél
=V 2y Zy1
b s b
=g (51)

for n € N, where

&2 = &1211 + bl, b2 = blé\ll, 5/2 = 5/1 + &1. (52)
Suppose that
S b
Zp+2 = vykznf-Z—kznlil—k’ (53)

holds for some k € N and for every n > k — 1, and that

dr = ddg + b, by = biay_1, Vi := Fr1 + dxar. (54)
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Then from (50), with » — n — k and (53), we get

Tk (1,2 by \ak _bx
Zns2 =V (vzn+l—kzn—k) Zn+l—k
_ gy mdgrby_bray
=V Zn+1—k n—-k
_ 5//< 1 ‘Alk+1 2k+1
=V Zn+1—kzn—k ’ (55)
for n > k, where
ksl = Ay + by, biy1:=bidg,  Yre1 =Yk + . (56)

Equalities (51), (52), (55), (56), and the induction show that (53) and (54), hold for every
k,n € Nsuch that 2 < k < n+1. Note that the equality in (53) also holds for k =1 (see (50)).
For k =n +1, (53) becomes

R R
Zyeo = Vym.] Z1 n+l ZOn+1

_ 1-c ob\Jn+1 1+a,a®  ab_ b \dn+l a . b i’ml
= (o )" (et Wi w2, ) (el why)

~ ~ 7 ~ 27 7
— a(lfc)}’rHI*(l*ﬂ)ﬂnJrl*bn+1,Bbynﬂzalﬂ"ﬂJrubVHl

X ng&nﬂ‘*bgrﬂl Wb&n+1

Ins3—Chst @bimal Ains2 . b bi
= o)n+3 Cyn+113b3’n+12‘_“11n+2 W_gnﬂ W_?VHI, ne Ny, (57)

where we have used the fact zg = otz‘flw'fz, (8), and (54).

Now note that (ax)x>3 is a solution to the equation

&k = &1&](_1 + blt"\lk_z. (58)

~

As in the proof of Theorem 2, it is shown that (a)r>—» and (bg)i>_ are solutions to
equation (58), satisfying the initial conditions

Zl_l = O, 21() = 1;
2_1 = 1, b() = O,
respectively, whereas (Ji)x>-1 satisfies the third equation in (54) and

J1=% =0, n=1L (60)

This and ao = 1 imply
k-1
=Y & (61)
j=0

Since (33) also holds, using the condition ac = bd, we get

Wyl = adﬂl’“WZWfq_l, n € Ny. (62)
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Similar to the above is obtained
5o @ )
Wpil = nykwnil_kwnlikr (63)

for k,n € N, 1 < k < n + 1, where n = «?B-%, sequences (dy)ren, and (l;k)keN satisfy (49)
and (54), whereas (Ji)ren satisfies the third equation in (54) and (60), so, formula (61)
holds.

From (63) with k = n + 1 and (34) it follows that

5 G b
Whil = ﬂynﬂ ngl W_Tl

_ (adﬂl—a)ym—l (ﬂwizz(;il)ﬂm-l Wﬁ;{ﬂ
= (Xdi'”“ﬁj'”ﬁ’aj’”*lz‘_i?”” Wiﬁzml WC_;;", neN,. (64)

The characteristic polynomial associated to the linear difference equation (58) is the

following:

Py(M) =22 —ax—g,
from which it follows that the corresponding characteristic roots are given by the formulas
in (39).

Since a_; = 0 and ag = 1, then, if a> # —4c and a + ¢ #1, we easily get

n+l n+l
_ )‘1 B )"2

= 65
= (65)
and consequently

n-l ., j+l j+l n+l n+l
N Ay — ()\.2 - 1))\. - ()\1 - 1))\. + A1 — Ao
_yl’l = E 1 2 = 1 2 . (66)

py A=Ay (A =D —1)(A — 1)

If a®> # —4c and a + ¢ = 1, then one of the characteristic roots, say A, is equal to one, and

we have
At -1
_ 67
e (67)
and
n-1 ,j+1 +1
R M -1 n—-m+1r +A}
= = . 68
I onkl_l TENE (68)

If a> = —4c and a + ¢ # 1, then we have

a,=m+1N", neN, (69)
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and

1—(n+ DAY + nat

n-1
Ju=) (G+DA =

(70)

EEWY)

o 1-21)

If a2 = —4c and a + ¢ = 1, then we have
a,=n+1, neNy, (71)
and
L n(n+1)

An = i+1)= —=. 72
y ;):(1 +)=— (72)

Using (65)-(72) into (57) and (64) and by some calculations equations (37), (38), (40),
(41), (43), (44), (46), and (47) are obtained. By some standard, but time-consuming cal-
culations, it is shown that these formulas really represent solutions to system (1) in each
if these four cases. O

Remark 1 Note that if *> = —4c and a + ¢ = 1, then (@ — 2)® = 0, from which it follows that
a =2 and consequently ¢ = —1. Hence, equations (46) and (47) can also be written in the

following, more concrete, forms:

2 (n=1)n
_n?4n+l b2 2(n+1)  b(n+1)  bn
Zy =« B 2w, w]

and

n(n+l)  (n+l)(n=2) _ _
d '_/3 Tzd(n+l)w (n+1)w n

Wp=0Q -1 2 1
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