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Abstract

In this paper, we introduce the fuzzy Mellin transform and investigate some of its
operator properties. We then establish the connections with the two-side fuzzy
Laplace transform. By using a fuzzy Mellin transform, we solve some fuzzy differential
equations under strongly generalized differentiable conditions. Finally, some simple
applications are given.
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1 Introduction

The first definition of differentiability for fuzzy-valued functions was proposed by Puri
and Ralesu in [1], which is based on the Hukuhara difference of sets. The definition of
fuzzy-valuedness as a generalization of the Hurahara derivative for set-valued mappings
is a rather restrictive concept of derivative. In order to overcome the limitations, some new
notions of difference were given, such as the generalized difference [2] and the generalized
Hurahara difference [3].

Bica et al. proved the convergence of the method of successive approximations and used
to approximate the solution of the nonlinear Hammerstein fuzzy integral equation, and
then they proposed the notion of numerical stability of the algorithm with respect to the
choice of the first iteration in [4]. Cabral et al. considered fuzzy differential equations
with parameters and initial conditions interactive in two differential ways: differential in-
clusion and the extension principle [5]. Under generalized differentiability Mosleh et al.
presented an approach for approximating the fuzzy linear system of differential equations
in [6]. The airfoil and the Chebyshev polynomials methods for solving the fuzzy Fredholm
integro-differential equation with Cauchy kernel under generalized H-differentiability was
discussed in [7]. Moreover, Chalco-Cano et al. discussed the formulation and procedure
for solving fuzzy differential equations via a differential inclusion and gave several exam-
ples showing the corrected and incorrect procedure for solving differential equations in
[8]. Agarwal et al. proposed the notion of a differential equation of fractional order with
uncertainty and presented the concept of the solution [9]. Malinowski established mathe-
matical foundations of random fuzzy fractional integral equations which involved a fuzzy
integral of fractional order [10]. For more study on fuzzy fractional differential equations
one may refer to [11-14].
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Recently, Salahshour et al. dealt with the solutions of fuzzy Volterra integral equations
with separable kernel by using a fuzzy differential transform method in [15]. Moreover,
the fuzzy Laplace transform was expressed by Salahshour et al. in [16]. And the existence
theorem was given for a fuzzy-valued function which possesses the fuzzy Laplace trans-
form. Ahmadi et al. investigated the Laplace transform formula on the fuzzy nth-order
derivative by using the strongly generalized differentiability concept in [17]. The fuzzy
Laplace transforms method for solving fuzzy fractional differential equations was pro-
posed by Salahshour et al. in [18].

By the change of variables x = exp(—t) of the classical Mellin transform, one can obtain
its Laplace transform. By using this connection with the two-side fuzzy Laplace transform,
we can deduce the operator properties of the fuzzy Mellin transform. Then we may use
the Mellin transform technology to solve some kinds of fuzzy differential equations. That
is the main result of this paper. Some simple applications are given in the last section.

2 Preliminaries
We denote the sets of all nonempty convex compact subsets of metric space (X,d) by
K(X). The Hausdorff metric for X7, X, € IC(X) is defined as

D(X1,X) = inf{X; C N(X5,¢) and X, C N(Xy,¢)},

where N(X3,¢) = {x; € X' | d(x1,%) < ¢ for some x; € Xj}.
A real-valued mapping v : X — [0,1] is called a fuzzy set.
Let us denote by £ the set of all fuzzy sets satisfying the following four conditions:
(i) visnormal, ie., Ix; € X with v(x;) =1;
(if) v is convex (i.e., v(Axy + (1 — A)xy) > min{v(xy), v(xz)}, VA € [0,1], x1,x, € X);

(iii) v is semicontinuous on X’;

(iv) {x; € X;v(x1) > 0} is compact, where B denotes the closure of B.

For 0 < r < 1, the r-level set of v is denoted by [v]" = {x; € X' | v(x;) > r} and [v]° =
{x1 € X | v(x) >0}.

Zadeh’s extension principle implies

(V1 + 1) (x1) = sup min{vi(y), va(x1 - 9)}, x€ X,
ye

and
(kv)(x1) = v(x1/k), k>0, and (kv)(x)=0€&, k=0.
In particular, for v,v;, € £, X CR, and A € R, we have
i @ve]" =[] + ], [Aw] =[], Vrel0,1],

where [v1]” + [v2]" means the usual addition of two closed convex intervals of R and A[v]"
means the usual product between a scalar and an intervals of R.

A mapping f: X — £, X C R is called a fuzzy-valued function. Some authors have
considered the Laplace transform of fuzzy-valued functions and called it a fuzzy Laplace
transform (see [15, 16, 18]). Notice that the kernels functions of Laplace transform and
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Mellin transform are both complex-valued functions. In order to compute kv (k € C,
v € £), we have to modify the above definitions. The notion of the complex membership
function proposed by Tamir et al. in [19] seems to be suitable.

The complex membership function is defined as
v(£) = i () + ina(8),

where v;,v; : R — [0,1] and ¢ € R. For convenience, denote (v1,v,) by v. Then, for v =

(v1, v2) the (o1, 2)-level set is denoted by
1) = ] 0 [up] 2.

It is easy to see that the (a1, a;)-level of v is always compact and convex. In order to

ensure that v is normal, we define the following set:
? = {(le U2) e xE& | Elt() e Rs.t. Ul(t()) = Uz(to) = 1}, (21)

where £ ={v |v:R — [0,1]}.

We define 0 € £ by 0(¢) =1 when £ = 0 and 0(¢) = 0 otherwise. The zero element on &
then reads 0,(¢) = (0(¢),0(2)) € € x &.

For f = (us,vr), g = (g, vg) € &, we give the notions of addition and scalar multiplication
as follows:

S +g=(us+ug,vr+vy),

(2.2)
cOf = (aus — bvy,avy + buy) (c=a+ib).
The Hausdorff distance D; : £ x £ — [0, 00) is defined by
Dy (v1,v9) = sup{D([n]", [v2]") | 7 € [0,1]}. (2.3)

For f = (ug,vr),g = (ug,vg) € &', we then define the HausdorfF distance D,: & [0, 00) by
Ds(f,g) = Dy ((ur, vs), (14g, v)) = max{D (s, ug), Dy (vs,vg) }. (2.4)

(€,Dy)isa complete metric space. Using the method given by Karpenko et al. [20], one
can show that (g" ,D,) is isometrically embedded in a Banach space.

A mapping F : [a,b] — & is called complex fuzzy-valued function. In order to investi-
gate differentiability of the complex membership function, we need the notion of the dif-
ference of two fuzzy numbers. There are some different definitions such as the Hukuhara
difference, the generalized Hukuhara difference, the generalized difference, and so on. But
we only consider the following H-difference in this paper.

Letx,y e &' If there exists z € &' such that x = y + z, then z is called the H-difference of
x and y and it is denoted by x — y.

Let F(x) = (us(x),vr(x)) and assume that us(x) and vs(x) are both fuzzy Riemann-
integrable, which was introduced by Stefanini and Bede.



Sun and Yang Advances in Difference Equations (2016) 2016:296 Page 4 of 12

Definition 1 ([21]) Let u be a fuzzy-valued function on [a, co], and u(x; r) = [u(x; r), u(x;r)].
Assume that the endpoint functions u(x;r) and u(x;r) are both Riemann-integrable on
[a, 0] for every b > a, and assume that there are two positive M(r) and M(r) such that
f: lu(x; r)| dx < M(r) and fab |lu(x; 7)| dx < M(r) for every b > a. Then u(x) is improper
fuzzy Riemann-integrable on [a, 00], and the improper fuzzy Riemann-integral is denoted

by Iu(x).
Furthermore, one can obtain
Tu(x;r) :/ u(x;r)dx = |:/ u(x;r) dx,/ i(x;7) dx]. (2.5)

Definition 2 Let F : [a,b] — & be a complex fuzzy-valued function and let F(x) =
(uy(x), vr(x)). Assume that us(x) and v/ (x) are both fuzzy Riemann-integrable. Then F(x) is
improper fuzzy Riemann-integrable and the improper fuzzy Riemann-integral is denoted

by IF(x) = (Tus(x), ve(x)).

Definition 3 We call a complex fuzzy-valued function F : (a, b) — g strongly generalized
differentiable at x € (a, b) if there exists some F'(x) € & such that
(i) there exist the differences F(x + xg) — F(x), F(x) — F(x — x¢) and
lim F(x +x9) — F(x) - tim F(x) — F(x —xg) ),

x0—>0* X0 x0—0* X0

or
(ii) there exist the differences F(x) — F(x + xg), F(x — xg) — F(x) and
F(x)-F Flx—x0)—F
lim () - Flx +x0) _ lim (x —x0) — Fx) _ Fl),

x0—>0* —X0 x0—0* —X0

or
(iii) there exist the differences F(x + xg) — F(x), F(x —x¢) — F(x) and
F(x +x0) - F(x) F(x —x0) — F(x)

lim = lim = F'(x),
x0—0% X0 x0—0* —X0

or
(iv) there exist the differences F(x) — F(x + xg), F(x) — F(x — x¢) and

. F(x)-F(x+x0) . F(x)—F(x—x)
lim = lim
xo—0+ —X0 xo—0% X0

= F'(x).
Furthermore, one can obtain
DF(x) = F'(x) = [Duy(x), Dvs(x)].
3 The fuzzy Mellin transform

Definition 4 The fuzzy Mellin transform of a complex fuzzy-valued function f(¢) is de-
fined by

MFH]6s) = /0 Fof(e)ds, (3.1)

where s € C.
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We then have

— * -1 > -1
M(f1(s) = ( /0 £ O uy(t)dt, /0 £ Ov(2) dt)
= (MlurI(s), MIvs](s).- (3.2)

We can establish the connection with the fuzzy Laplace transform defined by the authors
in [16, 22, 23]. Let x = e~*. We have the Laplace transform

cholo- [ erosea (3)

—00

By using this formula, we can obtain the following propositions.

Proposition 1

L[f(e)](s) = M[F®)](s). (3.4)

For the definitions of | - | and converges absolutely we refer the reader to [22]. If the func-
tion F(¢) := f(e™*) satisfies §_ < §,, then the fuzzy Laplace transform converges absolutely
for 5_ < Re(s) < §,, where

8_:=inf{8 | |[F(£)] = O(e’),t — oo},
8, :=sup{8 | |[F(t)| = O(e"),t — —o0}.

By (3.4), if §_ < 4., then for §_ < Re(s) < 8, the fuzzy Mellin transform converges abso-

lutely, where
s_:=inf{8 | [f(t)| = O(¢7°),t —> 0+},
8, =sup{8 | |[f(t)] = O(t?),t —> oo}.

If the fuzzy Mellin transform M([f(¢)](s) converges absolutely in the vertical strip §_ <
Re(s) < 6., then one can obtain

Jlim £ 0f(t) = 0, Re(s)>4.,
lim £ O f(t) = 0, Re(s)<d,.

Furthermore, for §_ < @ < Re(s) < 8 < 8, the fuzzy Mellin transform converges absolutely
and uniformly, and

lim f(s)=0
|Im(s)\—>oof( )

for o < Re(s) < B. Then we give the inversion formula for the fuzzy Mellin transform

c+i00

s 1 o
fO = MIFO)0 =50 / £ O f(s)ds (3.5)

c—100

with §_ <c<é,.
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Example1 Letf(¢) = (uf O e ,vy O e*) =a O e witha = (uf,vf) € &, then

Mlaoe™](s) = </°<> trouoe dt,/c>o trovoe! dt)
0 0
= (uf oI, 0o F(s)) =a®TI(s), Re(s)>0. (3.6)

Thus,fort>0,ae§’,c>0,

c+ioco

a®et=M"[aoT ()]t = 21 Opv/ t*Qa®T(s)ds. (3.7)

i —ioo

In fact, the fuzzy Mellin transform is a linear operator in the domain of the strips of
convergence. Then we have the following property.

Proposition 2 If M(f;(t)](s) :fj(s)for aj <Re(s) < B, then

M [Z 5O ﬁ(t)} (=3¢ M[£®]6), (3.8)

j=1 j=1
where o < 0(s) < B, o £ max{o,..., &}, and B2 min{Bi,..., Bu).
Proposition 3 Let M[f(£)](s) = f(s) for a < R(s) < B,
M[FD](s) = 1~ © M[f()](5).
Proof By a fuzzy Laplace transformation we obtain

MIFOD](s) = L[F(re™)](s) = L[f (e 22) ] (s)
= e—slog)» 0) E[f(e"f)](s) =20 M[f(t)](s), (3.9)

where A >0, >0, a < N(s) < B. a
Example 2
Mlcoe™]|(s)=cOL*OT(s), Re(s) > 0,c€ £,1>0.

Proposition 4 For . #0 and t > 0, we have

M0 = o o M) ()

Proof For 1 #0 and ¢ > 0, by using the fuzzy Laplace transformation, we have

MIFE))0) = £l )]0 = o o £lre )
- ﬁ o M[f()] G) (3.10)

where Ao < Re(s) < A8, and A8 < Re(s) < LA, according to A > 0 or A < 0, respectively. [
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Example 3 LetA>0,ceé&, and y #0,

y )\—s/y s
Mlcoe™ |(s)=cO @F(—). (3.11)
| 14

Proposition 5
d}’l
M(tog )" @£®]) = T M[FB](s).

Proof Let M[f(£)](s) = f (s) for @ < Re(s) < B. Then, by using a fuzzy Laplace transforma-
tion, we have

M[(logt)" 0f@®)](s) = L[f () ©log(e™™)"](s) = L[(-2)" ©.f (e77)](s)

d” . ~ g
= wﬁ[f(e )](s) = ./\/l[f(t)](s), (3.12)
where Re(s) € (o, 8) and n € N. (]

Example 4 Fora>0,ce g

n

M[c O (logt)" © 8(¢ - a)](s) =cO® d—as’l =cO® (loga)” © a1,

" ds (3.13)
/\/l[c ® (logt)" © e‘t](s) =cO & (s) (0<Re(s)).
Proposition 6
M[t’\ ®f(t)](s) =M [f(t)](s +A).
Proof By using the fuzzy Laplace transformation, one can obtain
./\/l[t’\ @f(t)](s) = E[e’“ @f(e’f)](s)
=L[f(e77)](s + 1) = M[f@®)](s + 1), (3.14)
where Re(s) € (« —Re()r), B —Re(1)). O
Example 5 Fora>0,ce & we have
/\/l[c o os8t- a)](s) =c@a* 1,
(3.15)

Mlcot'Oet](s)=cOT(s+1) (-Re(r) <Re(s)).
In particular, when A =1, we have
M[tof®)]s) = M[f®)](s+1), Re(s)e(@-1,8-1).

Moreover, we can obtain the following proposition.
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Proposition 7
Mo f(e1)]s) = MIFO]A-5),  9Ris) € (-(B -1, (¢ - 1))
and
M [f(%)](s) - MIFO)=),  Re(s) € (—B,-a).

Example 6

e—a/t

M|:c® . :|(s)=c®as_l®r‘(1—s), Re(s) < 1.

Proposition 8
M[f’(t)](s) =—(s-1)0O M[f(t)](s -1). (3.16)

Proof Let M[f(¢)](s) = f~ (s) for « < Re(s) < B. By using the fuzzy Laplace transformation,

MF©](s) = L[ (e1)]65) = L[-¢ @ Df (e)])
L[ ()]
= 5O Lf(€)]Olessn
=—(s-) OM[fH]s-1), (3.17)

where @ +1 <Re(s) < B +1. O

Moreover, we have:
(1) MD"f(B)](s)=(1-5), @f(s — n) where Re(s) € (¢ + n, B + n),
(@ay)i=ala+1)---(a+n-1).
(2) M[tof()](s) =—-s O M[f(#)](s), and the strip of convergence is unchanged.
(3) MI(t © DFO)')(s) = (=) © MIf($)](s). For n = 2 it implies
M [t2 OD({t)+t0O Df(t)](s) =s>OM [f(t)] (s). (3.18)

(4) MID*f(t) + 1 © Df(®)](s) = (s — 2)* © M[f(£)](s - 2) for Re(s) € (@ -2, -2).

We consider the following integral operator:

Lf(t):= Atf(r)dr, Lf(t) = /toof(r)dr. (3.19)
Proposition 9

MILF®)](s) = —%M [f®]s+1), a-1<Re(s)<min{f-1,-1}. (3.20)
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Proof
MILF®)O = L[Lf(€)]© = £[L (7 0f(€))]O)
= % OL[eTof(eT)]6) = —% OM[f@®)](s+1) (3.21)

holds for @ — 1 < Re(s) < min{8 — 1, -1}.
Similarly, we can obtain

MILF©)6) =~ © MIF@O](s +1) (3.22)
fora —1<Re(s) <8 -1. (I
Example 7 We have

M[cO e’tz](s) = (M[u.© e‘tz](s), M[v.® e’tz](s))

for o = 0 < Re(s) < 0o = B. Thus,

9o Lor( ]
M[L(c@e )](s)— CO2s©F< 5 )

Definition 5 The fuzzy Mellin convolution product, denoted by f * g, of a real-valued
function f(¢) and a fuzzy-valued function g(t), is defined by

f() xg(®) =/0 %@f(%) Og(r)dr. (3.23)

Suppose that the real-valued function f(¢) and the fuzzy-valued function g(¢) are both
defined on the positive part of the real axis and that both of them have the Mellin transform

f (s) and g(s) for o < Re(s) < 8. Then we can obtain the following convolution rule.

Proposition 10

Mf(©) *g@®)](s) = M[f(®)](s) © M[g(®)](s) (3.24)
for o <Re(s) < B.

Proof

M # g®]) = /Ooof—l o /omf(g) o gr)dr dr

- t 1
=/0 t“@f(;)dt/o ;Og(‘[)d‘t

- M[f(0)](s) © M[g(®)](). (3.25)
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In fact, by using the fuzzy Laplace transformation, we can also obtain

Mf@) +g@]() = LIf () xg(e™)] = LIf(e7)] © L]g(e7)]
= M[@)](s) © M[g®)](s). (3.26)

4 Applications
Consider the inhomogeneous fuzzy differential system (Euler’s differential equation)
[P OD*+a10tOD+aU(t) =f(t), t>0. (4.1)
By using the Mellin transform, the equation becomes
(s* = (@1 = Vs +az) © U(s) =f(s). (4.2)
Example 8 Consider the fuzzy Euler’s differential equation
[PoD*+20t0D-2JU@)=cO (wa-1)t?), a>0,cef.

By (4.2), a particular solution of the system is found to be

- as—S 1 as—3 1 as—Z 1 as+1
U(s)=c =1 — _— + R
) Q(s+l)(s—2)(s—3) (45—3 3as—2 12u4s+1)

for Re(s) > 3. By the inverse Mellin transform, we get

1, 1 )
—t "+ —1)0Oc

1
U@ =- —t 3 -
)=z Cua )Q( 3¢ 124

Example 9 Consider the fuzzy Euler differential equation
[ oD*+20t0D-2}U(t)=cO (& -a)), a>0,cef.

Using the same Mellin transform method, we have

Z’[( ) as—l o a as—Z 1 as+1 o (4 4)
)= ———MM c=\—-———"-7J—— C. .
(s+1)(s=2) 35s—2 3a’s+1

There exist three solutions corresponding to different strips of convergence:
(i) For Re(s) < -2, one can get

U(t):c@u(t—a)@{#—%}.

(ii) For —1 < Re(s) < 2, we obtain

Ut)=co {— m(;a; B _ “”(Stt; ) }
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(iii) For Re(s) > 2, we have

U(t):c@u(a—t)@{g%—g—;}.

Example 10 Consider the following abstract integral equation:

/OOK(tT) OU(t)dt =y(t), x>0
0

with a real-valued function « (¢) and a given fuzzy-valued function v (¢).

By using the fuzzy Mellin transform and the convolution rule, we have

) - M 56 © 70-9]0 - [ pler)ofwydr,
0
where ¢(s) = 1/ (1 —s).
Example 11 Consider the following fuzzy partial differential equation:
o d .\
(D0+U(~,y))(x) = —d—yLI(x,y) (x,y eR ) (4.5)

with initial valued condition U(x,0) = f(x) € & , %> 0. The operator D, is defined by

d 1 x -
(Dgﬁ L[(-,y))(x) = (xa> [m O/(; (log 2) o U,y du], a€(0,1). (4.6)

Assume that there is a given function K(x) such that, for every x,y > 0,

—U(x,y)

9
‘ 5 < K(x),

where K(x) has a Mellin transform.

By the property of the Mellin transform, the equation can be transformed into a first
order ordinary fuzzy differential equation

(v —1ir)* @M[U(-,y)](v+it) = —%M[U(-,y)](v+it) (s=v+it), (4.7)
which has the solution
MU, )] +it) = Ay +it) © e, (4.8)

where A(v + it) = M[f](v + it).
By using the convolution formula, the solution of the fuzzy differential equation is given
by

Ulx,y) = f “rno G(’f,y) 0% xy>o0, (4.9)
0
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where the function

1 +00 o X
G(x,y) = — / e (VD% Vit gy,
21 J_ o
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