Wen Advances in Difference Equations (2016) 2016:311 ® Advances in Difference Equations
DOI 10.1186/513662-016-1026-9 a SpringerOpen Journal

RESEARCH Open Access

CrossMark
Modulational instability and higher-order
rogue wave solutions for an integrable
generalization of the nonlinear Schrodinger
equation in monomode optical fibers
Xiao-Yong Wen"
“Correspondence:
xiaoyongwen@163.com Abstract
?ffjg@f:;g;&ag;iee:?gycgémng We consider the integrable generalization of the nonlinear Schrédinger equation that
Information Science and arises as a model for nonlinear pulse propagation in monomode optical fibers. The
Technology University, Beijing, existent conditions for its modulational instability to form the rogue waves is given
100192, China ! . .
Institute of Systems Science, AMSS, from its plane-wave solutions. We propose a generalized (n, N — n)-fold Darboux
Chinese Academy of Sciences, transformation for this system by using the Nth-order Darboux matrix, Taylor

Bejjing, 100190, China expansion, and a limit procedure. As an application, we use the generalized

perturbation (1,N - 1)-fold Darboux transformation to generate higher-order rogue
wave solutions of this system. The dynamics behavior of the first-, second-, and
third-order rouge wave solutions are shown graphically. These results may be useful
for understanding some physical phenomena in optical fibers.

Keywords: an integrable generalization of the nonlinear Schrédinger equation;
modulational instability; generalized (n, N — n)-fold Darboux transformation (DT);
symbolic computation

1 Introduction

Recently, rogue waves (RWs) have attracted more and more theoretical and experimental
attention [1]. The RWs were first observed in deep oceans, and later these studies gradu-
ally extended to other fields, such as fiber optics, Bose-Einstein condensates, and capillary
waves [2-5]. In fact, RWs are taken as a new type of explicit rational solutions of nonlin-
ear wave equations. The nonlinear Schrodinger equation is one of the most fundamental
modes admitting RWs [2]. Until now, many nonlinear Schrédinger-type equations have
been reported to have rogue wave solutions [6—-11]. In [6], multirogue wave solutions of a
Schrédinger equation with higher-order terms employing the generalized DT and some
related properties of the nonautonomous rogue waves are investigated analytically. Based
on the similarity transformation, several families of nonautonomous wave solutions have
been studied for the generalized coupled cubic-quintic nonlinear Schrodinger equation
with group-velocity dispersion, fiber gain-or-loss, and nonlinearity coefficient functions,
which describes the evolution of a slowly varying wave packet envelope in the inhomo-
geneous optical fiber [7]. The Nth-order rogue wave solutions have been obtained for a
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higher-order variable coefficients nonlinear Schrédinger equation, which plays an impor-
tant role in the control of the ultrashort optical pulse propagation in nonlinear optical
systems [8]. Based on the Nth-iterated generalized DT formula, the vector bright soliton
solution and vector rogue wave solution have been systematically derived for the coher-
ently coupled nonlinear Schrodinger system [9]. In [10, 11], the authors have presented
some soliton, breather, and rogue wave solutions for the (2 + 1)-dimensional derivative
nonlinear Schrédinger equation and (2 + 1)-dimensional nonlinear Schrédinger equation
via the Nth-order generalized Darboux transformation. In the present paper, based on
our proposed generalized (1, N — n)-fold DT method by using the Taylor expansion of the
Darboux matrix [4, 5], which is different from the iterated generalized DT in [2, 3, 6-11],
we will investigate the following integrable generalization of the nonlinear Schrédinger
equation (gNLS) [12-14]:

Uy + aBu — 2iaPuy — Qttyy — i1, = 0, (1)

where u = u(x, t) is the slowly varying complex envelope of the wave, « and B are real
constants, and i is the imaginary number unit (i = —1). Equation (1) may model nonlinear
pulse propagation in monomode optical fibers. In [12], an N-fold DT is constructed for Eq.
(1), one- and two-soliton solutions are obtained from the trivial solution, and two classes
of new explicit solutions are given explicitly from a plane wave solution as the seeding
solution. For some relevant research results on Eq. (1), we refer the reader to [12-14] and
references therein. However, Eq. (1) is different from other NLS equation and its gener-
alization forms [2, 3, 6-11, 15-18] owing to the term u,,; to the best of our knowledge,
the modulational instability, generalized (1, N — n)-fold DT, and higher-order rogue wave
solutions for Eq. (1) have not been studied yet.

So, in this paper, we make further investigation on Eq. (1) via our proposed generalized
(n,N — n)-fold DT technique [4, 5]. The rest of the paper is as follows. In Section 2, the
modulational instability of Eq. (1) is investigated. In Section 3, based on the DT in [12],
we give a brief introduction to the N-fold DT of Eq. (1). In Section 4, we construct the
generalized (1, N — n)-fold DT of Eq. (1). In Section 5, based on the generalized (1, N —1)-
fold DT, we give some higher-order rogue wave solutions, and the dynamics behavior of

those solutions are shown by some figures. Finally, we address the conclusions in Section 6.

2 Modulational instability of plane wave states
Before we study higher-order RW solutions of Eq. (1), we investigate the modulational
instability of Eq. (1). We start with its plane wave solution in the form

otﬁz

U= Cei[ax+(om+2aﬁ+ozﬁ252+ =)t , (2)

where cis areal amplitude, and a is a real wave number. Substituting the perturbation solu-

. o, 2
tion u(x, t) = [c + eU(x, t)]ellar+(@a+2ep B+ ) nto Eq. (1) yields the linearized equation
(only considering the linear term of ¢)

Uy, +apU + il + iap* Uy — ialy, + af* U — ally, = 0. 3)
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Figure 1 Gain spectra of modulation instability for the
different parameter values ¢ = 0.5;0.75; 1; 1.5; 2. (Color online.)
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We consider the solution to Eq. (3) with the wave number k and frequency w in the form
U = F cos(kx — wt) + iG sin(kx — wt), (4)

where F and G are real amplitudes. Substituting (4) into (3) yields the following dispersion
relation for the perturbations, obtained as the condition for the existence of nontrivial
solutions for F and G (i.e., FG #0):

ak(ak® - a® + a2 + aB? £ B2Va'ct + 2a3c + k2)
w= .
a(a? — k?)

(5)

When a*c* +2a3c? + k* < 0, the frequency w becomes complex, and the disturbance grows
with time exponentially. In the following, we consider the gain spectrum of modulational
instability. The power gain is obtained from (5) by

lakB? |V —act — 2a3c? — k2
la(a® - k2)| '

g(k) =Im(w) = (6)
where g(k) stands for the gain with a*c* + 2a3¢c? + k* < 0. In what follows, we assume that
a=f=1landa= —Ciz and choose different values of the parameter ¢, showing the gain
spectra at five power levels in Figure 1.

3 The N-fold DT for Eq. (1)
In this part, we give a brief introduction of the N-fold DT for Eq. (1). According to [12],
the Lax pair for Eq. (1) is as follows:

-1 Uy
-y =

ox=Up, = ( ,j; ,/\1)% @)
-z

LoB?|ul® - in? Sy + Laf’u
_ 2 ATX T D @ (8)

0e=Vou= ; : ,
(—%u*x +2ap’u* —Laf?|ul® +ip?

where * represents the complex conjugation, ¢ = (¢, )T (the superscript T denotes the
vector transpose) is the vector eigenfunction, A is the spectral parameter, and u = /& (% -
% B). Here, to construct RW solutions for Eq. (1), it is worth pointing out that we have
changed the spectral parameter of Lax pair from A to % in [12]. The compatibility condition
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U, -V, + UV — VU = 0 between Egs. (7) and (8) gives rise to Eq. (1). In the following,
we proceed by establishing the N-fold DT of Eq. (1). For this reason, we introduce the

transformation
(Z) = T(ﬂy (9)
where ¢ is required to satisfy Egs. (7) and (8) with U and V replaced by I and V, that is,

g=Up,  U=(T,+TU)T, (10)

G:=Vy, V=(T,+TV)T. (11)
Hereby, we assume that theNth-order Darboux matrix 7 is of the form

2N N-1 4(2))42) N-1 p(2j+1) 4 2j+1
T:(A B>:<A t 2 ATAT 3y BYTAT ) (12)

C D _ Z?:[El B@+D* 2+l j2N Zj\ial A@)*) 2

with the complex functions A% and B¥*V (j = 0,1,2,...,N — 1) solving the linear system
TOW)P0) =0 (k=1,2,...,N), that is,

N-1 N-1
()LZN + ZA(Zj))”Zj)(p + (ZB(ZHI))LZ/’H) V=0,
j=0

j=0
(13)

N-1 N-1
(_ ZB(zj+1)*)‘2j+l>¢ + (A2N + ZA(ZJ')*)\W) ¥ =0,
j=0

Jj=0

where @(Ar) = (@(Ax), ¥ (A))T = (¢, Y¥) is a basic solution of Egs. (7) and (8) for the given
spectral parameter A, and seed solution . Of course, it should be noted that the Darboux
matrix (12) here is a little different from that in [12], owing to the variation of the spectral
parameter A in Lax pair. The 2N nonzero variables A% and B%*" can be determined by
2N equations in (13) when the spectral parameters Ay are suitably chosen.

According to the steps in [12], the usual N-fold Darboux transformation of Eq. (1) is
given by

ﬁN—l =u+ B(ZN_I), (14)

@N-1)
where BPN-D(x, t) = e with
2(N g, W2V g Ny, HIN=3y o a
2(N-1 ! _ —
AZ( )¢2 2N, gy Ny, ANy, e A
Ag | Ve g e gy A ZN-lw MYy e
- 2(N-1) ! _ )
R T S S B e ST S )¢
2N1 _ * % *(2N-1 - * * 4k
* .')02 )"Z*Z(N 2) ,¢,2 . 3 _)“2( )¢2 _)‘;(ZN 3)¢2 . _}“2¢2
2AN-1)_, « 9) 1w " ON-1 2N-3) . %
ST P S e e e e
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and AB®N-V is given by the determinant Ay by replacing its (N + 1)th column by the
column vector (~=AN ¢y, —A3N s, ..., —2N py, —)\.1 2N)1//1 , —)\2 1//5, e —)\}k\,(ZN) Uit

For the proof of the form invariance for u , Vand U , V, we refer to [12, 19, 20] and ref-
erences therein, where the proof process is similar. The aim of this paper is to construct
the generalized (1, N — n)-fold DT and higher-order rogue wave solutions in terms of de-
terminants. Hereby, the proof is omitted for simplicity. Transformations (9) and (14) are
called an N-DT of Eq. (1). By applying the N-fold DT, higher-order soliton solutions (or
higher-order breather solutions) for Eq. (1) are obtained by choosing the constant seed

solution (or plane wave solutions) [12].

4 Generalized (n, N - n)-fold DT for Eq. (1)
For the N-fold DT with N distinct spectral parameters, we can derive a 2N-soliton solu-
tion in terms of the determinant representation. However, for the generalized (n, N — n)-
fold DT for Eq. (1), the main difference is that we can adjust the number of the spectral
parameter: the least may be 1, and the most may be N. Here, we consider the case with n
distinct spectral parameters A; (i =1,2,...,1),1 <n <N.

Here we still consider the Darboux matrix (12), but with # spectral parameters A; (i =
1,2,...,n),1 <n <N, and not with N (N > 1) distinct spectral parameters, in which the
condition T'(A;)¢(%;) = 0 leads to the linear algebraic system with only 2# equations

N-1 N-1
[A?N + ZA%?L(M + > BT () =0
j=0 J=0

(15)

N-1
|: 2N)+ZA %)y 2}:|l/f ) - ZB2j+1 *(2j+1) *(A) =0
j=0

j=0

where ¢(X;) = (p(1;), ¥ (1,))T is a solution of the linear spectral problem (7) and (8) with
one spectral parameter A = A; and the initial solution u( of Eq. (1). When #n < N, we only
have 27 above-given algebraic constraints (15) for 2N unknown functions A% and B%*V
(j=0,1,...,N —1). This means that the number of the unknown variables A% and B%*!
is greater than that of equations, so that we have some free functions. To determine these
2N unknown functions A%’ and B%*V, we need to find additional 2(N — #) equations
for 2N functions A% and B%*V so that we would have 2N equations for 2N functions
A and B#*), Determining these 2N functions A% and B%*Y, we then can obtain ‘new’
solutions of Eq. (1) in terms of DT.

To generate ‘new’ additional 2(N — n) equations from T(1;)¢();) = 0, we consider the
Taylor expansion of T'(A; + €)p(X; + €) (i =1,2,...,n) at ¢ = 0. We know that

(p()hl‘ +e)= (p(o)(ki) + (p(l)()ui)é‘ + (p(z)(ki)gz +oen, (16)
where ¢®(%;) = Fakk‘ﬂ()») = (Fa}\kgb()\ ),%%W(M))T with @) = o) = (p(1),
()" (k=0,1,2,...), and

N

TOu+¢e)=T(M) + Z T®O)ex. (17)
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Thus, we have

+00  k

TOi+e)pi+e) =Y Y TO)e"(1)ek, (18)

k=0 j=0

(

where goik)()»i) = %%%‘()‘)Uﬂw and ¢ is a small parameter.
It follows from Eq.l (18) and

. Ti+e)p+¢)
£—0 eki

19)
fori=1,2,...,n and k; = 0,1,...,m; that we obtain the linear algebraic system with 2N

equations (N =n+Y \ m;i=12,...,n):

TOM0)e® (1) = 0,

TOM)P" (M) + T (1) () = 0,

vey

m;
Z TOA)e™ (1) = 0,
=0

in which we have some first systems for every index i, that is, T (1,)9 @ (A;) = T(A)p(A;) =
0 are just ones in system (13), but they are different if there exist at least one index m; # 0.
Here the number m; (m; = 0,1,2,...) is the highest order perturbation derivatives corre-
sponding to A; (i = 1,2,...,n), where the nonnegative integers », m; are required to satisfy
N=n+) 1, m;and N is the same as in the Darboux matrix T (12).

Therefore, we have obtained system (20) containing 2N algebraic equations with 2N
unknowns functions A% and B&*D (=0,1,...,N —1). When the eigenvalue A; is suit-
ably chosen so that the determinant of the coefficients for system (20) is nonzero, the
transformation matrix 7 is uniquely determined by system (20). It can be shown that the
above N-fold DT still holds for the Darboux matrix (12) with A®), B¥*D (j = 0,1,...,N-1)
determined by system (20). Owing to new distinct functions A%, B¥*V obtained in the
Nth-order Darboux matrix T, we can derive the ‘new’ DT with the # eigenvalues A = 1.
We call Egs. (9) and (14) associated with new functions A%, B+ determined by system
(20) a generalized (1, N — n)-fold DT. So we have the following theorem for the generalized
(n,N — n)-fold DT of Eq. (1).

Theorem 1 The spectral problem (7)-(8) is covariant with respect to the transformations
(9), and

iy = u+BND, (21)
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with BeN-1 = % defined by solving the linear algebraic system (20) in terms of the
Cramer rule, where Aé(") det([AW - - ADTY wigh

AD
r )\v2N—2¢(0) )\v2N—4¢(0) .. ¢(0) AN 11//(0 A2 31//(0) .. )M//(O)
i i i i i i LY
(@ (@) o) (@) (@) ]
Azl,l Azl,z U ¢i Azl,Nu Azl,Nu o A21,2[\1
(@) (1) (m;) (@) @ (i)
_ Am +1,1 Am +1,2 R Ami+l,N+1 Am,»u,mz T Ami+1,2N (22)
= )L*(ZN 2)]//(0 A*(zN 4)]//(0 l/j‘(o)* A* (2N- 1)¢(0)* A* (2N~ 3)¢§0)* —)S“(P!O)*
@) (@) m* (@ (@) (@)
Ar;i+3,1 Ay;i+3,2 e AI:I[+3 N+1 AI:I[+3 N+2 e Ai’i’li+3,21\/
(@) (@) (m, (@) (@) (0]
L Az(miu),l Az(miu),z R AZ(mi+l),N+l AZ(ml'+l),N+2 o AZ(m,wl),ZN_

and A (1 <j<2(m;+1),1<s<Ni=12,...,n) given by the following formulae:

Yo Chnaghi N2kl forl<j<m+1,
1<s=N,
21/:0 C§N723+1)”i4N_25+1_kWi(j_l_k) Jorl<j<m;+1,
A;’E: N N+1<s<2N, (23)
’ * C2N 95t *(2N-2s- k)lﬂ(] N1R form; +2 <j<2(m;+1),
1<s<N,
SN kTN g N 0 << 2(my + 1),
N +1<s<2N,

and ABNY is formed from the determinant A" by replacing its (N + 1)th column by
the column vector (bW - - - BN T with pW) = (b](»i))z(mﬁl)xl and

o — Y Chir 2N"‘¢(’717k) forl<j<m+1,

= (24)
j N+1) ~N-1-k)*
Z}(+ 2Nkw(1

form; +2 <j<2(m;+1).

Notice that when n = N (i.e., m; = 0,1 <i < N), Theorem 1 reduces to the N-fold DT;
when # =1 and m; = N — 1, Theorem 1 reduces to the (1, N — 1)-fold DT. Here, we remark
that system (20) in the generalized (1, N — n)-fold DT is very important; its role is similar
to that of Egs. (13) of the N-fold DT; both of them can determine the 2N unknown func-
tions A%, B¥*V (0 < j < N —1), but they are different from each other: Eqgs. (13) have 2N
spectral parameters, whereas system (20) only has 2# spectral parameters. Owing to dif-
ferent A%, B%*D (0 < j < N —1), the former can lead to the N-soliton solutions, whereas
the latter may generate higher-order rogue wave solutions. In the following, we will use
the generalized perturbation (1, N —1)-fold Darboux transformation to investigate higher-
order rogue wave solutions of the gNLS equation (1) from the initial plane wave solution.

5 Higher-order RWs of Eq. (1)
In this section, we give some rogue wave solutions in terms of determinants of Eq. (1) using
the generalized (1, N —1)-fold DT in Theorem 1 with # = 1. Starting from the seed solution
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o «Q, 2
U = ce’[”"+(aa+2aﬁ+aﬁzc2+%)t] of Eq. (1), we can give a basic solution of Lax pair (7) and (8)

as follows:

i ( (Cre™ + Cyet)eB ) (25)

(=Cret + Cred)e B

with

’

C = \/(2 +22a) + Va2 + 4 + 422a + 4a>32 A2
te 2ach

’

C —(2+22a) + Va2 + 4 + 422a + 4a>32A\?
27 2ach

, 2
B= %[ax+ <aa+a,32c2 +2aB + ﬁ)t],
a

_iVat + 4 +42%a + 4a’)2 2 (2ax + (2aa + af*A)t + O(e))
- 422a

)

N

O(e) = Y _(by + dii)e™,
k=1

where ¢ is a small parameter, and by, dy (k =1,2,...,N) are real free parameters that can

control different rogue wave structures.

_ \/—211(1+ac2+ 2ac?+a%ct)
a

Next, we fix A; = and set A = A; + &2 in (25). Then we expand the

vector function ¢ in (25) as Taylor series at ¢ = 0. Because the expansion expression of

@(£?) is too complicated, in the following discussions, we may set a = —C% to simplify our

calculation process at the same time, that is, A; = ¢(1 + i). Therefore, we obtain

(p(82) =90 1+ 9We2 4 @t 1 @b 4 .. (26)

© _ ¢(0) B e%(fx—at+2a/3t) V2
= w(O) - _ie—é(—x—atﬂaﬁt)ﬁ ’
(1) (2) (3)
o = ¢ o = ¢ O ¢
1//(1) ’ 1p(Z) ’ 1p(3) ’ o

and ¢ = (¢, T (i =1,2,3) are listed in the Appendix.
In the following, we discuss the higher-order rogue wave solutions of the four cases with

(27)

N =1,2,3,4 for Eq. (1). It is particularly worth pointing out that we only derive the trivial
solution for the case N =1, which is omitted here. Relevant structure figures for other
three cases N = 2,3, 4 are shown in Figures 2-4.

(I) When N =2, solving the linear algebraic system (20) leads to

AB®)
A

B® (28)
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—8—6—4—20x1468 -

Figure 2 First-order rogue wave solution (30) with different parameters. (a1)-(a2) c=1,a=1,8
(b1)-(b2)c=4,a=1,=1;(c1)(c2)c=1,a=-1,=1,d1)-(d2) c=1, =4, B =1;(e1)-(e2) c=1,
B =4.(Color online)

1;
=1,

(a1) (b1) (c1) (a1 (e1)

20 10,0 10 20 20 -1 00 10020 20100 10 20 30

-20 -10 xO 10 20 30
Figure 3 Second-order rogue wave solution i, with c =& = 8 = 1 given by Eq. (32) at different values
of by, dq.(a1)-(a2) by =d; =0; (b1)-(b2) b7 = 1,000, d; =0; (c1)-(c2) by =-1,000, dy = 0; (d1)-(d2) by =0,

dy = 1,000; (e1)-(e2) by = dy = 1,000. (Color online.)

with
A2¢© $© PRAVIC Y@
2200 + 229 o 23D 4 32240 pRVACIRVIC)
A= A2y O AUN A3 —a*p0*
A2 Lo OF g T 3T _33x2500F g _ (@)
and
A2¢© #© —)4p© ¥
AR - 2200 4 239O oW “22pM — 4234 pRVACIRVAC)
- AF2y O AN )y O —W*pO*

A2 DT L oary @OF g OF by 0 g3, 0% 3T _ (O
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(c1) (a1) (e)

10 20 -10 0_10 20 30 220 - -10 -5,0 5 10 15 -15-10 -5 0 § 10 18
x X X

Figure 4 Third-order rogue wave solution i3 with c =« =1, 8 = 2 given by Eq. (33) at different values
of bj, dj (i=1,2).(a1)-(a2) by =d; = b, =d» =0; (b1)-(b2) by = 1,000, di = by = d> =0; (c1)-(c2) b, = 10,000,
b] = d1 = dz =0; (d1)-(d2) b1 =90, bz =-1,080, d1 = dz =0; (e1)-(e2) b1 =-140, b2 = 2,300, d1 = dz =0. (CO\OI’
online.)

Based on the generalized perturbation (1,1)-fold DT, we can obtain the first-order rogue
wave solution with three free constant parameters «, 8, ¢ of Eq. (1):

i = u +B(3) _ Cei[ax+(oza+2aﬁ+o¢;32c2+#)t] +B(3), (29)
and the analytical expression of solution (29) with a = —ciz is
4c* + 8icat + 8ic*x

u=c{l+
! ( —202£2 — 2022848 — ¢t — 22 + 2icSat B2 — 2iccx — dxort — 2ic2at)

i(—x—at+2aﬂcz t)

X e 2 . (30)

By a simple calculation it is easy to find that the RW i reaches the amplitude 3|c| at

(%, t) = (0,0), the two holes locate on (x,t) = (£ ‘/—1(()”’:2’1 2;+3 , :FIOa/SZ 2) the width (the dis-

. . 3(9+a2c8B4+6a2ct B2+9a2 ~
tance of its two holes) is VET «/_ﬂlal o £ ), its minimum value is zero, and ##; — 3|c|

as |x| — oo. From the previous analysis we see that the parameters «, 8, ¢ can change
the width and direction of the RW, the parameter ¢ determines the amplitude of RW, so
we can control rogue waves by changing parameters «, 8, c. Next, we discuss the RW i
by choosing different parameters «, B, ¢; the related RW structure figures are displayed
in Figure 2. From Figure 2, and regardless of choosing «, 8, ¢, the solution #; always has
the maximum amplitude at (x,£) = (0,0), the minimum amplitude is always zero, and the
maximum amplitude depends on the parameter ¢, so we can see that the maximum am-
plitude is 12 when ¢ = 4 (see Figure 2(bl)), and the maximum amplitude is 3 when ¢ =1
(see Figure 2(al), (cl) (dl), (el)). When ¢ =1, « =1, 8 =1, the minimum amplitude is zero
at(x,t) = (£ 2‘/_, F° ) and the width of the RW is v/15 ~ 3.8730 (see Figure 2(al)-(a2));
When ¢ =4, « =1, 8 =1, the minimum amplitude is zero at (x,t) = (£ 25196‘(, :|:31‘é; ), and
the width of the RW is \/W ~12.5396 (see Figure 2(b1)-(b2)); Whenc =1, = -1, 8 =1,
the minimum amphtude is zero at (x,t) = (+ z‘é—, :|:310 ), and the width is +/15 ~ 3.8730
(see Figure 2(c1)-(c2)). When ¢ =1, o = 4 B =1, the minimum amplitude is zero at
(x,8) = (£ 2*/—, F 3;/0_) and the width is ¥ ~ 3.1524 (see Figure 2(d1)-(d2)); When ¢ =1,




Wen Advances in Difference Equations (2016) 2016:311 Page 11 of 17

=1, B = 4, the minimum amplitude is zero at (x,¢) = (:i:lglg/(j, T ) and the width is
‘/ﬁ A2 0.9312 (see Figure 2(el)-(e2)). In addition, it is easy to observe the effect of the
parameters a, B, c on the RW structure by comparing their values in Figure 2.

(II) When N = 3, solving the linear algebraic system (13) leads to

AB®
BO - 31)
A
with
)L4¢(0) )L2¢(0) d,(O) )LSw(O) )\31//(0) 1//(0)
ASY Ajp» oW AVY Ays RVACERVAY
A Az Asp s Aszy Ass Ay @ 4y
- )\'*4,(#(0)* A*Zw(o)* 1//'(0)* _)\’*5¢(0)* _)\*3(1)(0)* _)L*¢(0)* ’
* * *
Asy As» VAS A Ass 2" — ¢©
Ag,1 AVS) Y@ AV Ags A" _ g
)\4¢(0) )»245(0) ¢(0) —)»6(15(0) A3 W(O) ¢(0)
Do By ¥ -15¢% ~ 6336 Dos MW ay©
G)_| Qs Asp ¢ a8 - 61591 —152%9 (@) Ass ap® oy ®
ABY = A*4w(0)* )»*21#(0)* ¢(0)* _A*6¢(0)* _)L*3¢,(0)* —A*¢<0)* ’
Asi o Asy YW —AOy )" — 6220y 0" Bss =W —pO”
Ae, Aep 1/f(2)* —A*GI//(Z)* _ 6)L*51//(1)* _ 151*4¢(0)* Ass —A*qb(z)* _ ¢(1)*

where Ayy = A%W + 41300, Ayy = 2200 + 220, Ayy = A0y D + 524 O, Ays =
BP0 432200 Azy = 1@ + 4a3eW + 61200, Azy = 2290 1+ 220W + ¢, Az, =
Y@ 4524 M 1023y O, Ags = 23y @ 4322y 0 4 3w O A5y = ,\*‘Hp(l)* + 4,\*31p<0>*,
Asy = M2 L oaspOF ALy = a5pM* _5pxdp0)%) l*3¢> —30260% Ay, =
me(z)* + 4“31//(1)* + 6)L*2¢ , Agn = }\*ZW @* 4 2A*w(l + W , Aoa = —A*5¢(2)*
5 pM* Z104520%, Ags = —A*3pD" _33:2p0% _ 33540,

Based on the generalized perturbation (1,2)-fold DT, we can derive the second-order

RW solution with four arbitrary constant parameters «, 8, ¢, b1, dy of Eq. (1):
iy = U +B® = cei[ux+(oza+2a;3+aﬂ2 e aﬁ 1, g®) (32)

the analytical expression of solution (32) with a = —}2 is too complicated and therefore is
omitted here. Next, we discuss some special structures of the second-order RW for the
following two cases:
« For solution i, with parameters c=a = 8 =1 and b; = d; = 0, we see that iz, — 1 as
x — 00 and ¢ — oo and that the second-order RW generates the strong interaction
and crowd around the origin; the corresponding wave profiles are shown in
Figure 3(al)-(a2).
« For solution 7, with parametersc=«a =8 =1,d; =0, and b; #0 (e.g,, b; =1,000) or
c=a=p=1,b=0,and d; #0 (e.g, d; =1,000), we see that 7z — 1 as x — 0o and
t — oo, the second-order RW generates a weak interaction, and, at the same time, it is
split into three first-order RWs with a triangle array structure (see Figure 3(b1)-(b2),
(d1)-(d2)), and the triangle structure becomes larger as |b;| or |d;| increases. When
by =-1,000 or d; = -1,000, the triangle structure rotates 180 degrees with respect to
the origin (see Figure 3(cl1)-(c2)). When parameters c=« = 8 =1and b1d; 70 (e.g,
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b1 =1,000, d; =1,000), the second-order RW is also split into three first-order RWs
with a triangle array structure (see Figure 3(el)-(e2)), and comparing Figure 3(el)-(e2)
with Figure 3(b1)-(b2), (d1)-(d2), we see that the triangle structure also rotates.

(III) When N = 4, based on the generalized perturbation (1,3)-fold DT, we can derive

the third-order RW solution with seven arbitrary constant parameters «, 8, ¢, by, dy, by, da:

i3 = o + B7) = Cei[ax+(aa+2a,s+aﬁ2c2+@)t] +B7, (33)
where the determinant form of B”) is omitted here. The analytical expression of i3 with
a= —Ciz is very complicated and therefore is omitted here. Next, we discuss some special
structures of the third-order RW for the following four cases:

« For solution #3 with parametersc=a =1, 8 =2, by =d; = b, =d; = 0, we see that
iy — lasx — oo and t — oo and that the third-order RW generates a strong
interaction and crowd round the origin; the corresponding wave profiles are shown in
Figure 4(al)-(a2).

« For solution #3 with parametersc=a =1, 8=2,d1=by=d>=0,b, #0 (e.g,
b1 =1,000)orc=a=8=1,b=by=dy =0, d; #0 (see Figure 4(b1)-(b2)), we see that
i3 — 1 as x — oo and t — o0, the third-order RW generates a weak interaction, and,
at the same time, it is split into six first-order RWs with a regular triangle array
structure, and the triangle structure becomes larger as |b| or |d;| increases.

« For solution %3 with parametersc=a =1, 8=2,b;=d1=d>,=0,b, #0 (e.g,
by =10,000) orc=a=8=1,by=d; =by =0, dy #0 (see Figure 4(cl)-(c2)), we see
that z13 — 1 as x — oo and ¢t — oo, the third-order RW generate the weak interaction,
and, at the same time, the third-order RW is split into six first-order RWs with a
regular pentagon array structure, and the pentagon structure becomes larger as |b,| or
|dy| increases.

« For solution #3 with parameters c=« = 8 =1and b1b, #0,dy =d, =0 or bid, # 0,
di=by=0o0rdby, #0,b; =dy =0 or did, #0, by = by =0, solution %13 — 1 as x — oo
and t — o0, the third-order RW may be split into six first-order RWs (or one
second-order RW and three first-order RWs or two second-order RWs) with a static
irregular array structure. Whenc=wo =1, =2, b; =90, by =-1,080,d; =d> = 0 or
c=a=1,8=2,b =-140, by = 2,300, d; = d, = 0, the third-order RW with weak
interaction has an irregular structure; the corresponding wave profiles are shown in
Figure 4(d1)-(d2), (el)-(e2). However, it is obvious that the influences for two sets of
parameters are different through comparing Figure 4(d1)-(d2) with Figure 4(el)-(e2);
different parameters can change the space arrangement of the third-order RW.

With the aid of symbolic computation Maple, solutions (30), (32) and (33) have been

verified by substituting them into Eq. (1).

6 Conclusions

Equation (1) can model nonlinear pulse propagation in monomode optical fibers. In this
paper, we have constructed the perturbation (n; N — n)-fold DT for Eq. (1). As an applica-
tion, the generalized perturbation (1, N — 1)-fold DT method with the same one spectral
parameter allows us to calculate the higher-order RWs in terms of determinants for Eq. (1)
in a unified way without complicated iteration procedure. Specifically, the first-, second-,
and third-order RW structures are shown graphically: Figure 2 shows the first-order RW
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structures with N = 2; Figure 3 exhibits the second-order RW interaction structures with
N = 3; Figure 4 exhibits the third-order RW interaction structures with N = 4. Solutions
and figures obtained in this paper might be helpful for understanding physical phenomena
in optical fibers described by Eq. (1). We hope that our results are useful for understanding
the generation mechanism and finding possible application of RWs. We believe that the

method in this paper can be generalized to seek for some other types of nonlinear wave

models, and we will carry out a further investigation in the future.

Appendix

d)(l) _

1

—gei(”"m*2‘“ﬂ)«/§(—2it2a2 —4ta +26%% + 227 + 1+ + 4t

— dixto — dixtap? + ditaf? — 26202 Bt — dx + 2i0 412
- 4it?a® B — dxtap® — 4o’ B2L7 - 2ix),

i i
g¢ T2 (2 4 dx - it 4 1 4

— dixta + 4ta + 2620 — ditaf? — dxtap? — 4o’ B2t
— dixtap® + 2ic® B*E* + dwta — 4it*o” B - 2ix” - 2670° BY),
1

———er(xtev2eh) /5 (12 + 48£%0 B% + 60x — 24wt + 8it>® B° + 830

192
+36itaf? - 24630 8% + 86303 B0 + 244t + 24xt?a? — 248303 B* + 48D,
—48ixt3a® B* + 240ixta — 24xt>a® Bt — 24x%tap? — 48xt*a® B2 + 12ap%t
+ 60t — 124> — 1220 + 48xtaf® + 48taf’b, — 48taf’d) + 48x° 1> B2
+48x30> B2 — 16133 BOx + 16x°taf? — 48b1x — 48xd; — 48taby — 48tad,
+128202 8% + 1664t B2 — 168 a* B° +120ix? — 24ix*ta® B* + 48itap’d;
— 48ixt’a* B2 — 24ix’tap? — 24it* ot B* + 24it* o B? - 24ixt*a® + 843
— 24ix*ta + 48id; + 48itaf’by + 4ix* + 24ix*t*a® + 48itab, + 24ixtap’
+ 24ixt>a® B + 24it3 > B* - 8ix® + 15i — 84ix + 72it>a® B — 48itad,
—24it3a3 B + 16ix>tor + 4it* ot B8 + 120it%a® + 48ibyx + 4it*o*
— 84ita — 8it’a® — 48ixd; + 16it° o’ x),

i i

@e-f“x‘m”mﬂk/i(Az + 48120 B2 — 60x — 24xta — 830> + 24130 B2

— 88303 8% — 24xtar — 24xt’a® + 241303 Bt — 48D, — 36itap? + 16it3a’x

+24xt’0’ B + 245 tap? + 48xt2 0 B — 124t — 60t — 1247 — 12120

+48xtaB? + 48tap?by — 48tafld; + 48x 2 B2 + 48xt30> B2 — 16833 BOx

+16x°tap? — 48b1x — 48xd; — 48tab; — 48tad; + 1262 B* + 16t4a* B2
—16t*a*BC — 24ixt>a® B* + 24ix’ta + 48itaf’b, — 48itad, + 48itab,

+24it3a® B2 - 24ix’ B4 + 120it%a® + 48ibyx — 24it3a® B* + 240ixta
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+48ixt?a® B2 + 72it*a® Bt + 120ix? — 48ixt3a> Bt + 24it* o’ B? + 16ix’ta
+8ix® — 8x% — 8it3a® B + 48itap?d, + 84ix — 48id, + 24ixt> o’

+15i + 24ix’tap? + 4it*a* B + 84ite — 24it e B + 24ix* 2o + dixt
+4it*o® — 48ixd; + 8it’a® + 24ixtaf?),

1
23,040

+8t°a® B2 — 48t°a® B2 + 48ir°a® — 8,100%0* B2 - 6,840x% 20 + 2,880x

o3 (wtas2tef) \/3(_405 — 1,4405°d; — 1,440b,%> — 5,760ixd,

—120t°a® B® — 1,44.0ib? + 1,440id? + 3,840ix> — 8ix°® —17,010ix* — 1,260ix*
+5,760idy + 48ix° — 1,440itaf>b, — 5,760taby — 4,560xt3 0 + 5,760ibyx
—120t*a*x? + 1,080t ot B* + 48it°a® B10x — 2,880ixt>a by — 25,380xtx
—17,010it*® - 1,440ix*d; + 240£3a® — 2,880ixd,; tor + 1,440it> o> B*d;
+2,880i30 Brby — 2,880itady B + 2,880it>a® BAb1x — 2,880ix*tarh,
—2,880ix’taB2d; — 5,760ixd; t*a* B2 — 720ix* taf? — 1,44 0ixt> o B2
+2,880id, b, — 480it*a* 804 + 480ix*t*a* B2 + 240it°a® B2x + 240ix* 2> B2
+1,200it3a® B0x — 120it e B8x* + 480ixt°a® B* + 720ix*t*a* B*

+480ix> 30> B* + 48ix°taB? + 5,220ixta B + 7,920ixt> > B2 + 7,920ix* 2 o* B>
+2,640ix3tap? + 120ix* 2o B* — 240it°a® B8x — 480ix> 2o p*

+240it*a* B8x — 14,400ib1x — 1,440ixt o* B* — 1,440ix* 3o B* — 4,560x3 tar
+2,880ibxtaf? + 2,880it’a’b B2 + 57603 B2 + 1,92030% B° + 72042 tar
+720xt% 0 — 720830 B* +13,140ix — 3,600b, — 5,040d; + 5,760b,
—5,760tad, — 960ix>b; — 160it3 > B%x> — 8it°a® + 1,800ix*2a® B*
+1,440ib1x% + 3,840it3a® — 720x2a* B* + 5,760x* taf? + 11,5205t 0> 82
+1,620a8%t + 1,440ixd; + 2,880ta —1,260it*a* — 12,690x% — 12,690¢*c>
—120x*2a® +11,520ix* tor — 8,100xt082 — 2,880t 8% b, + 1,440t d;

- 9,360 t2a* B2 — 9,360xt3 0> B2 + 2,16083° Bx — 7203 a® BOx — 3,12043 tar B
+1,0804%t202 8% - 1,140t a* + 1,440b1x + 14,400xd; — 1,140x* + 780t o* B8
+1,440tab; +14,400tad; + 4,050t B* — 3,120t a* B2 — 720t B°
+240ia® B° - 720it3a® B2 + 240ix* tar + 13,140iter + 11,520ixt> >
—2,880xtaB2d; — 1,440it> 0> d; + 480ix3t2a® + 480it3a3x? + 240i° e B8

- 5,040it3ax — 34,020ixta — 5,040ix°tor + 2,610it%0% B* + 1,440itad,
+660itta* B8 — 7,560ix’ > a® — 1,440 a2, + 240t°a° B2 — 480t°a® B°
+48°a° 10 — 1,4408%0d; + 960x°d; — 5,760byx — 5,760xds + 2,880d,b;

+1,440b7 — 8x° —1,440d} + 5,760t b, — 5,760tafd, + 2,880x tardy
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+2,880xt%ad; — 2,88083a38%d; — 2,880830% 2by + 96083 BOby — 48x°ta 8>
+160£%a°B% —160303x% — 481°a°x — 48t°a® B10 + 96030 d) — 48x°tar
+120t%a°B* — 2,880 ta b, — 5,760xt>a> b, — 2,880xt>c’ *d, — 8t°®
—2408°a° B2x + 4808°0° B0x — 2404 20?82 — 480433 a® B2 + 4804313 B*
—480x°t* a* B + 72047 t1 ot Bt + 480xt°a® Bt + 16083 a® B04% + 480t e B0x?
—120t*a*B8x? — 2406°a® B8x + 1204 20 B* — 48t°a® B0x — 14,400itah,
—960it2a®b; + 3,600ixt30® 8% + 480ix*3a® 8% + 5,220it* > B> — 48ix°tar
+5,760itaby —160it3ax® — 120it* a*x® — 120ix* 2a® — 48it°a®x — 120it°a® g3
+120it%a°B* + 240x* taf? — 2,880xtab; — 2,88082a> B2d; + 8it®a® B2
+1,200it*a*B° + 2,640it* a* 8% - 160it°a® B° + 48it°a® 8% — 480it°a® B*
+240it*a*x + 1,800it*a* B* — 5,76 0itad, + 48it°a® B0 +1,440it*a’b,
+240x° + 2,880i20 82d; + 2,880ixtaf?d; — 1,440it%c® 84 by + 1,44062a b,
- 2,880xtad, + 2,880t%a B2by +1,4408% B4d; + 9604320 B2

+ 1,440x% 2’ B2 + 960xt* a* B2 — 48083 % B0x* — 960t *a* BOx — 3,600id,
—2,880itap?d; + 5,760itaB>b, + 2,880ibyxter — 1,395 + 5,040ib;

+2,880xta by + 960it’a> BOd; — 480it°a” BOx + 5,760itap>d,),

v = 8 o o 3Cxten2e) /3 (2405 + 720it%a’ B2 + 1,4406°d, + 1,440b,2°

+8t°a® B2 — 48t°a® B% - 8,100 B% — 6,840x° > — 2,880x
+480ix’t*a’ B* —120£°a° B® — 1,440ib} - 5,760ixd, t*a* B> — 5,76 0ixd,

- 5,760tab, — 4,560xt3a® + 2,880id,b; — 2,880ixt>a’b, — 120t a*x>

+ 1,080t a* B* — 25,380xta + 7,920ixt3a® B2 + 48it°a”® B10x — 17,010it% 0
—2408a® — 2,880ixtef%d; — 1,260ix* — 4,560xta — 5,760t3 > 82
—1,92083a3 8% — 720x% tar — 720820 + 7208303 B + 5,76 0itarb, + 3,600b,
+5,040d; — 5,760by — 5,760tad, + 5,760ibyx + 1,800ix>2a? f* — 5,040ix> tor
—240it°a® 8% - 160it30> %4> — 2,880itaB%d; — 5,040it3a3x — 1,440itaf>b,
+720xt% 0 B* - 5,760x* taf? — 11,520t B — 1,620t — 2,880t — 8ita®
—12,690x% —12,6902a* — 120x* 20 + 120ix* 2o B* + 240it°a® B2«
—8,100xtaeB? — 2,880t S%by + 1,440t0p2d; — 9,360x% 20 B2 — 9,360x3 > B2
+2,16083a% 4% — 720302 BOx — 3,120x3 tar 8% + 1,0804% 20 ® B* — 1,140t *
+1,440b1x + 14,400xd; — 1,140x* + 780t a* B8 + 1,440tab; + 14,400t d;
+4,05082a2B% — 3,120t a* B2 — 720t a* BC + 2,880xtf%d; — 480it°a® BOx

—160ia’x® +1,440ixt* > B2 — 1,440ib1x* — 48it°a® + 1,440t 0> b,
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—240°a° B2 + 4802 B — 48t°a° B0 + 1,4408%0%d; + 960x3dy — 5,760b,x
—5,760xd, + 2,880d;b; + 1,440b7 — 8x° —1,440d? + 5,760ta b,

- 5,760tafd, + 2,880x*tad, + 2,880xt’a’d; — 2,880t3a® *d,

- 12,8802 8%, + 9601302 BOb; — 48x°taf? + 160t°a° B° — 16013043
—48°0°x — 48t%a° B0 + 96033 d; — 48x°ta + 120£°a® B* — 2,880xta 32y
- 5,760xt>a?B2b; — 2,880xt>a Bd; — 8t°a® — 2401°a® B2x + 480°a® B0x
—1,260it*a* - 240x* B2 — 480x°3a® B2 + 48043’ B* — 480t ot B2
+ 72052t a* Bt + 480x°a® Bt + 1608303 BOx> + 4801t ot 804 — 120t e 842
—2408°a° B8x + 1204 2 ® Bt — 481°a° BL0x + 48ix°taf? + 2,640ix>ta B2
+48it°a® B0 + 480it°a’ B* — 2,880it3 a3 dy B + 1,440ixt a* B* — 48ix°
—120it°a® B8 - 240x* taf? + 2,880xtab; + 2,8808%a* B2d; — 120it* o B8x>

- 480it*a* B°x* +7,920ix* > a® B — 960it3a®b; + 2,880it* > b x — 8ix®
—7,560ix* 20 + 2,640it*a* B2 — 2404 — 48ix°ta + 960it3a® B°d,
+48it°a® 8% +1,440itad; — 14,400ib1x — 14,400itab; + 5,760itaS>d,
+5,220ixtaf? — 2,880ibixtaf? + 1,440ix* o’ B* - 1,4408%02 B b,
+2,880xtad) — 2,880t a?B%b; — 1,440t%® B4d, — 9604320 B2

—1,440x% 8303 B2 — 960xt e B2 + 4803 BOx? + 960t ot BOx + 480ixt°a® B*
—120it*o*x* — 13,140itx + 3,600ixt3 > B* — 2,880ix*tarb; + 8it®w® B2
—5,040ib; — 2,880ix*taf>d; — 160it°a®B® — 5,76 0itad, — 240it3a> B°
—13,140ix + 1,200i3a® BOx — 480ix°>t2a® + 1,440ixd, +1,200it*a* B°

- 34,020ixta — 2,880it>a? B2d; — 1,440it>a®Bd, + 5,760ita by
—2,880xtaf2b; + 480ix> 3 B + 720ix*taf? — 48it°a’x — 11,520ixt o
+240ix* 20 8% — 2,880ibyxta — 3,840it30 — 3,840ix> + 1,440it*a>d;
—5,760id, +120it°a®B* + 2,880ixd; ta + 480ix> 2’ B2 — 2,880it%a* b, 2
—120ix*2a? + 660it*a* B8 — 480it3a®x? + 1,440ix%d; + 2,880it> > b,
+1,440it>a? B*by + 480ix*t*a* B2 — 1,440it*a®b; — 240it°a® B3x — 240it*atx
+720ix*t*o* B* +1,800it*a* B* — 17,010ix* — 1,395 + 1,440id; + 3,600id,
—11,520ix’ta — 960ix°by + 2,610it*a* B* — 240it* o B3

- 240ix*to + 5,220it*a* B7).
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