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1 Introduction
The classical Bernoulli polynomials B, (x), Euler polynomials E,(x), and Genocchi poly-
nomials G,(x) are usually defined by the following generating functions:
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The rational numbers B,,, the integers E,;, and the rational numbers G, given by
1
B, = B,(0), E, = 2n£n(§>; and G, = G,(0)

are called the classical Bernoulli numbers, Euler numbers, and Genocchi numbers, re-

spectively. These polynomials and numbers play important roles in many different areas
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of mathematics, such as number theory, combinatorics, special functions and analysis.
Numerous interesting properties for them can be found in many books and papers (see,
for example, [1-6]).

Some widely investigated analogs of the above classical Bernoulli, Euler and Genocchi
polynomials are the Apostol-Bernoulli polynomials B, (x;A), Apostol-Euler polynomials
Eu(x; 1) and Apostol-Genocchi polynomials G, (x; A), which are usually defined by means
of the following generating functions (see, e.g., [7-9]):
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In particular, B,(1), £,(1), and G, () given by
1
By(A) = B,(0; 1), En(A) = 2”5;1(5;)»), and  G,(%) = G,(0;2)

are called the Apostol-Bernoulli numbers, Apostol-Euler numbers, and Apostol-Genocchi
numbers, respectively. Obviously, B,(x; 1), £,(x; 1), and G, (x; A) reduce, respectively, to
B,(x), E,(x), and G,(x) when A = 1. It is worth mentioning that the Apostol-Bernoulli
polynomials were first introduced by Apostol [10] (see also Srivastava [11] for a system-
atic further study) in order to evaluate the value of the Hurwitz-Lerch zeta function. Since
the publication of the work by Luo and Srivastava [7-9], some interesting properties for
the Apostol-Bernoulli, Euler and Genocchi polynomials have been well explored by many
authors (see, for example, [12-17]).

The present paper is concerned with the sums of the products of an arbitrary num-
ber of the above-mentioned polynomials and numbers. The best known such formula is
Dilcher’s result on the following sums of the products of an arbitrary number of the clas-
sical Bernoulli polynomials (see, for details, [18]):
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cients given by

1
R (L.8)
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s(n, k) are the Stirling numbers of the first kind and

V=X + -+ X

We refer to [19-26] for some extensions of (1.7) in different directions. In the year 2014,
Kim et al. [27] considered and computed the following kind of new sums of the products
of an arbitrary number of the classical Bernoulli and Euler polynomials by making use of
the Euler basis for the vector space of polynomials of bounded degree:
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n
where #, r, and s are positive integers,

> (1.10)

Ir+Js=n

denotes the sum over all non-negative integers iy, ..., i, and ji,...,js such that
i+t +ji++js=n

and a,(r,s) is a rational number determined by

ank(r,s) =y Y (f) C)(—w‘zs-fvmm,i(O)

j=0 i=max(0,r+k—n)

+ Vn—k;r,s(o)' (111)

Motivated and inspired by the work of Kim et al. [27], in this paper, we establish some
new formulas for such a kind of sums of the products of an arbitrary number of the
Apostol-Bernoulli, Euler and Genocchi polynomials by making use of the generating func-
tion methods and summation transform techniques. As applications, some known results
for the classical Bernoulli, Euler, and Genocchi polynomials are shown to be derivable as
special cases of our product formulas.

Our paper is organized as follows. In Section 2, we give several new formulas for the
products of the Apostol-Bernoulli, Euler, and Genocchi polynomials. Various corollaries
and consequences of these main results are also considered in Section 2 itself. Section 3
is devoted to the proofs of the main results.
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2 Statements of the main results

Let r and s be positive integers and let
Alyeeoshr and ..., s

be r + s parameters. For convenience, in the following, we always denote by A a parameter

given by

b= ]_[Ak]_[uk, (21)
k=1 k=1
with

2

Irt]s=n

the same as in (1.10), and by M,, N, and T}, three sequences of polynomials given (for
positive integers a and b) with
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b1

T} = Hukg,km —y+ 15 14s) H G Ok = Vb3 114 (2.4)

k=b+1

respectively. We also write, for subsets R C {1,...,r}and S C {1,...,s}, |R| as the cardinality
of Rand |S| as the cardinality of S,R = {1,...,7}\Rand S = {1,...,s}\ S for positive integers r
and s. In particular, if |R| = a and |S| = b for positive integers a and b, we denote sy, ..., 5,4 €
Randry,...,rep €S.

We now state our results as follows.

Theorem 1 Let r and s be positive integers. Also let s be an even integer. Then, for every

non-negative integer n,

(n+r+s) Y l_[Blk Xk Ak l_[ (VK k)

Ir+Js=n k=1

n+r+s
-y z( ) e Mn Ok — 5 10)
Ir+Js=n a=1

+2 >0 ) <n +]»Z ' s) (=1)" By, (53 N | | M Bi (ke = 36 + 15 1), (2.5)

Ir+Js=n+1 b=1 k=1
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Furthermore, if s is an odd positive integer, then, for every positive integer n,

> Hsz xk:)»k)l_[ Ok 1)

Ir+Js=n k=1
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Ir+Js=n b=1 k=1
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(2.6)

We now deduce some special cases of Theorem 1. Since the Apostol-Bernoulli and

Apostol-Euler polynomials satisfy the following difference equations (see, e.g., [8]):

MBu(x+1,A) = By(x,A) = nx™t  (n20)
and
A+ 1L,A) +E,(x,A) =24 (n=0),

respectively, so we find from (2.7) and (2.8) that
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l—[ M By (xx — x4 + 1, Mx)

k=1
= Z [ ] B ok = 00 1) | [ = 0)'% ™
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b-1
kgjk(yk )b t+ 1: Mk)}
k=1
= Z l_[ — Vb Mk 1_[{ 2(yk yb)jk }
T<{1,...b-1} keT keT

Hence, by setting
x=--=x=x and y=---=y=y

in Theorem 1, in view of (2.9) and (2.10), we obtain the following result.

(2.7)

(2.8)

(2.10)

Corollary 1 Let r and s be positive integers. Also let s be an even integer. Then, for every

non-negative integer n,
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F[B,k(m]"[ 0= 144
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Moreover, if s is an odd positive integer, then, for every positive integer n,
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Since the Apostol-Bernoulli polynomials satisfy the following symmetric distribution
(see, e.g, [8]):

1
18,050~ (V1B (51 ) (120) @13
by setting
M=-=A=1 and pu1=---=p=1

in Corollary 1, we get the following formulas for the products of an arbitrary number of

the classical Bernoulli polynomials and the classical Euler polynomials.

Corollary 2 Let r and s be positive integers. If s is an even positive integer, then, for every

non-negative integer n,
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Furthermore, if s is an odd positive integer, then, for every positive integer n,

> 15 x>1_[
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In the special case when x = y, Corollary 2 yields the corresponding new expressions
for the above-mentioned sums of the products of an arbitrary number of the classical
Bernoulli polynomials and the classical Euler polynomials considered by Kim et al. [27].
If we take r = s =1 in Corollary 1, in light of (2.7), we obtain the following result.

Corollary 3 Let n be a positive integer. Then

> Bils MEni(y; 1)
k=0

152 n+1
- ( )snmx;m)é‘k(y ~ )
k=0 +

+

(: : 1) Ent 3 )| Bl — 93.2) + kel — )<Y (2.16)
k=0

In particular, since (see, e.g., [28])

Bn+1

E,(0)=2(1-2"") —

(n20),
by setting
x=y and A=p=1

in Corollary 3, we find for every positive integer n = 2 that

S BL(Es 1) — Z (Z*i)( 1) 2B, 4

k=0

= (n+1)E,(x), (2.17)

which was derived by Pan and Sun [29] by using the finite difference calculus and differ-
entiation.
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Theorem 2 Let r and s be positive integers. Then, for every non-negative integer n,

(Vl tr+ S) Z l_[Blk(xkl)“k l—[ g]k (yk’ Mk)

Ir+Js=n k=1
Z Z (n e S>Pz,,7 (xm )\)M 1_[ g;k()/k Xas I'Lk)
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+2 Z Z (n * r+s> PPy, (5ps M) T
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: H{XkBik(xk -y + LA} (2.18)
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where P, (x; 1) is given by

B (x; 1) 21s)

,Pn(x;)h) = 1
_Egn(x;)\) (2{5)

We now deduce some special cases of Theorem 2. Since the Apostol-Genocchi polyno-

mials satisfy the following difference equation (see, e.g., [7]):
AG(x +1,1) + Gu(x, 1) =2nx"" (1 20), (2.19)

by applying (2.19), we have

b-1
H{—ngjk Ok =y + 1,10}
k=1
= Z l_[ G Ok = Y 1x) H{—zik@k -/ (2.20)
<, b-1} keT keT

Hence, by setting
X1=---=x,=x and Y= =ys=Yy
in Theorem 2, and in view of (2.9) and (2.20), we obtain the following result.

Corollary 4 Let r and s be positive integers. Then, for every non-negative integer n,

(mer+s) HBLk(x,m]"[g,k(y i)

L+]s=n k=1

d H+r+s
yYY Y (l,o )Pio(x;k)
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S

DI Cﬁfﬁmwm

b=1 |S|=b Lr+jo+Js_p=n+1-b
II@kMW rll%ﬁﬂx—y+hkwk (2.21)
k=1
Upon setting
AM=---=A,=1 and Ui=--=ps=1

in Corollary 4, if we make use of (2.13), we obtain the following formula for the products
of an arbitrary number of the classical Bernoulli and Genocchi polynomials.

Corollary 5 Let r and s be positive integers. Then, for every non-negative integer n,

(n+r+s) Z HBlk(x l_[

Ir+]s=n k=1
r—a

( ) ( )P @] ]Bs T[G,kw )
I, a+l0+]5 n+l-a k=1 =
. (s)( 2 Z (n+r+s)( D" P, ()
b=1 Jo

Lr+jo+s_p=n+1-b

n%n%@w (2.22)
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where P,(x) is given by

PO LIRS
! “1G, ) (219).

If we take r = s =1 in Corollary 4, in light of (2.7), we get the following result.

Corollary 6 Let n be a non-negative integer. Then

> " Bl MGk (3 12)

k=0

=__Zk<n+1) (G A ) Gruic(y — 5 11) |

+Z ("“) G M) Bkl — 332 + (1~ W) - 9)"*1]). (223)

Since the classical Genocchi polynomials can be expressed in terms of the classical
Bernoulli polynomials as follows:

G, (x) = 2B, (x) - 2B, <§> n>0), (2.24)
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by setting > = =1 and x = y in Corollary 6, and in light of the fact that (see, e.g., [7, 28])
1
By=1, BI:—E and Gy(x) =

we find for every positive integer n = 3 that

n-1 n-2
Y BWG0-Y ¢ (Z ’ D (2 Gy ()B4

k=1 k=1
1
= 5 (1=1)Gy(), (2.25)
which was derived by Agoh [30] by applying some short and intelligible ideas. For some

convolution formulas similar to (2.17) and (2.25), the interested reader may be referred to
[31-36].

3 Proofs of Theorems 1 and 2

In our proofs of Theorems 1 and 2, we need the following auxiliary result described in
(37, 38].

Lemma 1l Let n be a positive integer with n = 2 and let Q,, be the n-dimensional space (or
the standard simplex in R") defined by

Qui={t...tn) 520 (k=1,...,n) and t, +--- + 1, < 1}.

Then the multivariable Beta function By, .. .,oy,) is given by the following Dirichlet inte-
gral:

1"(0!1) I (etn)

Tog + -+ +ay)

/ / 0!11. olnll
Q1

b))l - db

B(alﬁ ;Oln) =

(min{?ﬁ(al), Ry} > 0). (3.1)
Proof of Theorem 1 We first recall the following elementary and beautiful idea:

(LT+x)@ +x)(L +x3)- -

=1 +x) +x(1 +x1) +x3(1+ ) +29) + -, (3.2)

which was used by Euler to give the proof of his famous pentagonal number theorem (see,
e.g., [39, 40]). Obviously, the finite form of (3.2) can be expressed as follows:

@ +w1) -1 +x,)

=1 +x) +x@+x) + - +x, L +x1) - (1 +2x,-1). (3.3)
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For 1 < k < n, if we write x; — 1 for x in (3.3), we get

Xp—1= Y (o — 1)y -+, (3.4)

where the product x1 - - - x¢_; is assumed to be equal to 1 when k = 1. Let & be a piecewise
function of k given by

)\'k (1 é k é l"),
&k = (3.5)
iy +1ZkS7r+3s).

By replacing n by r + s and taking x; = exe in (3.4), we find that

(_l)sket1+--'+ty+s -1

r k-1 s r+k-1
= Z(sketk -1) ]_[siet" + Z(sr+ke”+’< -1) 1_[ g€l (3.6)
k=1 i-1 k=1 i-1

which, together with (3.5), yields

(_l)sket1+---+tr+3 -1

r

a-1 s b-1 r
= Z(Aaetﬂ - 1) 1_[ rell + Z(—l)b(,ubet”b + 1) 1_[ et Hkiet". (3.7)
i=1 b=1 i=1 i=1

a=1

It follows from (3.7) that

r tkexktk $ 2eyktr+k
1:! Aetk —1 i pelrk + 1

1 r a-1 ’
= (—1)5A6t1+"'+tr+5 1 <Z(Aaetﬂ _ 1) l_[)‘ietl
i=1

a=1

r S

T2 17
’ te _ t
ol Aetk — 1 ol etk + 1

2eyktr+k

s b-1
+ 3 (1P (et + 1) | [ rie'
b=1 i=1

r S
WDt DeVktrik
. | |Ak " | | " . (3.8)
Aretk — 1 o e rek 4+ 1

k=1

We now observe that
r

a-1
_ tkexktk
] S N Gy
i=1 k=1

— t exk —Xg+1)ty r t e(xk’xﬂ)tk
=t, el +ty)l_[ k l_[ k (3.9)
Aetk — Keasl Agetk — 1
=a+
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and
b-1 s
2eVklr+k
Lrib Lrei

O P e

i=1 k=1 Hierh + 1
b-1 —yp+1 s —
= Vb (tri1tttres) 1_[ Uk 260k Dk 2608 ek .
pelrk +1 ol etk +1

k=1 k=b

Thus, by applying (3.9) and (3.10) to (3.8), we obtain

Lopetrtce S Dedkirek
g Aetk —1 E pelrk +1

t, era (14 +tr4s) a-l tke(xk*xa+1)tk

= Z ( 1)5)\‘et1+ Alrrs 1 Hkk )\.ketk -1

k=1

tke(xk—xa)tk 2e(yk_xa)tr+k

r S
' H Aretk —1 E Jpebrk + 1

k=a+1

s b-1

ze)’b(tl*'"""trﬂ) 2e(yk_yb+1)tr+k
+ E (-1)° —— | |M/<
- (=1)shefrt-tires — 1 el ielrk +1

11

k=b+1

2eVk=Ib)brik trel k=i

Mketﬁk +1 l_[ k etk

For convenience, let

tn
[;]’/(t)
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(3.10)

(3.11)

denote the coefficient of t in the power-series expansion of f(¢). For 1 S k < r +s, if we

substitute ut for £ with
U+ -+ Upg=1

into both sides of (3.11), we find that
|:tn]<lL[ Uy terkiit li[ eYktrikt )
_l Ul _ Upy kb
I\ ] Aretkt — 1 o ke k41
ukte(xk"‘“”)"kt

(£ i
k
— (=1)sret -1 i Aredkt —1

ukte (Xx—xa)urt S Ze(yk_xa)ur+kt
1_[ Aretkt — l_[ Urikt 4 1
sl k€ P 12534 +

" s 2eIbt b1 2eWVk=Ip+Dur it
[_'] - ( 1)sxet—1E“ et + 1

2eVk=b)treict uytelk—yprDut

r
]:[ ewﬂﬂxk Ao 1 )::M1+M2.

(3.12)
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The left-hand side of (3.12) can easily be rewritten as follows:
" " uyterkiit S D eVklrikt
[;] H Aekt —1 g Upetrekt + 1

Z HBlk(xk,)»k) X Hé}k(ﬂ,uk u]”k (3.13)

Ir+Js=n k=1

Moreover, M; and M; on the right-hand side of (3.12) can be rewritten as follows:

ik

a-1
u u
M=nt ) § G Z“!]_[Ak&k(xk—xﬂl;kk)i—",
k=1

I+)s=n+e a=1 k:

M/k
l_[ sz Xk _xm)“k 1_[ (yk _xa;//Lk) H‘k (314)
k=a+1 ! Jk:
and
- b o
My=2.n- " (1) T, ()
L+Js=n+l+e b=1 Jb:
b-1 Mlk L{]
T i O = 36+ 15 i) =2 1_[ i 0k = yb,uk) —
k=1 e
‘k
. Hlklgzk Gk —yp + 15 )»k) (3.15)
k=1
where

0 (s=2,4,6,.),
-1 (s=1,3,5,...),

€ =

and F,(x; A) is determined by

Bu(x 1) 21s),
Fufm) - @16)
LlEmn) @1,

It follows from (3.12) to (3.15) that

Mfk
Z Hsz Xk )"k ngk(yk;
Ir+Js=n k=1 '
r a-1 lk
S 3 Fulwas ) T 1By ok — 20 + 1 xk)
I +Js=n+e a=1 u k=1

ufk
HBlk(xk xu,m 1‘[ (yk—xa;uk)j’Tﬁk

k=a+1
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2 Y Z -1y’ Tioms )= ’*"

Ir+Js=n+l+e b=1

r,E uk
: Hukfjk(J’k b+ 1 1x) .”,k Ei Ok = o3 1x) ,”,k
- K b Jk:

lk
HAkB,k X — Y+ 1; Ak)—. (3.17)
k=1

We note that, for complex numbers «y, ..., o, with
min{R(e),..., R(ns)} > -1,

if we use Lemma 1, we find for
U+ +Upg=1

that

o1 u®
/ tee / U - Hr—;s dul dur+s—1
Qris-1

Tl +1) - Tarys +1)

= . 3.18
Flag+ - -+ Qg +7+8) (318)
Consequently, by the following operation:
// (- )duy - Attyssq
Qris-1
applied to both sides of (3.17), and with the help of (3.18), we get
T Bl !)\’ ;
(n+r+s 1! 2 1_[ e k)l—[ S
Ii+Js=n k=1
x )\) a-1
Z Z = 1_[ M By (ke — x4 + 15 Ak)
ig!- (n+e—za+r+s)'
Iy+Js=n+e a=1 k=1
]_[ By (k= %a5 1) ]_[ — %43 14k)
k=a+1
2 ¥ Z Fi, 0p; 1)
Ir+]s=n+l+€ b=1 I’l+6 ]b+7‘+S)‘
T i O =36+ 1110
: l—[ Ei Ok = yi3 1) l_[ MiBiy (k= yp + 1 M), (3.19)

k=b+1 k=1

which, together with (3.16), yields the desired results (2.5) and (2.6). This completes the
proof of Theorem 1. d



He et al. Advances in Difference Equations (2016) 2016:287 Page 15 of 18

Proof of Theorem 2 Let uy,...,u,,s be r + s variables with
Uy + -+ Uppg =1,

For 1 < k < s, if we substitute 2u,., i te’*“r+t for 2e?k%~+! in both sides of (3.12), we find
that

s

[t"] li[ U te kUt l—lzu,+kteyk“r+kf
n! P Aretkt —1 P petrekt + 1
" i uate"“ i’;[ uite (xx—xg+1)ugt
T (=1)ret — M Agetkt —1

urte (¥ —xa)ugt S 2ur+kte(yk_xa)ur+kt
)\,keukt l_[ Mkeuﬂkt +1

k=a+1 k=1

2ty teVk—Ip Dkt

b-1
t b U, ptedht
+ [_1] (Z( 1) l)sk t_ H/Lk /,Lke””kt +1

L
Dt teVk IRt T pe(k—yp Dugt
1_[ = Urikt 41 )"k k}\‘ uet _ ] = Nl + NZ! (3.20)
iepe1  MKE + ke
say. It is trivial to obtain

|:t”] ﬁ ute it li[ 2, jtedkHrkt

n! P Arekt —1 P Uietrkt +1
Z l_[ Blk Xks )"k) k l_lg/k()/k, Mk) r+k (321)

Ir+]s=n k=1
and N; and Nj in the right-hand side of (3.20) can be rewritten as

ik

N; =n!- Z Z”P,a xa,k) HAkBlk(xk —x,+1; kk) il

Ir+Js=n a=1
M]r+k
l_[ Blk Xk — Xas )\k ]_[g}k(yk Xa; I/Lk (322)
k=a+1 . ]

and

Np=2.n- Z( Py 2 Bt

Ir+Js=n b=1
b-1 L{] ],t]
']_[ng,k(yk yp + L pug) 22K 1_[ Gi k= 93 x) ——K
k=1 e on Jil
ik
. nkszk(xk Y+ 1 )»k)—. (3.23)

k=1
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It follows from (3.20)-(3.23) that

5 [T8u w20 16,0 M

Li+]s=n k=1 ' k=1
ik
=y Zm(xa,x) ]‘[ka,k(xk X+ 15 xk)—
Ir+Js=n a=1 k
'/<
1_[ Btk Xk — Xas )\k l_[g]k(yk Xas
k=a+1 :
Urib
+2 ) Z( 1) P 1) = -
Iy+Js=n b=1
b-1 L{I
T 6Gi Ok = 5 + 15 i) =2 1_[ G Ok = ybs
k=1 K pa
ik
'nlkﬂk X —yp+1; )\k)—- (3.24)
k=1

By making the operation [ - fsszl - duy - - - du,,s_1 in both sides of (3.24), with the help
of (3.18), we get

(I’l+r+s Z HB’k Xk M) Hg/k(yk»ﬂk

1r+]s n k=1

" P ﬁ
2 Z a McBi, (e — x4 + 1;A%)
V(m—iy +7r+5)! i

Ir+Js=n a=1

nBlk(xk xar)\k)l_[g]k()/k Xas ILk)

k=a+1
2 ) 3 (p L Q’b )
Ir+Js=n b=1 jpl - (m—jp +1+5)!
b-1
' H“kgik Ok =y + 15 )
k=1
s r
T GO =5 1) [ T 2B ot = 3+ 15.00), (3.25)
k=b+1 k=1
as desired. This concludes the proof of Theorem 2. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors participated in drafting, revising, and commenting on the manuscript. All authors read and approved the final
manuscript.

Author details
"Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan
650500, People’s Republic of China. ?Department of Economics, Faculty of Economics, Administrative and Social Sciences,



He et al. Advances in Difference Equations (2016) 2016:287 Page 17 of 18

Hasan Kalyoncu University, Gaziantep, 27410, Turkey. *Department of Mathematics and Statistics, University of Victoria,
Victoria, British Columbia V8W 3R4, Canada. “China Medical University, Taichung, 40402, Taiwan, Republic of China.

Acknowledgements

We express our sincere thanks to the anonymous referees for their comments on this manuscript. This work was
supported by the Foundation for Fostering Talents in Kunming University of Science and Technology (Grant

No. KKSY201307047) and the National Natural Science Foundation of the People’s Republic of China (Grant No. 11326050).

Received: 27 September 2016 Accepted: 27 October 2016 Published online: 10 November 2016

References

1. Agoh, T, Dilcher, K: Convolution identities and lacunary recurrences for Bernoulli numbers. J. Number Theory 124,
105-122 (2007)

2. Araci, S: Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus.
Appl. Math. Comput. 233, 599-607 (2014)

3. Cohen, H: Number Theory - Volume II: Analytic and Modern Tools. Graduate Texts in Mathematics, vol. 240. Springer,
Berlin (2007)

4. Nielsen, N: Traité élémentaire des nombres de Bernoulli. Gauthier-Villars, Paris (1923)

5. Srivastava, HM, Choi, J: Zeta and g-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)

6. Srivastava, HM, Pintér, A: Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math.
Lett. 17,375-380 (2004)

7. Luo, Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J.
Math. 48,291-309 (2011)

8. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal.
Appl. 308, 290-302 (2005)

9. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials.
Comput. Math. Appl. 51, 631-642 (2006)

10. Apostol, TM: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951)

11. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb.
Philos. Soc. 129, 77-84 (2000)

12. Lu, D-Q, Srivastava, HM: Some series identities involving the generalized Apostol type and related polynomials.
Comput. Math. Appl. 62, 3591-3602 (2011)

13. Luo, Q-M: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials.
Math. Comput. 78, 2193-2208 (2009)

14. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of
the second kind. Appl. Math. Comput. 217, 5702-5728 (2011)

15. Navas, LM, Ruiz, FJ, Varona, JL: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials. Math.
Comput. 81, 1707-1722 (2011)

16. Prévost, M: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials. J. Comput. Appl. Math. 233,
3005-3017 (2010)

17. Srivastava, HM: Some generalizations and basic (or g-) extensions of the Bernoulli, Euler and Genocchi polynomials.
Appl. Math. Inf. Sci. 5, 390-444 (2011)

18. Dilcher, K: Sums of products of Bernoulli numbers. J. Number Theory 60, 23-41 (1996)

19. Chen, K-W: Sums of products of generalized Bernoulli polynomials. Pac. J. Math. 208, 39-52 (2003)

20. He, Y, Araci, S: Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials. Adv. Differ. Equ. 2014, Article ID
155 (2014)

21. Huang, I-C, Huang, S-Y: Bernoulli numbers and polynomials via residues. J. Number Theory 76, 178-193 (1999)

22. Kim, M-S, Huy, S: Sums of products of Apostol-Bernoulli numbers. Ramanujan J. 28, 113-123 (2012)

23. Kim, T: Sums of products of g-Bernoulli numbers. Arch. Math. 76, 190-195 (2001)

24. Kim, T, Adiga, C: Sums of products of generalized Bernoulli numbers. Int. Math. J. 5, 1-7 (2004)

25. Simsek, Y, Kurt, V, Kim, D: New approach to the complete sum of products of the twisted (h, g)-Bernoulli numbers and
polynomials. J. Nonlinear Math. Phys. 14, 44-56 (2007)

26. Simsek, Y: Complete sum of products of (h, g)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16,
1331-1348 (2010)

27. Kim, DS, Kim, T, Mansour, T: Euler basis and the product of several Bernoulli and Euler polynomials. Adv. Stud.
Contemp. Math. 24, 535-547 (2014)

28. Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1964). Reprinted by Dover,
New York, 1965

29. Pan, H, Sun, Z-W: New identities involving Bernoulli and Euler polynomials. J. Comb. Theory, Ser. A 113, 156-175
(2006)

30. Agoh, T: Convolution identities for Bernoulli and Genocchi polynomials. Electron. J. Comb. 21, Article ID P1.65 (2014)

31. Dunne, GV, Schubert, C: Bernoulli number identities from quantum field theory and topological string theory.
Commun. Number Theory Phys. 7, 225-249 (2013)

32. Faber, C, Pandharipande, R: Hodge integrals and Gromov-Witten theory. Invent. Math. 139, 173-199 (2000)

33. He, Y, Zhang, WP: Some sum relations involving Bernoulli and Euler polynomials. Integral Transforms Spec. Funct. 22,
207-215 (2011)

34. He, Y, Araci, S, Srivastava, HM, Acikgoz, M: Some new identities for the Apostol-Bernoulli polynomials and the
Apostol-Genocchi polynomials. Appl. Math. Comput. 262, 31-41 (2015)

35, Kim, DS, Kim, T, Lee, S-H, Kim, Y-H: Some identities for the product of two Bernoulli and Euler polynomials. Adv. Differ.
Equ. 2012, Article ID 95 (2012)

36. Kim, DS, Kim, T: Identities arising from higher-order Daehee polynomial bases. Open Math. 13, 196-208 (2015)



He et al. Advances in Difference Equations (2016) 2016:287 Page 18 of 18

37. Carlson, BC: Special Functions of Applied Mathematics. Academic Press, New York (1977)

38. Srivastava, HM, Niukkanen, AW: Some Clebsch-Gordan type linearization relations and associated families of Dirichlet
integrals. Math. Comput. Model. 37, 245-250 (2003)

39. Andrews, GE: Euler’s pentagonal number theorem. Math. Mag. 56, 279-284 (1983)

40. Bell, J: A summary of Euler's work on the pentagonal number theorem. Arch. Hist. Exact Sci. 64, 301-373 (2010)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Some new formulas for the products of the Apostol type polynomials
	Abstract
	MSC
	Keywords

	Introduction
	Statements of the main results
	Proofs of Theorems 1 and 2
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


