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Abstract
This paper investigates exponential synchronization of networked dynamical systems
under event-triggered control schemes. Two event-triggered sampled-data
transmission schemes, which only need the latest observations of their
neighborhood and the virtual leader to predict the next observation time, are
designed to realize exponential synchronization of networked dynamical systems.
That is, the coupled information is updated only when the triggered conditions are
violated. Hence, continuous communication can be avoided and the number of
information transmission is reduced. A positive lower bound for inter-event intervals
is achieved to exclude Zeno behavior. Finally, two numerical simulation examples are
provided to illustrate the effectiveness of the proposed results.
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1 Introduction
Networked control dynamical systems (NCDSs) have been widely studied over the past
decades [–]. It is usually investigated in the NCDSs that all oscillators approach a uni-
form dynamical behavior, that is, all the nodes in the NCDSs reach synchronization even-
tually. In the process of synchronization, the couplings among nodes and/or external dis-
tributed and cooperative control between nodes exist inevitably and meanwhile conflicts
may exist due to the limitations of network resources and traffics []. In most previous ref-
erences [–], each node received their neighbors’ information continuously, which may
cost much. As an important component in NCDSs, intermittent sampling has emerged as
an interesting topic to avoid communication continuously [–]. Nevertheless, sampled-
data systems are usually applied periodically in time [, ], that is, time-triggered sam-
pling, which might be conservative in terms of the number of control updates.

In order to utilize the real-time information sufficiently and to reduce communication
and computation load in NCDSs, aperiodic event-triggered sampling, which is triggered
only when measurement error signal violates a prescribed threshold [–], is proposed
in the last few years. As pointed out in [], event-triggered sampling was proved to possess
a better performance than time-triggered sampling. In event-triggered sampling control,
the control law is updated only when some specific significant events occur, other state
changes or occurrences of real-time entity are considered insignificant and are neglected
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[–]. Event-triggered sampling control could adjust task periods to variations in sys-
tem states adaptively, which produces longer task periods than time-triggered sampling
control. In [], the authors studied the event-triggered distributed average-consensus of
discrete-time first-order multi-agent systems with limited communication data rate and
general directed network topology. The authors of [] studied the problem of average
consensus over directed and time-varying digital networks of discrete-time first-order
multi-agent systems with limited communication data transmission rates. Each agent has
a real-valued state but can only exchange binary symbolic sequence with its neighbors due
to bandwidth constraints.

Recently, great efforts are still made on applying event-triggered scheme (ETS) to coop-
eration of multi-agent systems. A key issue of the event-triggered scheme is how to design
and optimize event-based conditions and a big challenge is how to prove that inner-event
time intervals are positive which can assure the absence of Zeno behavior. In [], leader-
following consensus of general linear multi-agent is investigated by the event-triggered
scheme. Three types of schemes, namely, distributed ETS, centralized ETS, and clustered
ETS for different network topologies are proposed. All these schemes guarantee that all
followers can track the leader eventually. In [], event-triggered coupling configurations
are utilized to realize synchronization of linearly coupled dynamical systems. The diffu-
sion couplings are set up from the latest observations of the nodes and their neighbor-
hood and the next observation time is triggered by the proposed criteria based on the
local neighborhood information as well. However, the graph in [] is undirected and
connected.

Motivated by above statement, the objective of this paper is to design two event-
triggered schemes for exponential synchronization of networked dynamical systems. The
contributions of this paper are listed as follows. First of all, the network topology is directed
and contains a directed spanning tree rooted at a virtual node. All the nodes are equipped
with nonlinear dynamics. Thus, the model of this paper is more general than in [, ,
]. Second, two distributed event-triggered schemes are proposed to realize exponential
synchronization of the networked dynamical systems. The main difficulty of this paper is
to prove the Zeno behavior is excluded under the two event-triggered schemes. In addi-
tion, to further reduce the number of updatings, two distributed self-triggered schemes
are proposed. It is proved that the exponential synchronization can be achieved and the
Zeno behavior can be excluded simultaneously under the two self-triggered schemes.

The remainder of this paper is outlined as follows. In Section , preliminaries includ-
ing some necessary definitions and lemmas and the model description are stated. In Sec-
tion , event-triggered schemes are proposed to realize exponential synchronization and
the Zeno behavior can be excluded under the proposed schemes. In Section , the dis-
tributed self-triggered schemes are presented according to the event-triggered schemes.
In Section , some numerical examples are given to show the effectiveness of the theoret-
ical results. Finally, the conclusion is drawn in Section .

Notation Throughout this study, Rn and R
n×n represent the set of all n dimensional real

column vectors and the set of all n × n dimensional real matrices. The superscript T rep-
resents the transpose. ‖ · ‖ denotes the Euclidean norm, that is, for any vector ξ ∈ R

n,
‖ξ‖ = (ξ 

 , . . . , ξ 
n ) 

 . ‖x‖p = (xT Px) 
 for some positive definite matrix P ∈ R

n×n. λmax(A)
and λmin(A) are respectively the maximum and minimum eigenvalues of matrix A. ⊗ rep-
resents the Kronecker product.
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2 Preliminaries and problem formulation
The dynamics of generally networked systems under pinning control can be described as
follows:

ẋi(t) = f
(
xi(t)

)
+

N∑

j=

aij�
(
xj(t) – xi(t)

)
+ ui(t), i = , . . . , N , ()

which xi(t) = (xi(t), xi(t), . . . , xin(t))T ∈R
n denotes the state vector of node i and the con-

tinuous map f (·) : RN → R
N denotes the identical node dynamics if there is no coupling.

� ∈ R
n×n describes the inner-coupling positive definite matrix between the subsystems.

A = (aij) ∈ R
N×N is the weighted adjacency matrix of the directed graph G = {V , E} with

the node set V and the link set E: aij >  if there exists a directed link from node j to i
at time t; aij = , otherwise. Define the graph Laplacian matrix of A as L = (lij) ∈ R

N×N ,
in which lij = –aij, for i �= j, and aii =

∑N
j= aij. ui(t) is the pinning control input to be de-

signed. The information in the networks is usually considered to communicate continu-
ously. However, when the nodes are equipped with limited computation capability, limited
capability of communication, actuation, and limited onboard energy source, it is not eco-
nomic to communicate information continuously.

Therefore, an intermittent event-triggered information transmission mechanism
emerges reducing the number of communications and computations. In this paper, two
distributed event-triggered schemes will be adopted to synchronize the network () with
a certain desired state s(t) which can be an equilibrium point, periodic orbit or chaotic
attractor in the phase space satisfying

ṡ(t) = f
(
s(t)
)
, ()

where s(t) = (s(t), s(t), . . . , sn(t))T ∈R
n is a virtual node. The virtual node and the directed

graph constitute an augmented graph G .
Then the network model with event-triggered diffusive coupling under pinning control

is investigated as follows:

ẋi(t) = f
(
xi(t)

)
+

N∑

j=

aij�
(
xj
(
ti
ki

)
– xi
(
ti
ki

))
– di�

(
xi
(
ti
ki

)
– s
(
ti
ki

))
, t ∈ [ti

ki
, ti

ki+
)
, ()

where ti
ki

, i = , . . . , N , represents the ith node’s latest triggering time instant before time t,
ti
ki+ is the next triggering time instant. When the ith node is pinned by the virtual node,

di > ; otherwise, di = .
For t ∈ [ti

ki
, ti

ki+), i = , . . . , N , synchronization error and measurement error of node i
are respectively defined as ei(t) = xi(t) – s(t), and δi(t) = xi(ti

ki
) – xi(t), δj(t) = xj(ti

ki
) – xj(t),

j �= i, δ(t) = s(ti
ki

) – s(t).
Then one can get

ėi(t) = f
(
ei(t)

)
–

N∑

j=

lij�ej
(
ti
ki

)
– di�ei

(
ti
ki

)
, ()

where f (ei(t)) = f (xi(t)) – f (s(t)).
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The objective of this paper is to design appropriate event-triggered schemes such that
() and () can reach exponential synchronization.

Throughout the rest of the paper, the following assumptions and lemma are needed.

Definition  Consider the node dynamics map f (·) : RN → R
N . If there exist a positive

definite matrix P ∈R
n×n, constant α ∈R, and positive constant β >  such that,

(u – v)T P
[
f (u) – f (v) – α�(u – v)

]≤ –β(u – v)T (u – v) ()

holds for all u, v ∈ R
N . Then we say it belongs to some map class Quad(P,α�,β).

Assumption  There exists a positive constant k such that for any u, v ∈R
n,

∥
∥f (u) – f (v)

∥
∥≤ k‖u – v‖.

Assumption  The augmented graph contains a directed span tree rooted at the virtual
node.

Lemma  Let L be the Laplacian matrix of a non-negatively weighted digraph G and D =
diag{d, . . . , dN } be a nonnegative diagonal matrix. Then we have the following facts:

() If G is balanced, then L+LT

 + D >  if and only if G is weakly connected.
() If G has a directed spanning tree, then there exists a positive diagonal matrix

� = diag{ξ, . . . , ξN }, such that

�(L + D) + (L + D)T� > . ()

Then all the eigenvalues λi of �(L + D) + (L + D)T� are positive. That is,  < λ ≤ λ ≤
· · · ≤ λN .

Remark  In [], the trajectories of all nodes commonly converge to a time-varying
weighed average x̄ =

∑N
j= ξjxj(t). All the nodes in this paper could synchronize with an

arbitrary desired state s(t) which can be an equilibrium point, periodic orbit or chaotic
attractor. In addition, the authors of [] make use of the general algebraic connectivity
to reach global synchronization, which is fit for a strongly connected network. This paper
only requires the augmented graph contains a directed spanning tree rooted at the virtual
node which does not require the coupling matrix to be symmetric.

3 Event-triggered scheme for pinning synchronization
In this section, pinning synchronization of the considered network () with () is inves-
tigated under event-triggered mechanism. The following algorithm [] is proposed to
determine at least how many and what kinds of nodes should be pinned such that As-
sumption  holds.

Algorithm  Find the strongly connected components of G (A) by using Tarjan’s algo-
rithm []. Suppose that there are ω strongly connected components for G (A), labelled as
G, G, . . . , Gω . Let mi = , i = , . . . ,ω and h = .
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Step : Check whether there exists at least one node nk belonging to Gh, which is reachable
from a node ng belonging to Gj, j = , , . . . ,ω, j �= h. If it holds, go to Step ; if it does
not hold, go to Step .

Step : Check whether the following condition holds: h < ω. If so, let h = h +  and return
Step ; else stop.

Step : Arbitrarily having selected one node in Gh and pinned, let mh = . Check whether
the following condition holds: h < ω. If so, let h = h +  and return Step ; else stop.

Remark  Using Algorithm , we should select at least δ =
∑ω

i= mi nodes in G (A) to be
pinned such that Assumption  holds. That is, Assumption  can never be ensured if there
are only μ nodes to be pinned, where μ < δ.

Based on the above analysis, one may obtain the following theorem, which summarizes
the main result of this section.

Theorem  Suppose Assumptions - are satisfied and f ∈ Quad(P,α�,β) with a positive
matrix P and α < λ

ξmax
, β > , and P� is semipositive definite, where ξmax = max{ξ, . . . , ξN }.

Pick  < β ′ < β . Denote κi(t) =
∑N

j= lij�δj(t) + di�(δi(t) – δ(t)). Then either one of the fol-
lowing two updating rules can guarantee that () synchronize with () exponentially.

() Set ti
ki

as the triggering time point by the rule

ti
ki+ = max

t

{

t ≥ ti
ki

:
∥∥κi(t)

∥∥≤ β ′
√

Nξmaxλmax(P)

√√√√
N∑

i=

ξieT
i (t)Pei(t)

}

. ()

() Set ti
ki

as the triggering time point by the rule

ti
ki+ = max

t

{
t ≥ ti

ki
:
∥∥κi(t)

∥∥≤ a exp(–bt)
}

, ()

where a is a positive constant and  < b < β – β ′.

Proof For any i ∈ {, , . . . , N},

N∑

j=

lij�ej
(
ti
ki

)
=

N∑

j=

lij�
(
xj
(
ti
ki

)
– xj(t) + xj(t) – s(t) + s(t) – s

(
ti
ki

))

=
N∑

j=

lij�
(
ej(t) + δj(t)

)
,

di�ei
(
ti
ki

)
= di�

(
xi
(
ti
ki

)
– xi(t) + xi(t) – s(t) + s(t) – s

(
ti
ki

))

= di�
(
ei(t) + δi(t) – δ(t)

)
.

()

Then, by using (), () can be rewritten as

ėi(t) = f
(
ei(t)

)
–

N∑

j=

lij�
(
ej(t) + δj(t)

)
– di�

(
ei(t) + δi(t) – δ(t)

)
. ()
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Consider the following Lyapunov function:

V (t) =
N∑

i=

ξieT
i (t)Pei(t) = eT (t)(� ⊗ P)e(t), ()

where P is a positive definite matrix which has been defined in () and � = diag{ξ, . . . , ξN }
is the same as in ().

Taking the derivative of V (t) along the trajectories () gives

V̇ (t) = 
N∑

i=

ξieT
i (t)Pėi(t)

= 
N∑

i=

ξieT
i (t)P

(

f
(
ei(t)

)
–

N∑

j=

lij�
(
ej(t) + δj(t)

)
– di�

(
ei(t) + δi(t) – δ(t)

)
)

= 
N∑

i=

ξieT
i (t)P

(
f
(
ei(t)

)
– α�ei(t)

)
+ α

N∑

i=

ξieT
i (t)P�ei(t)

– 
N∑

i=

ξieT
i (t)P

[ N∑

j=

lij�ej(t) + di�ei(t)

]

– 
N∑

i=

ξieT
i (t)P

[ N∑

j=

lij�δj(t) + di�
(
δi(t) – δ(t)

)
]

≤ –β

N∑

i=

ξieT
i (t)Pei(t) + α

N∑

i=

ξieT
i (t)P�ei(t)

– eT (t)
{[

�(L + D) + (L + D)T�
]⊗ P�

}
e(t) – 

N∑

i=

ξieT
i (t)Pκi(t)

≤ –βV (t) + α

N∑

i=

ξieT
i (t)P�ei(t)

– λ

N∑

i=

eT
i (t)P�ei(t) – 

N∑

i=

ξieT
i (t)Pκi(t). ()

Pick a constant ε > , one has

–
N∑

i=

ξieT
i (t)Pκi(t) ≤ ε

N∑

i=

ξieT
i (t)PPT ei(t) +


ε

N∑

i=

ξiκ
T
i (t)κi(t)

≤ ελmax(P)
N∑

i=

ξieT
i (t)Pei(t) +


ε

N∑

i=

ξiκ
T
i (t)κi(t)

= ελmax(P)V (t) +

ε

N∑

i=

ξi
∥
∥κi(t)

∥
∥, ()

where λmax(P) is the maximal eigenvalue of P.
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Under the condition α < λ
ξmax

, one obtains

V̇ (t) ≤ –βV (t) + ελmax(P)V (t) +

ε

N∑

i=

ξi
∥∥κi(t)

∥∥

= –
(
β – β ′)V (t) +

(
–β ′ + ελmax(P)

)
V (t) +


ε

N∑

i=

ξi
∥
∥κi(t)

∥
∥, ()

where  < β ′ < β .
() If it is guaranteed that

N∑

i=

ξi
∥∥κi(t)

∥∥ ≤ ε
(
β ′ – ελmax(P)

) N∑

i=

ξieT
i (t)Pei(t) ()

for some constant ε > , then one gets

V̇ (t) ≤ –
(
β – β ′)V (t). ()

That is, the network () can synchronize with () exponentially fast with the rate of
(β – β ′).

A sufficient condition for () is that

∥∥κi(t)
∥∥ ≤ ε(β ′ – ελmax(P))

Nξmax

N∑

i=

ξieT
i (t)Pei(t). ()

Note maxε>{ ε(β ′–ελmax(P))
Nξmax

} = β ′
Nξmaxλmax(P) , when ε = β ′

λmax(P) .
Then () can be guaranteed when ε = β ′/λmax(P).
() Take ε = β ′/λmax(P). If it is guaranteed that

∥∥κi(t)
∥∥≤ a exp(–bt), ()

one gets

V̇ (t) ≤ –
(
β – β ′)V (t) +

aλmax(P)
∑N

i= ξi

β ′ exp(–bt), ()

which implies that V (t) converges to  exponentially. �

Remark  In Theorem , two event-triggered conditions () and () are proposed. At the
triggering time ti

ki
, the left-hand term ‖κi(ti

ki
)‖ = . In (), if there exists at least one node

which does not synchronize with s(t), the right-hand term must be positive. Therefore,
the next triggering time ti

ki+ must be greater than ti
ki

. In (), the right-hand term must be
always positive for all nodes. Thus, the interevent intervals of all nodes are strictly positive.
Although the two updating rules () and () are closely related to each other in some re-
spects, the event-triggered condition in () is verified more easily than the condition in ().
Moreover, according to () and (), the convergence under the event-triggered scheme
() is better than under (). The number of updating times under the event-triggered
scheme () is more than ().
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Next, it is proved in detail that under the two updating rules () and (), the inter-event
sampling time instants ti

ki+ – ti
ki

for each node is strictly positive, that is, the coupled net-
work can avoid the Zeno behavior.

Theorem  Suppose Assumptions - are satisfied and f ∈ Quad(P,α�,β) with a positive
matrix P and α < λ

ξmax
, β > , and P� is semipositive definite. For any  < β ′ < β and any

initial condition, the following two propositions are hold.
() Under the event-triggered scheme (), each node has positive interevent interval

which is lower bounded by a constant τ i
D.

() Under the event-triggered scheme (), the interevent interval of every node is strictly
positive and is lower bounded by a common constant τ i

D.

Proof () Under the updating rules (), for t ∈ [ti
ki

, ti
ki+), one has

V (t) ≤ V
(
ti
ki

)
exp
(
–
(
β – β ′)(t – ti

ki

))
. ()

Note that

ėi(t) = f
(
ei(t)

)
–

N∑

j=

lij�ej(t) – di�ei(t) – κi(t). ()

Hence, combining with the fact that f satisfies Assumption  and V (t) is decreasing, one
has

∥
∥ėi(t)

∥
∥ ≤ ∥∥f

(
ei(t)

)∥∥ + ‖�‖
N∑

j=

|lij|
∥
∥ej(t)

∥
∥ + di‖�‖∥∥ei(t)

∥
∥ +
∥
∥κi(t)

∥
∥

≤ k
∥∥ei(t)

∥∥ + ‖�‖
N∑

j=

|lij|
∥∥ej(t)

∥∥ + di‖�‖∥∥ei(t)
∥∥ +

β ′
√

Nξmaxλmax(P)

√
V (t)

≤
[(

k + ‖�‖
N∑

j=

|lij| + di‖�‖
)


√

Nξminλmin(P)
+

β ′
√

Nξmaxλmax(P)

]

×
√

V
(
ti
ki

)
= γi

√
V
(
ti
ki

)
, ()

where γi = (k + ‖�‖∑N
j= |lij| + di‖�‖) √

Nξminλmin(P)
+ β ′√

Nξmaxλmax(P)
. Furthermore, one can

obtain

∥
∥κi(t)

∥
∥ =

∥∥
∥∥
∥

N∑

j=

lij�δj(t) + di�
(
δi(t) – δ(t)

)
∥∥
∥∥
∥

=

∥
∥∥∥
∥

N∑

j=

lij�
[(

xj
(
ti
ki

)
– s
(
ti
ki

))
–
(
xj(t) – s(t)

)]

+ di�
[(

xi
(
ti
ki

)
– s
(
ti
ki

))
–
(
xi(t) – s(t)

)]
∥
∥∥∥
∥

=

∥∥
∥∥
∥

N∑

j=

lij�
[
ej
(
ti
ki

)
– ej(t)

]
+ di�

[
ei
(
ti
ki

)
– ei(t)

]
∥∥
∥∥
∥
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≤ ‖�‖
( N∑

j=

|lij|
∫ t

ti
ki

∥
∥ėj(τ )

∥
∥dτ + di

∫ t

ti
ki

∥
∥ėi(τ )

∥
∥dτ

)

≤ ‖�‖
( N∑

j=

|lij|γj + diγi

)√
V
(
ti
ki

)(
t – ti

ki

)
. ()

Since f ∈ Quad(P,α�,β) and f satisfies Assumption , there exists some σ (possibly neg-
ative) such that

(x – y)T P
(
f (x) – f (y)

)≥ σ (x – y)T P(x – y) ()

for all x, y ∈ R
n.

From (), one gets

V̇ (t) ≥ σV (t) – λN

N∑

i=

eT
i (t)P�ei(t) – ελmax(P)

N∑

i=

ξieT
i (t)Pei(t)

–

ε

N∑

i=

ξiκ
T
i (t)κi(t) ≥

(
σ –

λN‖P�‖
ξminλmin(P)

– β ′
)

V (t) = �V (t), ()

where � = σ – λN ‖P�‖
ξminλmin(P) – β ′ < . Thus, one has

V (t) ≥ V
(
ti
ki

)
exp
(
�
(
t – ti

ki

))
. ()

Used for the continuity of κi(t) between the event-triggered time instants ti
ki

and ti
ki+,

the event-triggered time instant ti
ki+ should satisfy ‖κi(ti

ki+)‖ = β ′√
Nξmaxλmax(P)

√
V (ti

ki+).

Hence, combining with () and (), in order to ensure event-triggered condition ()
is satisfied after instant ti

ki
, it is necessary to require the time instant ti

ki+ to satisfy

β ′
√

Nξmaxλmax(P)

√
V
(
ti
ki

)
exp
(
�
(
ti
ki+ – ti

ki

))

= ‖�‖
( N∑

j=

|lij|γj + diγi

)√
V
(
ti
ki

)(
ti
ki+ – ti

ki

)
. ()

That is,

β ′
√

Nξmaxλmax(P)
exp

(
�


(
ti
ki+ – ti

ki

)
)

= ‖�‖
( N∑

j=

|lij|γj + diγi

)
(
ti
ki+ – ti

ki

)
. ()

Therefore, it is concluded that the inter-event time ti
ki+ – ti

ki
of the node i is lower bounded

by

sup

{

τ i
D >  :

( N∑

j=

|lij|γj + diγi

)

‖�‖τ i
D ≤ β ′

√
Nξmaxλmax(P)

exp

(
�


τ i

D

)}

. ()
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() Under the updating rules (), for t ∈ [ti
ki

, ti
ki+), by (), one obtains

V (t) ≤ ρ exp(–bt), ()

where ρ = V () + aλmax(P)
β ′(β–β ′–b)

∑N
i= ξi.

Then

∥∥ėi(t)
∥∥ ≤

[(

k + ‖�‖
N∑

j=

|lij| + di‖�‖
)√

ρ

Nξminλmin(P)
+ a

]

exp
(
–bti

ki

)

= ηi exp
(
–bti

ki

)
, ()

where ηi = (k + ‖�‖∑N
j= |lij| + di‖�‖)

√
ρ

Nξminλmin(P) + a.
Hence,

∥∥κi(t)
∥∥≤ ‖�‖

( N∑

j=

|lij|ηj + diηi

)

exp
(
–bti

ki

)(
t – ti

ki

)
. ()

Therefore, () can be guaranteed if the following inequality holds:

‖�‖
( N∑

j=

|lij|ηj + diηi

)
(
t – ti

ki

)≤ a exp
[
–b
(
t – ti

ki

)]
. ()

Since when t = ti
ki

, ‖κi(t)‖ = . Under the updating rule (), the next event will not be
triggered until ‖κi(t)‖ = a exp(–bt). Thus, the inter-event time ti

ki+ – ti
ki

of the node i is
lower bounded by the solution τ i

D of the following equation:

‖�‖
( N∑

j=

|lij|ηj + diηi

)

τ i
D = a exp

(
–bτ i

D
)
. ()

It can be seen that this equation has a positive solution.
This completes the proof. �

Remark  In Theorem , it is proved that under the two event-triggered schemes, the
Zeno behavior can be excluded. From () and (), it can be seen that the interevent
interval of every node is strictly positive and is lower bounded by a common constant τ i

D.

4 Self-triggered scheme for pinning synchronization
Under the updating rules () and (), one is required to verify the event-triggered condi-
tion continuously. To avoid continuously communication among nodes, a self-triggered
scheme based on Theorem  is proposed. Under the self-triggered scheme, each node
in the network can predict next triggered time instant ti

ki+ only based on the received
information at time ti

ki
. This scheme does not require one to verify the event-triggered

condition continuously and hence more energy can be saved for the network. Inspired by
the work of [, ], a self-triggered scheme is investigated in the following.
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Suppose t ∈ [ti
ki

, ti
ki+) and j is the neighbor of the node i. Before the next event-triggered

time instant of node j, one can obtain

xj(t) = xj
(
ti
ki

)
+
∫ t

ti
ki

f
(
xj(τ )

)
dτ –

(
t – ti

ki

)
[ N∑

m=

ljm�em
(
ti
ki

)
+ dj�ej

(
ti
ki

)
]

()

and

ej(t) = ej
(
ti
ki

)
+
∫ t

ti
ki

(
f
(
xj(τ )

)
– f
(
s(τ )
))

dτ –
(
t – ti

ki

)
[ N∑

m=

ljm�em
(
ti
ki

)
+ dj�ej

(
ti
ki

)
]

. ()

Then one has

∥∥ej(t) – ej
(
ti
ki

)∥∥ ≤ k
∫ t

ti
ki

∥∥ej(τ ) – ej
(
ti
ki

)∥∥dτ

+
(
t – ti

ki

)
[

k
∥
∥ej
(
ti
ki

)∥∥ +

∥
∥∥∥
∥

N∑

m=

ljm�em
(
ti
ki

)
+ dj�ej

(
ti
ki

)
∥
∥∥∥
∥

]

= k
∫ t

ti
ki

∥
∥ej(τ ) – ej

(
ti
ki

)∥∥dτ +
(
t – ti

ki

)
ϕj, ()

where ϕj = k‖ej(ti
ki

)‖ + ‖∑N
m= ljm�em(ti

ki
) + dj�ej(ti

ki
)‖.

Following from the Grönwall inequality, one gets

∥∥ej(t) – ej
(
ti
ki

)∥∥≤ ϕj

k
(
exp
(
k
(
t – ti

ki

))
– 
)
. ()

Therefore, one has

∥∥κi(t)
∥∥ =

∥∥∥
∥∥

N∑

j=

lij�
[
ej
(
ti
ki

)
– ej(t)

]
+ di�

[
ei
(
ti
ki

)
– ei(t)

]
∥∥∥
∥∥

≤
( N∑

j=

|lij|ϕj + diϕi

)
‖�‖

k
(
exp
(
k
(
t – ti

ki

))
– 
)
. ()

In the following, combining with the event-triggered schemes () and (), two self-
triggered algorithms are given as follows.

Algorithm  (Self-triggered algorithm)

Step : Initialization: set ti
 = , for all i = , , . . . , N .

Step : At time ti
ki

, ki ≥ , solve the following equation to find the next triggering time
ti
ki+ = ti

ki
+ τ i

D:

sup

{
τ i

D ≥  :
(
∑N

j= |lij|ϕj + diϕi)‖�‖
k

(
exp
(
kτ i

D
)

– 
)

≤
β ′
√

V (ti
ki

)
√

Nξmaxλmax(P)
exp

(
�


τ i

D

)}
. ()
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Step : If node i does not receive the renewed information from any of its neighbors during
(ti

ki
, ti

ki+), node i is triggered on time instant ti
ki+.

Step : If node i receives the renewed information from its neighbor j at time ti
k′

i
< ti

ki+,
compute the new value of ϑj and go to Step .

Theorem  Suppose Assumptions - are satisfied and f ∈ Quad(P,α�,β) with a posi-
tive matrix P and α < λ

ξmax
, β > , and P� is semipositive definite. Then, for any positive

 < β ′ < β , under the self-triggered Algorithm , () can achieve synchronization with ()
exponentially. Moreover, the difference of the inter-event sampling time instant τ i

D for node
i is lower bounded by a common positive instant which is given as

sup

{
τ i

D ≥  :
(
∑N

j= |lij|ϑj + diϑi)‖�‖
k

(
exp
(
kτ i

D
)

– 
)

≤ β ′
√

Nξmaxλmax(P)
exp

(
�


τ i

D

)}
, ()

where ϑj = (k +
∑N

m= |ljm|‖�‖+ dj‖�‖) √
Nξminλmin(P)

, ρ = V () + aλmax(P)
β ′(β–β ′–b)

∑N
i= ξi, and � =

σ – λN ‖P�‖
ξminλmin(P) – β ′ < .

Proof Under the self-triggered Algorithm , one can have

∥∥κi(t)
∥∥≤ β ′

√
Nξmaxλmax(P)

√√
√√

N∑

i=

ξieT
i (t)Pei(t).

Then, according to Theorem , () can achieve synchronization with () exponentially.
Next, it is only proved that the inter-event interval of node i is strictly positive and has

a lower bound τ i
D, which is given as (). Furthermore

ϕj = k
∥∥ej
(
ti
ki

)∥∥ +

∥∥
∥∥∥

N∑

m=

ljm�em
(
ti
ki

)
+ dj�ej

(
ti
ki

)
∥∥
∥∥∥

≤
(

k +
N∑

m=

|ljm|‖�‖ + dj‖�‖
)


√

Nξminλmin(P)

√
V
(
ti
ki

)
= ϑj

√
V
(
ti
ki

)
. ()

Hence, a sufficient condition to satisfy the updating rule () is
( N∑

j=

|lij|ϑj + diϑi

)
‖�‖

k
(
exp
(
k
(
t – ti

kd

))
– 
)≤ β ′

√
Nξmaxλmax(P)

exp

(
�


τ i

D

)
. ()

Thus, for each node, under the self-triggered Algorithm , the lower bound of the inter-
event sampling time can be given by

sup

{
τ i

D ≥  :
(
∑N

j= |lij|ϑj + diϑi)‖�‖
k

(
exp
(
kτ i

D
)

– 
)

≤ β ′
√

Nξmaxλmax(P)
exp

(
�


τ i

D

)}
. ()

This completes the proof. �
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Remark  In (), if τ i
D = , the left-hand term equals zero, while the right-hand term is

nonzero. Therefore, the inter-event interval of node i is strictly positive and has a lower
bound τ i

D, which is given as (). To predict the next triggering time, each node only re-
quires the states of itself and its neighbors at the last triggering time.

According to the event-triggered scheme (), one can get the following result.

Theorem  Suppose Assumptions - are satisfied and f ∈ Quad(P,α�,β) with a positive
matrix P and α < λ

ξmax
, β > , and P� is semipositive definite. For any positive  < β ′ < β ,

set inter-event interval τ i
D by

τ i
D = sup

{
τ ≥  :

(
∑N

j= |lij|ϕj + diϕi)‖�‖
k

(
exp(kτ ) – 

)≤ a exp
(
–b
(
ti
ki

+ τ
))
}

. ()

The triggering time ti
ki

is by the following algorithm:
() Initialization: set ti

 = , for all i = , , . . . , N .
() At time ti

ki
, ki ≥ , solve the following equation to find the next triggering time ti

ki+:

(
∑N

j= |lij|ϕj + diϕi)‖�‖
k

(
exp
(
kτ i

D
)

– 
)≤ a exp

(
–b
(
ti
ki

+ τ i
D
))

. ()

() Trigger node i by changing ti
ki

into ti
ki+ = ti

ki
+ τ i

D.
Then () can synchronize with () exponentially and the Zeno behavior can be excluded.

The proof of this theorem is similar to Theorem .

5 An illustrative example
In this section, two numerical simulation examples are given to illustrate the effectiveness
of the proposed methods. The system is an array of  linearly coupled Chua circuits with
the node dynamics

f
(
xi(t)

)
=

⎛

⎜
⎝

p ∗ (–xi + xi – g(xi))
xi – xi + xi

–q ∗ xi

⎞

⎟
⎠ , ()

where xi(t) = (xi(t), xi(t), xi(t))T , and g(v) = m ∗ v + (m – m) ∗ (|v + | – |v – |)/ with
the parameters p = ., q = ., m = –., m = –.. The intrinsic node dynamics

Figure 1 A double-scrolling chaotic attractor of Chua
circuit.
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Figure 2 Network topology among the coupled nodes.

Figure 3 Synchronization errors of the 3 nodes under the updating rule (7).

(without diffusion) has a double-scrolling chaotic attractor [], which is shown in Fig-
ure . The coupling graph topology is shown in Figure . Node  is the virtual node. To
validate the Quad condition, let P = � = I, where I stands for the identity matrix of three
dimensions. Noting the Jacobin matrices of f is one of the following:

A =

⎛

⎜
⎝

–. . 
 – 
 –. 

⎞

⎟
⎠ , A =

⎛

⎜
⎝

. . 
 – 
 –. 

⎞

⎟
⎠ , ()

then we can estimate β ′ = α – λmax((A)s) = α – ., where . is the largest eigen-
value of the symmetry parts of all Jacobin matrices of f . In the following, we pick α = ,
β = .. Thus, f satisfies the Quad condition. Pick d = ., d = d = . Then there
exists a diagonal matrix � = diag{., ., .} such that �(L + D) + (L + D)T� is positive
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Figure 4 Synchronization errors of the 3 nodes under the updating rule (8).

Figure 5 Tracking trajectories between the virtual node and the 3 nodes under the updating rule (41).
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Figure 6 Tracking trajectories between the virtual node and the 3 nodes under the updating rule (45).

with eigenvalues λ = ., λ = ., λ = .. The ordinary differential () and ()
are numerically solved by the Runge-Kutta method with a time step . (seconds) and the
time duration of the numerical simulations is [, ] (seconds). Under the updating rule
(), Figure  shows the synchronization errors of the  nodes. We take the same value of di

as above and a = . and b = .. Figure  shows the synchronization errors of the  nodes
under the updating rule (). The tracking trajectories between the virtual node and the 
nodes under the updating rule () and () are shown in Figures  and , respectively.

6 Conclusions
In this paper, event-triggered schemes and self-triggered schemes are investigated to re-
alize the exponential synchronization of the networked dynamical systems. The coupled
information under these schemes is updated only when the triggering conditions are vi-
olated. The next observation time for these nodes is predicted only based on the latest
observations of their neighborhood and the virtual leader. Thus, continuous communica-
tion can be avoided and the number of information transmission is largely reduced. More-
over, a positive lower bound for inter-event intervals is achieved and the Zeno behavior
can be excluded. Finally, two numerical simulation examples are provided to illustrate the
effectiveness of the proposed results. In the future, we will focus on the related applica-
tions of the event-triggered scheme in the coupled neural networks with time-delays and
quantization.

Competing interests
The authors declare that they have no competing interests.



Gao and Zhu Advances in Difference Equations  (2016) 2016:286 Page 17 of 17

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the manuscript.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11501391, 11601449) and by the Key
Program of Sichuan Provincial Department of Education (16ZA0066).

Received: 17 May 2016 Accepted: 19 October 2016

References
1. Hespanha, JP, Naghshtabrizi, P, Xu, Y: A survey of recent results in networked control systems. Proc. IEEE 95(1),

138-162 (2007)
2. Huang, C, Ho, DW, Lu, J, Kurths, J: Pinning synchronization in T-S fuzzy complex networks with partial and

discrete-time couplings. IEEE Trans. Fuzzy Syst. 23(4), 1274-1285 (2015)
3. Tang, Y, Gao, H, Kurths, J: Robust H∞ self-triggered control of networked systems under packet dropouts (2015).

doi:10.1109/TCYB.2015.2502619
4. Lu, J, Zhong, J, Tang, Y, Huang, T, Cao, J, Kurths, J: Synchronization in output-coupled temporal Boolean networks. Sci.

Rep. 4, 6292 (2014)
5. Wang, T, Gao, H, Qiu, J: A combined adaptive neural network and nonlinear model predictive control for multirate

networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 416-425 (2016)
6. Su, H, Rong, Z, Chen, MZ, Wang, X, Chen, G, Wang, H: Decentralized adaptive pinning control for cluster

synchronization of complex dynamical networks. IEEE Trans. Cybern. 43(1), 394-399 (2013)
7. Yu, W, Chen, G, Lu, J, Kurths, J: Synchronization via pinning control on general complex networks. SIAM J. Control

Optim. 51(2), 1395-1416 (2013)
8. Deng, L, Wu, Z, Wu, Q: Pinning synchronization of complex network with non-derivative and derivative coupling.

Nonlinear Dyn. 73(1-2), 775-782 (2013)
9. Wu, Z-G, Shi, P, Su, H, Chu, J: Sampled-data exponential synchronization of complex dynamical networks with

time-varying coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1177-1187 (2013)
10. Wen, G, Yu, W, Chen, MZ, Yu, X, Chen, G: Pinning synchronization of directed networks with aperiodic sampled-data

communications. IEEE Trans. Circuits Syst. I, Regul. Pap. 61(11), 3245-3255 (2014)
11. Li, H, Liao, X, Huang, T, Zhu, W, Liu, Y: Second-order global consensus in multiagent networks with random

directional link failure. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 565-575 (2015)
12. Zhang, L, Gao, H, Kaynak, O: Network-induced constraints in networked control systems - a survey. IEEE Trans. Ind.

Inform. 9(1), 403-416 (2013)
13. Gao, H, Chen, T, Lam, J: A new delay system approach to network-based control. Automatica 44(1), 39-52 (2008)
14. Wang, X, Lemmon, MD: Self-triggering under state-independent disturbances. IEEE Trans. Autom. Control 55(6),

1494-1500 (2010)
15. Wang, X, Lemmon, MD: Event-triggering in distributed networked control systems. IEEE Trans. Autom. Control 56(3),

586-601 (2011)
16. Hu, W, Liu, L, Feng, G: Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Trans.

Cybern. 46(1), 148-157 (2016)
17. Åström, KJ, Bernhardsson, B: Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In:

Proceedings of the 41st IEEE Conference on Decision and Control, vol. 2, pp. 2011-2016. IEEE Press, New York (2002)
18. Garcia, E, Antsaklis, PJ: Model-based event-triggered control for systems with quantization and time-varying network

delays. IEEE Trans. Autom. Control 58(2), 422-434 (2013)
19. Hu, S, Yue, D: Event-triggered control design of linear networked systems with quantizations. ISA Trans. 51(1),

153-162 (2012)
20. Li, H, Liao, X, Chen, G, Hill, DJ, Dong, Z, Huang, T: Event-triggered asynchronous intermittent communication strategy

for synchronization in complex dynamical networks. Neural Netw. 66, 1-10 (2015)
21. Li, H, Liao, X, Huang, T, Zhu, W: Event-triggering sampling based leader-following consensus in second-order

multi-agent systems. IEEE Trans. Autom. Control 60(7), 1998-2003 (2015)
22. Guo, G, Ding, L, Han, Q-L: A distributed event-triggered transmission strategy for sampled-data consensus of

multi-agent systems. Automatica 50(5), 1489-1496 (2014)
23. Li, H, Chen, G, Huang, T, Dong, Z, Zhu, W, Gao, L: Event-triggered distributed average consensus over directed digital

networks with limited communication bandwidth. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2015.2496977
24. Li, H, Chen, G, Huang, T, Dong, Z: High-performance consensus control in networked systems with limited

bandwidth communication and time-varying directed topologies. IEEE Trans. Neural Netw. Learn. Syst. (2016).
doi:10.1109/TNNLS.2016.2519894

25. Xu, W, Ho, DW, Li, L, Cao, J: Event-triggered schemes on leader-following consensus of general linear multiagent
systems under different topologies. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2510746

26. Lu, W, Han, Y, Chen, T: Synchronization in networks of linearly coupled dynamical systems via event-triggered
diffusions. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3060-3069 (2015)

27. Wen, G, Yu, W, Zhao, Y, Cao, J: Pinning synchronisation in fixed and switching directed networks of Lorenz-type
nodes. IET Control Theory Appl. 7(10), 1387-1397 (2013)

28. Tarjan, R: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146-160 (1972)
29. Li, L, Ho, DW, Cao, J, Lu, J: Pinning cluster synchronization in an array of coupled neural networks under event-based

mechanism. Neural Netw. 76, 1-12 (2016)
30. Matsumoto, T, Chua, LO, Komuro, M: The double scroll. IEEE Trans. Circuits Syst. 32(8), 797-818 (1985)

http://dx.doi.org/10.1109/TCYB.2015.2502619
http://dx.doi.org/10.1109/TCYB.2015.2496977
http://dx.doi.org/10.1109/TNNLS.2016.2519894
http://dx.doi.org/10.1109/TCYB.2015.2510746

	Global exponential synchronization of networked dynamical systems under event-triggered control schemes
	Abstract
	Keywords

	Introduction
	Preliminaries and problem formulation
	Event-triggered scheme for pinning synchronization
	Self-triggered scheme for pinning synchronization
	An illustrative example
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


