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Abstract
In this paper we investigate an impulsive discrete time system with delay. By using
Lyapunov stability theory and a Razumikhin type technique, some new criteria for the
exponentially practical stability of impulsive discrete time system with delay are
established. A numerical example is given to show the effectiveness of our theoretical
results.
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1 Introduction
According to a study, a discrete time system is a more natural way to represent systems
such as networked control system, numerical analysis, and population models [–]. In
most physical dynamic systems, abrupt state changes at certain moments often occur. It is
natural to assume these changes to happen instantaneously. Such dynamical systems with
these changes are called impulsive systems. Impulsive systems arise in many fields and
there are several studies on stability of impulsive systems [–, , –]. Moreover, the
real processes in our world always involve time delay systems; for example, manufacturing
processes, digital control systems, population dynamics, and the electronic implementa-
tion of analog neural networks, etc. It is well known that time delay might cause instability,
divergence behavior, and oscillation of dynamic systems. Therefore, the stability of impul-
sive system with time delay has been investigated extensively over the past decades [–].

Recently, the stability analysis of time delay system has been investigated extensively
in many areas [–, , , , , ]. There are important types of stability of dynami-
cal systems, namely exponential stability and practical stability. In the case of exponen-
tial stability, it is required that all solutions starting near an equilibrium point not only
stay nearby, but tend to the equilibrium point very fast with exponential decay rate; see
[–, , , , , ]. Meanwhile, for practical stability, one only needs to stabilize a
system in a region of phase space, namely the system may oscillate close to the state, in
which the performance is still acceptable. There are several results on the practical sta-
bility for continuous time systems with delay [, , ] and without delay [, , ].
On the other hand, there are few results on practical stability for discrete time systems
with delay [, ]. Moreover, there are several practical applications of impulsive discrete
time system with delay such as BAM neural networks [], Nicholson’s blowflies model
[], and switched systems with delays [–]. Therefore, it is important to investigate
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the practical stability problem of impulsive discrete time system with delay. In [, ], the
authors have studied discrete time delayed dynamic systems with impulsive effects. By
employing Lyapunov stability theory and a Razumikhin type technique, exponential sta-
bility criteria of impulsive discrete time system with delay have been derived. In [], an
asymptotically practical stability condition of impulsive discrete systems with time de-
lays has been provided by using Lyapunov stability theory and a Razumikhin type tech-
nique. However, the stability criteria depend on τ , namely, τ � supm∈Z+{km+ – km} < +∞,
where km are impulsive moments. Obviously, exponential stability implies exponentially
practical stability but not conversely. However, in several practical applications, one only
needs to stabilize a system in a region of phase space, namely the system may oscil-
late near the equilibrium point, in which the performance is still acceptable. Motivated
by the above discussions, in this paper, we derive novel exponentially practical stability
criteria of impulsive discrete time systems with delay by using Lyapunov stability the-
ory and a Razumikhin type technique. To the best of our knowledge, it is the first re-
sult on the exponentially practical stability of impulsive discrete time systems with de-
lay. Moreover, comparing to [] which proposed an asymptotically practical stability con-
dition, our technique can be used to derive an exponentially practical stability condi-
tion if it is more desirable. Furthermore, the obtained condition is not required that
supm∈Z+{km+ – km} < +∞, where km are impulsive moments which is imposed in [].
The paper is organized as follows. In Section , we introduce some notations, definitions,
and a proposition. In Section , we give new criteria for exponentially practical stabil-
ity of impulsive discrete time systems with delay. In Section , a numerical example is
given to show the effectiveness of our theoretical results. Our conclusion is given in Sec-
tion .

2 Preliminaries
Let R

n denote the n dimensional Euclidean space, ‖x‖ is the Euclidean norm of vec-
tor x. Given a positive integer τ , for any function φ : N–τ −→ R

n, we define ‖φ‖ =
maxθ∈N–τ {‖φ(θ )‖}, N = {, , , . . .} and N–τ = {–τ , –τ – , . . . , –, }.

Consider the following impulsive discrete time system with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k + ) = f (k, xk), k ≥ k,

x(k) =

⎧
⎨

⎩

x(km) + Im(km, x(km)), k = km,

x(k), k �= km, m ∈N,

x(s) = φ(s), s ∈Nk–τ ,

(.)

where x(k) ∈ R
n, xk is defined by xk(s) = x(k +s) for any s ∈N–τ . We assume f : N×Nk–τ →

R
n and Im : N×R

n →R
n for m ∈N, and the impulsive moments satisfy  ≤ k < k < k <

· · · , km → ∞ for m → ∞. Furthermore, we assume f (k, ) = , Im(k, ) = , which implies
that (.) admits the trivial solution. Let x(k; k,φ) denote the trajectory of system (.)
with initial condition φ.

Definition . ([, ]) The trivial solution of system (.) is exponentially practically
stable in the pth moment, if, for any k ≥ k there exist constants λ > , M ≥ , r >  such
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that

∥
∥x(k; k,φ)

∥
∥p ≤ M‖φ‖pe–λ(k–k) + r.

The following proposition will be used in the proof of our main results. The proofs are
straightforward and will be omitted.

Proposition . Let γ ,β be positive real numbers and  < λ < . If one of the following
conditions holds:

(i) γ ≥  and γ e–
γ e < β < ,

(ii) γ <  and e–
e < β < ,

then max{( – β)eλ, ( – β)γ eλ} < .

3 Main results
We first consider the exponentially practical stability problem of system (.) in the case
γ ≥ .

Theorem . If there exist positive numbers a, c, c, p,γ , q,β ,η; q > γ ≥ , γ e–
γ e < β < , 

γ
>

 – β ,η < min{ a–aγ +aγβ

γ
,βa} and a Lyapunov function V (k, x(k)) such that the following

conditions hold:
(i) c‖x(k)‖p ≤ V (k, x(k)) ≤ c‖x(k)‖p + a,∀k ≥ k – τ , x ∈R

n,
(ii) if V (k + s, x(k + s)) < qV (k + , x(k + )) with s ∈N–τ , then

	V (k, x(k)) = V (k + , x(k + )) – V (k, x(k)) ≤ –βV (k, x(k)) + η holds,
(iii) V (km, x(km)) = V (km, x(km)) + Im(km, x(km)) ≤ γ V (km, x(km)), m ∈N, x ∈R

n,
then the trivial solution of system (.) is exponentially practically stable in the pth moment.

Proof Since q > γ ≥ , there exists  < λ <  such that

q > γ eλ(τ+) ≥ eλ(τ+).

From (i), for k ∈ [k – τ , k], we get

V
(
k, x(k)

) ≤ c‖x‖p + a ≤ c‖x‖pe–λ(k–k) + a ≤ c‖φ‖pe–λ(k–k) + a. (.)

We claim that

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a, k ∈ [km– + , km]. (.)

Now, we will prove (.) by using mathematical induction.
First, we show that (.) holds for m = , namely

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a, k ∈ [k + , k]. (.)

We assume (.) were not true, then there exists k ∈ [k + , k] such that V (k, x(k)) >
c‖φ‖pe–λ(k–k) + a. Let k∗ = min{k ∈ [k + , k]/V (k, x(k)) > c‖φ‖pe–λ(k–k) + a}. From (.)
and the definition of k∗, we have

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a, k ∈ [
k – τ , k∗ – 

]
.
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We will consider two possible cases for k∗ ∈ [k + , k].
(I) k∗ ∈ [k + , k – ].

In this case, for any s ∈N–τ , we have

V
(
k∗ –  + s, x

(
k∗ –  + s

)) ≤ c‖φ‖pe–λ(k∗–+s–k) + a

= c‖φ‖pe–λ(s–)e–λ(k∗–k) + a

≤ ceλ(τ+)‖φ‖pe–λ(k∗–k) + aeλ(τ+)

= eλ(τ+)[c‖φ‖pe–λ(k∗–k) + a
]

< qV
(
k∗, x

(
k∗)).

Let k = k∗ – , then we get V (k + s, x(k + s)) ≤ qV (k + , x(k + )). By (ii), we have
	V (k, x(k)) ≤ –βV (k, x(k)) + η holds. Thus, we have

V
(
k∗, x

(
k∗)) ≤ ( – β) V

(
k∗ – , x

(
k∗ – 

))
+ η

≤ ( – β)
[
c‖φ‖pe–λ(k∗––k) + a

]
+ η

≤ ( – β)eλc‖φ‖pe–λ(k∗–k) + a – βa + η.

By assumption of η and Proposition ., we get V (k∗, x(k∗)) ≤ ( – β)eλc‖φ‖pe–λ(k∗–k) +
a – βa + η, which contradicts the definition of k∗. Hence (.) holds.

(II) k∗ = k.
In this case, we have V (k, x(k)) > c‖φ‖pe–λ(k–k) + a and for any s ∈N–τ , we get

V
(
k –  + s, x(k –  + s)

) ≤ c‖φ‖pe–λ(k–+s–k) + a

= c‖φ‖pe–λ(s–)e–λ(k–k) + a

≤ ceλ(τ+)‖φ‖pe–λ(k–k) + aeλ(τ+)

= eλ(τ+)[c‖φ‖pe–λ(k–k) + a
]

< eλ(τ+)V
(
k, x(k)

)

< eλ(τ+)γ V
(
k, x(k)

)

< qV
(
k, x(k)

)
.

Let k = k –, then we get V (k +s, x(k +s)) ≤ qV (k +, x(k +)). By (ii), we have 	V (k, x(k)) ≤
–βV (k, x(k)) + η, which gives


γ

V
(
k, x(k)

) ≤ V
(
k, x(k)

) ≤ ( – β)V
(
k – , x(k – )

)
+ η.

Thus, we obtain

V
(
k, x(k)

) ≤ ( – β)γ V
(
k – , x(k – )

)
+ ηγ

≤ ( – β)γ
[
c‖φ‖pe–λ(k––k) + a

]
+ ηγ

≤ ( – β)γ eλc‖φ‖pe–λ(k–k) + aγ – aγβ + ηγ .
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By assumption of η and Proposition ., we get V (k∗, x(k∗)) ≤ ( – β)γ eλc‖φ‖pe–λ(k∗–k) +
aγ – aγβ + ηγ , which contradicts the definition of k∗ = k. Hence (.) holds.

Next, we assume (.) holds for m ∈N, namely

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a, k ∈ [km– + , km].

Then we will show that

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a, k ∈ [km + , km+]. (.)

We assume (.) were not true, then there exists

k∗ = min
{

k ∈ [km + , km+]/V
(
k, x(k)

)
> c‖φ‖pe–λ(k–k) + a

}
.

For k ∈ [km + , k∗ – ], we have V (k, x(k)) ≤ c‖φ‖pe–λ(k–k) + a. We will consider two pos-
sible cases for k∗ ∈ [km + , km+].

(I) k∗ ∈ [km + , km+ – ].
In this case, for any s ∈N–τ , we have

V
(
k∗ –  + s, x

(
k∗ –  + s

)) ≤ c‖φ‖pe–λ(k∗–+s–k) + a

= c‖φ‖pe–λ(s–)e–λ(k∗–k) + a

≤ ceλ(τ+)‖φ‖pe–λ(k∗–k) + aeλ(τ+)

= eλ(τ+)[c‖φ‖pe–λ(k∗–k) + a
]

< qV
(
k∗, x

(
k∗)),

thus V (k + s, x(k + s)) ≤ qV (k + , x(k + )) and from (ii), we have 	V (k, x(k)) ≤ –βV (k,
x(k)) + η, which contradicts the definition of k∗. Hence (.) holds.

(II) k∗ = km+.
In this case, we have V (km+, x(km+)) > c‖φ‖pe–λ(km+–k) + a. Then, for any s ∈N–τ , we get

V
(
km+ –  + s, x(km+ –  + s)

) ≤ c‖φ‖pe–λ(km+–+s–k) + a

= c‖φ‖pe–λ(s–)e–λ(km+–k) + a

≤ ceλ(τ+)‖φ‖pe–λ(km+–k) + aeλ(τ+)

= eλ(τ+)[c‖φ‖pe–λ(km+–k) + a
]

< eλ(τ+)V
(
k, x(km+)

)

< eλ(τ+)γ V
(
k, x(km+)

)

< qV
(
k, x(km+)

)
.

Let k = km+ – , then we get V (k + s, x(k + s)) ≤ qV (k + , x(k + )). By (ii), we have
	V (k, x(k)) ≤ –βV (k, x(k)) + η, which gives


γ

V
(
km+, x(km+)

) ≤ V
(
km+, x(km+)

) ≤ ( – β)V
(
km+ – , x(km+ – )

)
+ η.
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Thus, we obtain

V
(
km+, x(km+)

) ≤ ( – β)γ V
(
km+ – , x(km+ – )

)
+ ηγ

≤ ( – β)γ
[
c‖φ‖pe–λ(km+––k) + a

]
+ ηγ

≤ ( – β)γ eλc‖φ‖pe–λ(km+–k) + aγ – aγβ + ηγ .

By assumption on η and Proposition ., we get V (k∗, x(k∗)) ≤ ( –β)γ eλc‖φ‖pe–λ(k∗–k) +
aγ – aγβ + ηγ , which contradicts the definition of k∗ = km+. Hence (.) holds.

Thus, for all k ≥ k, we have

V
(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a.

From (i), we obtain

c
∥
∥x(k)

∥
∥p ≤ V

(
k, x(k)

) ≤ c‖φ‖pe–λ(k–k) + a,

which implies that

∥
∥x(k)

∥
∥p ≤ c

c
‖φ‖pe–λ(k–k) +

a
c

.

Therefore, the trivial solution of system (.) is exponentially practically stable in the pth
moment. �

Next, we give an exponentially practical stability condition of system (.) for the case
 < γ < .

Theorem . If there exist positive numbers a, c, c, p,γ , q,β ,η; q >  > γ > , e–
e < β <

, 
γ

>  – β ,η < min{ a–aγ +aγβ

γ
,βa} and a Lyapunov function V (k, x(k)) such that the fol-

lowing conditions hold:
(i) c‖x(k)‖p ≤ V (k, x(k)) ≤ c‖x(k)‖p + a,∀k ≥ k – τ , x ∈R

n,
(ii) if V (k + s, x(k + s)) < qV (k + , x(k + )) with s ∈N–τ , then

	V (k, x(k)) = V (k + , x(k + )) – V (k, x(k)) ≤ –βV (k, x(k)) + η hold,
(iii) V (km, x(km)) = V (km, x(km)) + Im(km, x(km)) ≤ γ V (km, x(km)), m ∈N, x ∈R

n,
then the trivial solution of system (.) is exponentially practically stable in the pth moment.

Proof Since q >  > γ > , there exists  < λ <  such that

q > eλ(τ+) ≥ γ eλ(τ+).

From assumption of η and Proposition ., by using a similar argument as in the proof
of Theorem ., we may show that ‖x(k)‖p ≤ c

c
‖φ‖pe–λ(k–k) + a

c
,∀k ≥ k. Therefore, the

trivial solution of system (.) is exponentially practically stable in the pth moment. �

Remark . From the methods of proof of Theorem . and Theorem ., it is clear that
these methods can be applied for an impulsive discrete time system with time varying
delay τ (k) with  ≤ τ (k) ≤ τ , τ > .
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Remark . We now provide a direct and effective solving algorithm corresponding to
Theorems . and . as follows:

. First, we choose an appropriate Lyapunov function candidate. Then we make an
estimate for c, c and a satisfying condition (i).

. Next, find an estimation of γ which satisfies (iii).
. Finally, with estimates of c, c, a and γ in  and , we choose appropriate q,β , and η

which satisfy condition (ii).

4 Numerical example
Example . Consider the following impulsive discrete time system with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k + ) = cx(k) + dx(k – ), k ≥ ,

x(k) =

⎧
⎨

⎩

γ x(km), k = km,

x(k), k �= km, m ∈N,

x(s) = φ(s), s ∈N–,

(.)

where c, d are arbitrary constants and γ is positive constant, which is considered in [].
Let a >  be given. If there exist positive numbers c, c, p,γ , q,β ,η such that η = ( – |c| –
|d|)a,β ≤ min{ – |c|

–|d|q ,γ – |c|
–|d|q }, then the trivial solution of system (.) is exponentially

practically stable in the pth moment.

Proof We choose a Lyapunov function V (k, x(k)) = |x(k)| + a; then we have
(i) c‖x(k)‖ ≤ V (k, x(k)) = |x(k)| + a ≤ c‖x(k)‖ + a,∀k ≥ k – .
(ii) Assume V (k + s, x(k + s)) < qV (k + , x(k + )) with s ∈N–, then we have

V
(
k + , x(k + )

)
=

∣
∣x(k + )

∣
∣ + a

=
∣
∣cx(k) + dx(k – )

∣
∣ + a

= |c|∣∣x(k)
∣
∣ + |d|∣∣x(k – )

∣
∣ + a

= |c|∣∣x(k)
∣
∣ + |c|a – |c|a + |d|∣∣x(k – )

∣
∣ + |d|a – |d|a + a

= |c|V (
k, x(k)

)
+ |d|V (

k – , x(k – )
)

+
(
 – |c| – |d|)a

≤ |c|V (
k, x(k)

)
+ |d|qV

(
k + , x(k + )

)
+

(
 – |c| – |d|)a

≤ |c|
 – |d|q V

(
k, x(k)

)
+

(
 – |c| – |d|)a.

We have two cases as follows.
Case I. k �= km. In this case, we have

	V
(
k, x(k)

)
= V

(
k + , x(k + )

)
– V

(
k, x(k)

)

= V
(
k + , x(k + )

)
– V

(
k, x(k)

)

≤ |c|
 – |d|q V

(
k, x(k)

)
+

(
 – |c| – |d|)a – V

(
k, x(k)

)

=
( |c|

 – |d|q – 
)

V
(
k, x(k)

)
+

(
 – |c| – |d|)a
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= –
(

 –
|c|

 – |d|q
)

V
(
k, x(k)

)
+

(
 – |c| – |d|)a

= –
(

 –
|c|

 – |d|q
)

V
(
k, x(k)

)
+ η; η =

(
 – |c| – |d|)a.

Case II. k = km. In this case, we have

	V
(
k, x(k)

)
= V

(
k + , x(k + )

)
– V

(
k, x(k)

)

≤ |c|
 – |d|q V

(
k, x(k)

)
+

(
 – |c| – |d|)a – γ V

(
k, x(k)

)

=
( |c|

 – |d|q – γ

)

V
(
k, x(k)

)
+

(
 – |c| – |d|)a

= –
(

γ –
|c|

 – |d|q
)

V
(
k, x(k)

)
+

(
 – |c| – |d|)a

= –
(

γ –
|c|

 – |d|q
)

V
(
k, x(k)

)
+ η; η =

(
 – |c| – |d|)a.

From the assumptions, we get

	V
(
k, x(k)

) ≤ –βV
(
k, x(k)

)
+ η.

(iii) For k = km, we have

V
(
km, x(km)

)
=

∣
∣x(km)

∣
∣ + a

=
∣
∣γ x(km)

∣
∣ + a

= γ

[
∣
∣x(km)

∣
∣ +

a
γ

]

≤ γ
[∣
∣x(km)

∣
∣ + a

]

= γ V
(
km, x(km)

)
.

Therefore, from Theorem ., we conclude that the system (.) is exponentially practi-
cally stable in the pth moment. For simulation purposes, we let a = ., |c| = ., |d| =
.,λ = ., q = .,γ = .. We choose the Lyapunov function V (k, x(k)) = |x(k)| + ..
Then Theorem . is satisfied with the parameters c = c = , a = ., p = ,β = .,γ =
., and η = .. Therefore, we have ‖x(k)‖ ≤ .e–.k + .,∀k ≥ . In Figure  and Fig-
ure , with initial conditions given by x(–) = ., x() = ., the trajectories of solutions of
(.) with impulsive moments km = k + , m ∈ N in which supm∈Z+{km+ – km} =  < +∞
and km = {, , , , , , . . .} in which supm∈Z+{km+ – km} = ∞, are shown, respectively.
It is worth noting that, in [], the asymptotically practically stable criterion requires
τ � supm∈Z+{km+ – km} < +∞. On the other hand, this restriction is not required in The-
orem .. Therefore, our result is less conservative than the result obtained in []. �

5 Conclusion
In this paper the exponentially practical stability is derived for an impulsive discrete time
system with delay by using Lyapunov stability theory and a Razumikhin type technique.
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Figure 1 Numerical simulation of Example 4.1 with supm∈Z+ {km+1 – km} < +∞.

Figure 2 Numerical simulation of Example 4.1 with supm∈Z+ {km+1 – km} = ∞.

Comparing to some existing results in the literature the obtained criterion is not required
that supm∈Z+{km+ – km} < +∞, where km are impulsive moments. A numerical example is
given to show the effectiveness of our theoretical results.
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