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1 Introduction
Fractional differential equations are of interest in many areas of applications, such as eco-
nomics, signal identification and image processing, optical systems, aerodynamics, bio-
physics, thermal system materials and mechanical systems, control theory (see [2—6]).
There are several results that investigate the existence of solutions of various classes of
fractional differential equations. Much attention has been focused on the study of the ex-
istence and multiplicity of solutions as well as positive solutions for boundary value prob-
lem of fractional differential equations [7-9]. The main techniques used in these studies
are fixed point techniques, Leray-Schauder theory, or upper and lower solutions methods
(see, for example, [10-12] and the above references).

Recently, Dhage and Jahav [13] studied the existence and uniqueness of solutions of the
first order ordinary differential equation which involves a perturbation of the addition or

subtraction term given by

%[x(t) —f(t,x(t))] =g(t,x(t)), a.e. t € [ty, ty +al,

x(to) =X0.
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This type of equation has been called the hybrid differential equation. The existence result

for solutions has been generalized to the fractional order hybrid differential equation

j% [#(6) - f(t, (1)) ] = g(t, () ae.te€ [to,to +al, W

x(t()) = X0,

by Lu et al. [14] using the Riemann-Liouville fractional derivative. Later, Herzallah and Be-
leanu [15] discussed the existence of mild solutions for the above fractional order hybrid
differential equation (1.1) using the Caputo fractional derivative instead of taking it in the
Riemann-Liouville sense. The importance of the investigation of the above hybrid differ-
ential equations is that these equations are a perturbation of nonlinear equations which
generalizes various dynamic systems as a special case (see [16]).

Apart from the study of the existence of solutions, an approximation of the solution is
also of interest. Dhange et al. in [1] imposed the concept of partial continuity and partial
compactness to generalize the approach of Kranoselskii fixed point theorem and obtained
the approximation of solutions to hybrid differential equation. Other results on the ap-
proximation of solutions to various types of equations can be found, for example, in [17,
18].

The main objective of this work is to extend the existence results in Herzallah and Be-
leanu [15] by following the approach in [17] to construct an iterative sequence that ap-
proximates the solution based on some fixed point theorem. We note that in [15], only the
existence of a solution is proved. Our result gives both the existence and approximation
of solutions to Caputo fractional order hybrid differential equations and also extends the
existence results for ordinary hybrid differential equations. Moreover, the procedure in
this paper allows us to approximate the solutions numerically.

This paper is organized as follows. In the next section, we introduce the notation and
concepts of fractional order hybrid differential equations and discuss the frameworks of
our problem. Section 3 is devoted to a proof of the existence and approximation of mild
solutions of fractional order hybrid differential equations (1.1). Finally, in Section 4, we

provide numerical example to illustrate the obtained results.

2 Preliminaries and framework
In this work, let J = [£y,to + a] be a closed and bounded interval in R, where £, > 0 and
a > 0. We denote the function space C(J,R) for the space of continuous functions x: ] —

R. The space C(J, R) is a Banach space when equipped with the supremum norm || - || given

by
[l = sup|x(t)|
te]
forx € C(J,R).

We consider the fractional order nonlinear hybrid ordinary differential equation with
initial value problem given by (1.1), where f € C(J x R,R),g € C(J x R,R) and the initial
data xy € R. The fractional order derivative used in this paper is taken in the sense of
Caputo, which is defined as follows.
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Definition 2.1 For « > 0, the left Caputo fractional derivative of order « is defined by

dot

_# ‘ _ n—-a-1myn
. (”‘mn_a)fa“ oy D (2 d,

where 7 is a natural number such thatn —1 <« <nand D =d/dr.

Note that the integrability of the nth order derivative of f is required for the Caputo
fractional derivative.

We shall study the existence and approximation of mild solutions in the following sense.

Definition 2.2 The function x € C(J,R) is called a mild solution of the fractional nonlin-

ear hybrid ordinary differential equation (1.1) if it satisfies the integral equation

t _ )1
x(£) :f(t,x(t)) +x0 — f (£0,%0) + / %g(s,x(s)) ds, te]. (2.1)

We remark that the mild solution given in (2.1) can be obtained from (1.1) by applying
the fractional integral /* defined by

t
0= g | (€0 e
to both sides (see Lemma 11 in [15]).

In this paper, we consider the Banach space C(/, R) together with a partial order relation.
For any x,y € C(J,R), it is well known that the order relation x < y given by x(¢) < y(¢)
for all ¢ € J gives a partial ordering in C(/,R). We shall mention the following important
properties of the partially ordered Banach space (C(J, R), <), necessary for our study, from
the work of [1,18-20].

Let E = (E,%,] - ||) be a normed linear space equipped with a partial order relation <.
The space E is said to be regular if, for any nondecreasing sequence {x,},cy in E such
that x,, — x* as n — 00, we have x, < x* for all » € N. In particular, the space C(J,R) is
regular [1].

Definition 2.3 ([19]) An operator T : E — E is called nondecreasing if the order relation
is preserved under T, that is, for any x, y € E such that x < y, we have Tx < Ty.

Definition 2.4 ([20]) An operator T : E — E is called partially continuous at a € E if for
any ¢ > 0, there exists § > 0 such that || 7x — Ta|| < ¢ for all x comparable to a in E with
llx—all <é. T is called partially continuous on E if it is partially continuous at every a € E.
In particular, if T is partially continuous on E, then it is continuous on every chain C in E.
An operator T is called partially bounded if 7(C) is bounded for every chain C in E. An
operator 7 is said to be uniformly partially bounded if all chains T(C) in E are bounded
by the same constant.

Definition 2.5 ([20]) An operator T : E — E is called partially compact if for any chains
Cin E, the set T'(C) is a relatively compact subset of E. An operator T is said to be partially
totally bounded if for any totally ordered and bounded subset C of E, the set T(C) is a
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relatively compact subset of E. If T is partially continuous and partially totally bounded,
then we call it a partially completely continuous operator on E.

Definition 2.6 ([19]) Let E be a nonempty set equipped with an order relation < and a
metric d. We say that the order relation < and the metric d are compatible if the follow-
ing property is satisfied: if {x,},cn is @ monotone sequence in E for which a subsequence

{#; Jken Of {x,}nen converges to x*, then the whole sequence {x,},en converges to x*. Sim-

ilarly, if (E, <, || - ||) is a partially ordered normed linear space, we say that the order relation
=< and the norm || - || are compatible whenever the order relation < and the metric d in-
duced by the norm || - || are compatible.

We point out that the order relations and norms of (R, <,| - |) and (C(J,R), <, || - ||) are
compatible.

Definition 2.7 ([19]) An upper semi-continuous and nondecreasing function ¥ : R, —
R, is called a D-function if ¥ (0) = 0.

Definition 2.8 ([20]) Let (E, <,| - ||) be a normed linear space equipped with a partial
order relation <. A mapping T : E — E is called a partially nonlinear D-Lipschitz if there
is a D-function ¥ : R, — R, such that

ITx = Tyll < ¥ (Ilx -yl

for all comparable points x,y € E. If ¥ (r) = kr for some positive constant k, then T is called
a partially Lipschitz with a Lipschitz constant k. If k <1, we say that T is a partial contrac-
tion with contraction constant k. Moreover, T is said to be a nonlinear D-contraction if it
is nonlinear D-Lipschitz with v (j) < j for all j > 0.

The following hybrid fixed point result of [19] is often applied to establish the existence
and approximation of solutions of various differential and integral equations.

Theorem 2.1 ([20]) Let (E, <, || - ||) be a regular partially ordered complete normed linear
space. Suppose that the order relation < and the norm || - || are compatible. Let P :E — E
and Q : E — E be two nondecreasing operators such that:

(@) P is a partially nonlinear D-contraction.

(b) Q partially continuous and partially compact.

(c) There exists an element xo € E such that xg < Pxg + Qxg.
Then there exists a solution x* in E of the operator equation Px + Qx = x. In addition, the

sequence {x,}5 of successive iterations given by
Xps1 = Pxy + Qx,, n=0,1,...,
converges monotonically to x*.

We shall state the framework and assumptions for our study now.

Assumption 1 We assume the following conditions.
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(AO) The functionsf:J x R— Rand g:J x R — R are continuous.
(A1) f is nondecreasing in x for each t €  and x € R.
(A2) There exists a constant My > 0 such that 0 < |f(£,x)| < My forall £ € J and x € R.
(A3) There exists a D-contraction ¢ such that 0 < f(¢,x) — f(t,y) < p(x—y) fort €],
and x,y € R with x > y.
(B1) gis nondecreasing in x for each t € J and x € R.
(B2) There exists a constant M, > 0 such that 0 < |g(¢,x)| <M, forallt € J and x € R.
(B3) There exists a function u# € C(J, R) such that « is a lower solution the problem
(1.1), that is,
ﬂ [u(t) —f(t, u(t))] < g(t, M(t))» te] =ty ty +al,
dt® - (2.2)
u(ty) <xp € R.

3 Existence and approximation of mild solutions
This section is devoted to a proof of our main result on the existence and approximation
of mild solutions of fractional order hybrid differential equations.

Theorem 3.1 Suppose that the hypotheses (A0)-(A3) and (B1)-(B3) are satisfied. Then the
initial value problem (1.1) has a mild solution x* : ] — R and the sequence of successive
approximations x,, n=1,2,..., defined by

t _ -1
ni1(8) = f (&:%0(0) + %0 = f (£0, %0) + ./ =

@ g(s,%u(s)) ds,

x1(2) = u(®),
converges monotonically to x*.

Proof We take the partially ordered Banach space E = C(J,R). We prove the existence of
a solution to problem (1.1) by considering the equivalent operator equation

Px(t) + Qux(t) = x(¢),
where

t _ -1
Qu(t) = xo — f (t0,%0) + f (t=s) g(s,x(s)) ds,

to F(Ol)
Pux() = £ (t,%(2)),

for t € J. We shall show that the operators P and Q satisfy all the conditions in Theo-
rem 2.1.

Step I: First of all, we prove that P and Q are nondecreasing operators. For any x,y € E
with x > y, we obtain from assumption (A3)

Pa(t) = f(t2(2)) = £ (£, 5(2)) = Py(t).

This means P is nondecreasing. For Q, we have from assumption (B1)

t(+_ ya-1
Q) 00 = [ = [g(6409) ~gls9) ] s = 0,
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for any x > y in E. Therefore, the operator Q is also nondecreasing.
Step II: In this step, we show that the operator P satisfies condition (a) in Theorem 2.1,
that is, P is a partially bounded and partially nonlinear D-contraction on E. For this pur-

pose, let x € E be arbitrary. By the boundedness of f in condition (A2), we see that
|Px(@)] = |f (¢.(0))| < My,

for all ¢ € J. Therefore, we get || Px|| < My, which shows that P is bounded on E and so P
is partially bounded. Moreover, for any x,y € E such that x > y, we see from assumption
(A3) that

[ Px(t) - Py()] = [f (£,x() —f(£,5()] < ¢(|x®) —y@®)|) < P(lx-l)

for each ¢ € J, where the last inequality is obtained from the condition that ¢ is nonde-
creasing. Hence, we have |Px — Py| < ¢(||x — y||) for all x,y € E with x > y. This means
that P is a partially nonlinear D-contraction on E and, thus, partially continuous.

Step 1II: We verify the first property of Q in condition (b) of Theorem 2.1, that is, we
prove that Q is partially continuous on E. Let {x,},cn be a sequence in a chain C in E
satisfying x,, — x as n — 0o. We obtain from the boundedness of g in (B2), the continuity

of g in (A0), and the dominated convergence theorem

t _ -1
1im (Qx,)(8) = lim (xo — f(to,x0) + / %g(s,xn(s)) ds)

t (t—S)a_l
= lim xo — lim f(fo, %) + lim T)g(s,x,,(s)) ds
n—00 n—00 n—00 (01
t a—1
(t—s)*t .
=xg — f(to,x )+/ ———— lim g(s,x,(s)) ds
o —f(to, %o T Hoog( )
t (l’ _S)a—l

=xo — f(to, %0) + /

; Wg(s,x(s)) ds

= (Qx)(2)

for each ¢ € J. This implies that Ox,, converges to Qx pointwise on J and the convergence
is monotonic by the property of g. Next, we show that {Ox,},cn is equicontinuous in E.
Let ty,t, € ] = [to, to + a] with £ < t. We have

|(Qx,)(82) = (Qx,) (1)

= /tz Mg(s,x,,(s)) ds — ! Mg(s,xn(s) ds)

0 INGY) t INCY)
f —s)ot 5] a1
=< /t %g(s,xn(s)) ds—/t %g(s,xn(s)) ds
a — )t a1 _ -l
+ /; %g(s,xn(s))ds—/t %g(s,xn(s))ds

ty _ -1
:/ %g(s,xn(s))ds
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I /tol [(tz -5 —(y —s)"‘_l]g(s,xn(s)) ds

51_1‘\:[) , |(t2—s)“1|ds+mf {(t )"‘1—(t1—s)"‘1|ds

M, M,
= To‘i)a"’l(tz —-f)+ Ti) /to }(tg -5 (- s)“’1| ds

— 0,

as t, — t; — 0 uniformly for all # € N, where we use the dominated convergence theorem
for the limit in the second term above. This implies that Qx, — Ox uniformly. Therefore,
Q is partially continuous on E.

Step IV: Next we need to prove the remaining condition of operator Q in Theorem 2.1,
that is, Q is partially compact. Let C be a chain in E. We shall show that Q(C) is uniformly
bounded and equicontinuous in E. Let y € Q(C) be arbitrary. We have y = Q(x) for some
x € C. By hypothesis (B2), we see that

ity —s)?

ly@®)] = |(Qx()| = T

x0 — f (to, %0) + g(s,%u(s)) ds

M, 4
< w0 ~f(to,%0) | + 5 /to |t~ 97| ds

£ _(ti—to)"

M,
< |x0 —f(fo,xo)| + aT(@)

M,
|x0 f to,x())i F(Ot) a* =K

for all ¢ € J. Hence, we obtain [|y(¢)| = [|[(Q)x|| < K for all y € Q(C). This means Q(C) is
uniformly bounded. We next show that Q(C) is equicontinuous. Let y € Q(C) be arbitrary
and take £y, t, € J with £ < t,. We have

|(Qx)(82) - (Qx)(11)|

t _ -1 f el
:/t %g(s,x(s))ds_/ %g(s,x(s)ds)

0 to

1) _ o)1 f _ a1
/t %g(s,x(s))ds—/ %g(s,x(s))ds

to

<

t (t2 _ s)ot—lg(syx(s)) ds t (tl _ S)a—l

0 T@) y T SEH0)

5]

1"() to

ty _ -1
_ / (”F((SX)) g(5,x() ds

+

[(t2 —s)* 7t —(t - S)a_l]g(s,x(s)) ds

< F( )/ |(t2—s)"‘ 1|ds+ F( ) |(t s)"‘fl—(tl—s)”‘71|ds

M M,
= Tj)dafl(tz—tl) @) ; }(tz—s)a ot - )‘H|ds

—0



Somjaiwang and Sa Ngiamsunthorn Advances in Difference Equations (2016) 2016:278 Page 8 of 11

as tp — t; — 0 uniformly for y € Q(C). This means Q(C) is equicontinuous. It follows that
Q(C) is relatively compact. Hence, Q is partially compact.
Step V: By hypothesis (B3), the fractional hybrid equation (1.1) has a lower solution u
defined on J, that is,
dre

u(ty) < xo.

[u(®) —f (6, u®)] =g(tu(®), te],

By formulating a mild solution, we see that

t _ el
u(t) <f (& u(t)) + xo — f (£, %0) + / &g(s, u(s)) ds, (3.1)

to a)

for t € J. It follows that u satisfies the operator inequality u < Pu + Qu.

Thus, we conclude that the operators P and Q satisfy all conditions in Theorem 2.1.
Then the operator equation Px + Ox = x has a solution. Moreover, we have the approxi-
mation of solutions x,, as n =1,2,... for equation (1.1). O

4 Numerical examples
In this section, we give an example of hybrid fractional differential equation and show that
our main result can be applied to construct an approximate sequence for a solution. We

also illustrate it by showing a numerical result.

Example 4.1 Consider the following hybrid fractional differential equation:

% [x(t) —f(t,x(t))] = %tan‘1 x(t), te]=1[0,1],x(0) =1, (4.1)
where
3(Z) x>0,
_ 5\x+
/@ 0, x<0

(a) Graph of function f(t,z) (b) Graph of function g(t, z)

Figure 1 Graph of the functions f(t, x) and g(t, x).
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Itis clear that f and g are continuous functions on J/ x R. The assumption (A0) is satisfied.
Moreover, both functions f and g are nondecreasing. This verifies assumption (Al) and
(B1). The conditions (A2) and (B2) are also true since the function f is bounded by My = %,
that is,

X
<

0 <|f(tx) < 3|3

4 4
5 5

and the function g is bounded by M, = 7, that is,

0< |g(t,x)| = %|tan‘l| <M, = %

forall t x € R.
To verify assumption (A3), we show that there exists a D-contraction ¢ : R, — R, de-

fined by ¢(¢) = %t for all £ > 0 such that 0 < f(t,x) — f(t,y) < ¢(x —y) for all £ € [0,1] and
%,y € R with x > y. First consider x > y > 0, we see that

0 <(6,3) f(t,3) = %(x .- y%g)

( @-n+y y )
=) +y+3 (x-y)+y+3
(e=r55+3)

(x=y)+y+3

(&5)

(x—»+3

e =y

IA

IA
Gl s TE s

IA

I
S
B3
|
=

forall ¢ € [0,1]. It is easy to see that 0 < f(¢,x) — f(t,y) < ¢(x—y) for all ¢ € [0,1] also holds
for 0 >x >y and x > 0 > y. Hence, (A3) is satisfied.

Finally, for assumption (B3), we see that u(t) = 0.5 for all ¢ € [0,1] is a lower solution of
(3.1). This can be seen from

t _ a1
f(t, u(t)) +xg — f(0,%0) + /0 %g(s, u(s)) ds

t(+_ -1
:i 0.5 +1_§ 1 +/ &ltan_l(O.S)dS
5\05+3 5\1+3 o I'le) 2

4 1 £ .
=—+1--+———tan"(0.5)
35 5 2I(a+1)

for t € [0,1]. This means

t (t _ S)a—l

0.5 = u(t) §f(t, u(t)) +x0 —f(0,%0) + ; W

g(s, u(s)) ds

for t € [0,1] and u(£) = 0.5 is a lower solution. Since all assumptions are satisfied, we con-
clude from our main result in Theorem 3.1 that (4.1) has a solution «* : [0,1] — R, which
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Figure 2 Approximating sequence u, for the =
solution when & = 0.1,0.5,0.9. ol

u

uft)

u(t)

(c) Tteration for solutions when o = 0.9

is a limit of the monotone sequence u,, n = 0,1,2,..., defined by

Uni1(£) =f (£ un(t)) +1— %(%) + /0: % % tan™" u,,(s) ds (4.2)

for all ¢ € [0,1], where 1o (¢) = 0.5 for t € [0,1].

The iterative sequence for the solution of (4.1) is numerically illustrated in Figure 2 for
the fractional order derivative o = 0.1,0.5, and & = 0.9. In the above iteration scheme for
the sequence u,, defined by (4.2), we apply the trapezoidal rule for a numerical integration
with step size 0.002. Since the exact solution is not explicitly known, we use the relative
error between two iterates ||u, — u,_1|| as a criterion to stop the iteration when its value
is less than 0.002. In our example, the relative errors between two iterates ||ug — 5] are
1.67 x 1073, 1.04 x 1073, and 6.62 x 10~* for the case of o = 0.1,0.5, and & = 0.9, respec-
tively. The results show that the sequence of approximate solutions u, converges mono-
tonically.
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