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Abstract
Binary Bell polynomials are applied to construct two kinds of bilinear derivative
equations of a (3 + 1)-dimensional nonlinear equation. Based on one of the bilinear
forms, we derive a Bäcklund transformation, the corresponding Lax pair, infinite
conservation laws, and explicit solutions with an arbitrary function in y. In the
meantime, from the other bilinear form, we get another bilinear Bäcklund
transformation and exact solutions by utilizing the exchange formulas for Hirota’s
bilinear operators.
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1 Introduction
Nonlinear evolution equations (NLEEs) have attracted intensive attention in the past few
decades, since they can model many important phenomena and dynamic processes in
physics, mechanics, chemistry, and biology [, ]. The study of solutions for NLEEs is very
important in nonlinear physical phenomena and many effective methods have been used.
Numerical methods include the decomposition method [], the iteration method [], and
the spectral method [, ] are developed in recent years. Various effective analytic meth-
ods have been used to explore different kinds of solutions of NLEEs, such as the inverse
scattering method [], the Darboux transformation [, ], the Bäcklund transformation
[–], the Hirota method [, ], the algebra-geometric method [–], the homo-
topy analysis method [], and so on. Among the above methods, the Hirota method is
a powerful and direct approach to construct exact solutions of NLEEs. Once a nonlin-
ear equation is written in bilinear form, its multi-soliton solutions and rational solutions
are usually obtained in a systematic way. Unfortunately, this method relies on particular
skills, complex calculation, and suitable variable transformation. In recent years, Lambert,
Gilson et al. proposed an effective method based on the use of the Bell polynomials to ob-
tain bilinear Bäcklund transformation and Lax pair for soliton equations in a direct way
[–]. Fan developed this method to find bilinear Bäcklund transformations, Lax pairs,
infinite conservation laws of nonisospectral and variable-coefficient KdV, KP equations
[, ]. Wang applied the binary Bell polynomials to construct bilinear forms, bilinear
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Bäcklund transformations, Lax pairs of a generalized ( + )-dimensional Korteweg-de
Vries equation, and the modified generalized Vakhnenko equation [, ].

The Bäcklund transformation has been proven to be another powerful approach to ob-
tain explicit solutions of NLEEs. It is well known that the Bäcklund transformation is
a transformation that is related to a pair of solutions of a nonlinear equation. The ex-
change property of Hirota’s bilinear operators is found to be an effective tool in deriv-
ing a Bäcklund transformation for a given equation []. Wu recently constructed a bi-
linear Bäcklund transformation for a ( + )-dimensional soliton equation by using the
Hirota bilinear method and the exchange property of the D-operators []. Ma extended
this method to a ( + )-dimensional generalized KP equation, and obtained its bilinear
Bäcklund transformation and explicit solutions [].

In this paper, we would like to study the following ( + )-dimensional nonlinear equa-
tion:

uxxxy – (uxuy)x – uyt + uyz = . (.)

If we take z = t, equation (.) is reduced to the Boiti-Leon-Manna-Pempinelli equation
[–]

uxxxy + uyt – uxxuy – uxuxy = . (.)

So, equation (.) is a generalization of the BLMP equation. The main goal of this paper
is twofold. First of all, we will apply the binary Bell polynomials to construct two bilinear
forms of equation (.). Further, from one of the bilinear forms, we will derive a Bäcklund
transformation, the corresponding Lax pair, infinite conservation laws, and explicit solu-
tions of equation (.). Second, based on the other bilinear form, we would like to construct
another bilinear Bäcklund transformation and exact solutions of equation (.) by utilizing
the exchange formulas for Hirota’s bilinear operators.

This paper is organized as follows. In Section , we give a brief introduction of the bi-
nary Bell polynomials. In Section , we construct two bilinear forms of equation (.). Fur-
ther, based on one of the bilinear forms, exact solutions are obtained by using the Hirota
method. In Section , the bilinear Bäcklund transformation, the corresponding Lax pair,
and infinite conservation laws are obtained by using the binary Bell polynomials. In Sec-
tion , another bilinear Bäcklund transformation and traveling wave solutions of equation
(.) are derived by using the exchange formulas of Hirota’s bilinear operators. Finally,
some conclusions are given in the last section.

2 Binary Bell polynomials
To begin with, we will briefly introduce some basic concepts and notations of the Bell
polynomials. For details, refer to [–].

Let f = f (x, x, . . . , xn) be a C∞ function with n independent variables, the multi-
dimensional Bell polynomials (Y -polynomials) are defined as follows:

Ynx,...,nlxl (f ) = Yn,...,nl (frx,...,rlxl )

= exp(–f )∂n
x · · · ∂nl

xl
exp(f ), (.)
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where

frx,...,rlxl = ∂r
x · · · ∂rl

xl
f , r = , . . . , n, rl = , . . . , nl.

Based on the multi-dimensional Bell polynomials, the multi-dimensional binary Bell
polynomials (Y-polynomials) can be defined as follows:

Ynx,...,nlxl (v, w) = Ynx,...,nlxl (f )|frx,...,rlxl

=

{
vrx,...,rlxl , r + · · · + rl is odd,
wrx,...,rlxl , r + · · · + rl is even.

According to the above definitions, the first few lowest order binary Bell polynomials are

yx(v) = vx, yx(v, w) = wxx + v
x ,

yx,t(v, w) = wx,t + vxvt ,

yx(v, w) = vx + vxwx + v
x , (.)

yx(v, w) = wx + w
x + vxvx + v

xwx + v
x ,

. . . .

Proposition  The link between binary Bell polynomials Ynx,...,nlxl (v, w) and the standard
Hirota bilinear equation Dn

x · · ·Dnl
xl F · G can be given by the identity

Ynx,...,nlxl (v = ln F/G, w = ln FG) = (FG)–Dn
x · · ·Dnl

xl
F · G, (.)

in which n + n + · · · + nl ≥ , and operators Dx · · ·Dxl are classical Hirota’s bilinear op-
erators defined by

Dn
x · · ·Dnl

xl
F · G = (∂x – ∂x′


)n · · · (∂xl – ∂x′

l
)nl F(x, . . . , xl)

× G
(
x′

, . . . , x′
l
)|x′

=x,...,x′
l=xl .

In the particular case when F = G, equation (.) becomes

G–Dn
x · · ·Dnl

xl
G · G = Ynx,...,nlxl (, q =  ln G)

=

{
, n + · · · + nl is odd,
Pnx,...,nlxl (q), n + · · · + nl is even,

(.)

which is also called the case of P-polynomials,

Pnx,...,nlxl (q) = Ynx,...,nlxl (, q =  ln G).

The first few P-polynomials are

Px(q) = qx, Px,t(q) = qxt , Pxy(q) = qxy + qxqxy,

Px(q) = qx + qxqx + q
x, . . . .

(.)
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Equations (.) and (.) play an important role in connecting bilinear equations with the
corresponding NLEEs. Once an NLEE is written in the form of a combination of the Y-
polynomials, then its bilinear form can easily be obtained.

Proposition  The binary Bell polynomials Ynx,...,nlxl (v, w) can be separated into P-
polynomials and Y -polynomials,

(FG)–Dn
x · · ·Dnl

xl
F · G

= Ynx,...,nlxl (v, w)|v=ln F/G,w=ln FG

= Ynx,...,nlxl (v, v + q)|v=ln F/G,q= ln G

=
∑

n+···+nl=even

n∑
r=

· · ·
nl∑

rl=

l∏
i=

(
ni

ri

)
Prx,...,rlxl (q)

× Y(n–r)x,...,(nl–rl)xl (v). (.)

Under the Hopf-Cole transformation v = lnψ , that is, ψ = F/G, multi-dimensional binary
Bell polynomials Ynx,...,nlxl (v) can be linearized into the following form:

Ynx,...,nlxl |v=lnψ = ψnx,...,nlxl /ψ . (.)

Equations (.) and (.) provide a direct way to the associated Lax system of NLEEs.

3 Bilinear forms and exact solutions of equation (1.1)
Consider the generalized-BLMP equation (.), setting

u = –qx, (.)

where q is the function of x, y, z, t. Substituting equation (.) into equation (.) and
integrating with respect to x yields

qxy + qxxqxy – qyt + qyz = . (.)

Now according to the P-polynomials (.), equation (.) can be written as

Pxy – Pyt + Pyz = . (.)

Making a change of the dependent variable,

q =  ln f ⇐⇒ u = –qx = –(ln f )x,

and noting equation (.), we can get the following bilinear form:

(
D

xDy – DyDt + DyDz
)
f · f = . (.)

Assume that

u = –qx – �(y), (.)
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where �(y) is an arbitrary differential function of y. Substituting equation (.) into equa-
tion (.) and integrating with respect to x, the generalized-BLMP equation can be written
as

qxy + qxxqxy + ϕ(y)qxx – qyt + qyz = , (.)

where ϕ(y) = �′(y). Equation (.) can be cast into a linear combination form of the P-
polynomials,

Pxy + ϕ(y)Pxx – Pyt + Pyz = . (.)

Setting

q =  ln f ⇐⇒ u = –(ln f )x – �(y),

by using equation (.) which connects the Y-polynomials with the Hirota operators, we
can get another bilinear representation of equation (.),

(
D

xDy + ϕ(y)D
x – DyDt + DyDz

)
f · f = . (.)

Next, we would like to construct exact solutions for the generalized-BLMP equation (.)
with the aid of the Hirota method. Noting that the bilinear form (.) contains an arbitrary
function ϕ(y) = �′(y), we can get some particular solutions of equation (.) provided that
�(y) is appropriately chosen. So we will compute soliton solutions for equation (.) via
equation (.).

Expand f with respect to a formal parameter ε as follows:

f =  + f ()ε + f ()ε + f ()ε + · · · , (.)

where f (i) (i = , , . . .) are the functions of x, y, z, and t. Substituting equation (.) into
(.) and collecting the coefficients of each order of ε yields

f ()
xxxy + ϕ(y)f ()

xx – f ()
yt + f ()

yz = , (.a)


(
f ()
xxxy + ϕ(y)f ()

xx – f ()
yt + f ()

yz
)

= –
(
D

xDy + ϕ(y)D
x – DyDt + DyDz

)
f () · f (), (.b)

f ()
xxxy + ϕ(y)f ()

xx – f ()
yt + f ()

yz

= –
(
D

xDy + ϕ(y)D
x – DyDt + DyDz

)
f () · f (), (.c)

. . . .

From equations (.a)-(.c), we can get

f () = ekx– �(y)
k +mz+ 

 mt , (.)
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Figure 1 Solitary waves. (a) Bell-shaped solitary wave with �(y) = sech(y), t = 0, z = 0, k = 0.1; (b) two
bell-shaped solitary waves with �(y) = sech(y), t = 0, z = 0, k1 = 0.1, k2 = 0.3.

and the one-soliton solution for equation (.) is denoted by

u = –∂x
[
ln

(
 + ekx– �(y)

k +mz+ 
 mt)] – �(y).

Noting that (.a) is a linear differential equation,

f () = eξ + eξ , ξj = kjx –
�(y)

kj
+ mjz +




mjt (j = , ) (.)

is also a solution of equation (.a). Substituting equation (.) into equation (.b),
one can readily obtain

f () = eξ+ξ+A , eA =
(k – k)(k

 + k
 – kk)

(k + k)(k
 + k

 + kk)

and the two-soliton solution for equation (.) can be given as

u = –∂x
[
ln

(
 + eξ + eξ + eξ+ξ+A

)]
– �(y).

Two specific solutions of the above one-soliton and two-soliton solutions are plotted in
Figures  and .

4 Bilinear Bäcklund transformation, associated Lax pair, and infinite
conservation laws

In this section, we would like to construct the bilinear Bäcklund transformation, the Lax
pair, and infinite conservation laws of equation (.) via the bilinear form (.).
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Figure 2 Solitary periodic waves. (a) Solitary periodic wave with �(y) = sin(y), t = 0, z = 0, k = 0.1; (b) two
solitary periodic waves with �(y) = sin(y), t = 0, z = 0, k1 = 0.1, k2 = 0.3.

4.1 Bilinear Bäcklund transformation and associated Lax pair
Let q′ =  ln F and q =  ln G be two different solutions of equation (.), we have the two-
field condition

E
(
q′) – E(q) =

(
q′ – q

)
xy + 

(
q′

xxq′
xy – qxxqxy

)
+ ϕ(y)

(
q′ – q

)
x

– 
(
q′ – q

)
yt + 

(
q′ – q

)
yz. (.)

If we set

v =
(
q′ – q

)
/ = ln(F/G), w =

(
q′ + q

)
/ = ln(FG), (.)

then equation (.) can be rewritten as

(
E
(
q′) – E(q)

)
/ = vxy + (wxxvxy + vxwxy) + ϕ(y)vxx – vyt + vyz. (.)

Next, we need to impose a constraint to express equation (.) in the form of y-derivative
of Y-polynomials. A simple choice of such a constraint may be

Yxy(v, w) + ϕ(y) = , (.)

from which we can get

vxvxy + vyvxx + wxxy = . (.)

Owing to (.) and (.), equation (.) can be written as

(
E
(
q′) – E(q)

)
/ = ∂y

(
Yx(v, w) – Yt(v, w) + Yz(v, w)

)
= . (.)
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Thus, we deduce a coupled system of Y-polynomials

Yxy(v, w) + ϕ(y) = ,

Yx(v, w) – Yt(v, w) + Yz(v, w) = .
(.)

By virtue of equation (.), one can immediately get the bilinear Bäcklund transformation
of equation (.),

(
DxDy + ϕ(y)

)
F · G = ,(

D
x – Dt + Dz

)
F · G = .

(.)

For obtaining the corresponding Lax pair of system (.), one needs to make the Hopf-
Cole transformation v = lnψ . It follows from equations (.) and (.) that

Yt(v) = ψt/ψ , Yxy(v, w) = qxy + ψxy/ψ ,

Yz(v) = ψz/ψ , Yx(v, w) = qxψx/ψ + ψx/ψ .
(.)

Then system (.) is linearized into a Lax pair

Lψ = ψxy +
(
qxy + ϕ(y)

)
ψ = ,

Lψ = ψx + qxψ – ψt + ψz = .
(.)

It is easy to check that the integrability condition for (.)

[L, L]ψ =  (.)

is satisfied if u = –qx – �(y) is a solution of the generalized-BLMP equation (.).

4.2 Infinite conservation laws
To find infinite conservation laws for the generalized-BLMP equation (.), we would like
to introduce a new potential function

η =
q′

x – qx


,

it follows from equation (.) that

vx = η, wx = qx + η. (.)

Substituting equation (.) into (.) yields

ηy + η∂–
x ηy + qxy + ϕ(y) = . (.)

Inserting the expansion

η = ε +
∞∑

n=

I(n)(q, qx, . . .)ε–n (.)



Hu and Tao Advances in Difference Equations  (2016) 2016:312 Page 9 of 13

into equation (.) and equating the coefficients for power of ε, we then get the recursion
for I(n),

I() = –qx + θ(x, z, t),

I() = qx + θ(x, z, t),

I(n) = –I(n–)
x –

n–∑
k=

∂–
y ∂x

(
I(k)∂–

x I(n––k)
y

)

+ θn(x, z, t), n ≥ ;

(.)

here θn(x, z, t) (n = , , . . .) are undetermined functions of x, z, t.
Rewrite equation (.) as the divergence-type form

∂t(–vy) + ∂x(vxxy) + ∂y
(
vxwxx + v

x
)

+ ∂z(vy) = . (.)

Taking advantage of (.) and substituting expansion (.) into (.) leads to

∂t

(
–

∞∑
n=

∂–
x I(n)

y ε–n

)
+ ∂x

( ∞∑
n=

I(n)
xy ε–n

)

+ ∂y

[


(
ε +

∞∑
n=

I(n)ε–n

)(
qxx +

∞∑
n=

I(n)
x ε–n

)
+

(
ε +

∞∑
n=

I(n)ε–n

)]

+ ∂z

(


∞∑
n=

∂–
x I(n)

y ε–n

)
= . (.)

Comparing the coefficients of ε–, ε–, . . . yields the following infinite sequence of conser-
vation laws:

F (n)
t + G(n)

x + H (n)
y + J (n)

z , n = , , . . . . (.)

In equation (.), F (n), G(n), J (n) are given by

F (n) = –∂–
x I(n)

y , G(n) = I(n)
xy , J (n) = ∂–

x I(n)
y , n = , , . . . , (.)

and H (n) are given by

H () = 
[
I()qxx + I()

x +
(
I()) + I()],

H () = 
[
I()qxx + I()

x + I()I()
x + I()I() + I()],

H (n) = 

(
I(n+)

x + I(n)qxx +
n–∑
k=

I(k)I(n–k)
x + I(n+) +

n∑
k=

I(k)I(n+–k)

)
,

+
n–∑
k=

n–k–∑
j=

I(k)I(j)I(n–k–j), n = , , . . . .

(.)
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Moreover, from the coefficients of ε and ε, we can get

I() = –qxx,

I()
y = –I()

xy ,

thus we have θ(x, z, t) =  and θ(x, z, t) is an arbitrary function of x, z, t. From (.) and
(.) we readily see that θn(x, z, t) (n ≥ ) are also arbitrary functions of x, z, t.

5 Another bilinear Bäcklund transformation and traveling wave solutions
This section is contributed to construct another bilinear Bäcklund transformation and
traveling wave solutions for equation (.) based on the bilinear form (.). Assume that
f ′ is another solution of the generalized-BLMP equation (.):

(
D

xDy – DyDt + DyDz
)
f ′ · f ′ = . (.)

Let us define a function

P =
[(

D
xDy – DyDt + DyDz

)
f ′ · f ′]f 

–
[(

D
xDy – DyDt + DyDz

)
f · f

]
f ′ = . (.)

Obviously, if P = , then f satisfies equation (.) if and only if f ′ satisfies the same equa-
tion. Therefore, if we can obtain from P =  a system of bilinear equations,

B(Dt , Dx, Dy, Dz)f ′ · f = ,

B(Dt , Dx, Dy, Dz)f ′ · f = ,

. . . ,

Bk(Dt , Dx, Dy, Dz)f ′ · f = ,

(.)

where B, B, . . . , Bk are undetermined functions, then system (.) provides a bilinear
Bäcklund transformation for the generalized-BLMP equation (.). To this end, we would
like to apply the following three exchange formulas for Hirota’s bilinear operators:

(DtDxa · a)b – (DtDxb · b)a = Dx(Dta · b) · ba, (.)

(DtDya · a)b – (DtDyb · b)a = Dy(Dta · b) · ba, (.)


(
D

xDya · a
)
b – 

(
D

xDyb · b
)
a

= Dx
[(

D
xDya · b

) · ba +
(
D

xa · b
) · (Dyb · a) + (DxDya · b) · (Dxb · a)

]
+ Dy

[(
D

xa · b
) · ba +

(
D

xa · b
) · (Dxb · a)

]
. (.)

Equations (.) and (.) can be found in [], and equation (.) is obtained by Wu in [].
From equations (.) and (.), we can get

(
D

z a · a
)
b –

(
D

z b · b
)
a = Dz(Dza · b) · ba, (.)

Dr(Dsa · b) · ba = Ds(Dra · b) · ba. (.)
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Then, by using equations (.)-(.), we can obtain

P =
[

(
D

xDyf ′ · f ′)f  – 
(
D

xDyf · f
)
f ′] – 

[(
DyDtf ′ · f ′)f 

– (DyDtf · f )f ′] + 
[(

DyDzf ′ · f ′)f  – (DyDzf · f )f ′]
= Dx

(
D

xDyf ′ · f
) · ff ′ + Dx

(
D

xf ′ · f
) · (Dyf · f ′)

+ Dx
(
DxDyf ′ · f

) · (Dxf · f ′) + Dy
[(

D
x – Dt + Dz

)
f ′ · f

] · ff ′

+ Dy
(
D

xf ′ · f
) · (Dxf · f ′). (.)

By introducing seven new parameters λi (i = , . . . , ), equation (.) can be written as

P = Dx
(
D

xDyf ′ · f + λDyf ′ · f + λf ′f
) · ff ′

+ Dx
(
D

xf ′ · f + λDyf ′ · f + λf ′f
) · (Dyf · f ′)

+ Dx
(
DxDyf ′ · f + λDxf ′ · f

) · (Dxf · f ′)
+ Dy

[(
D

x – Dt + Dz – λDx + λ
)
f ′ · f

] · ff ′

+ Dy
(
D

xf ′ · f + λDxf ′ · f – λf ′f
) · (Dxf · f ′)

= Dx
(
Bf ′ · f

) · ff ′ + Dx
(
Bf ′ · f

) · (Dyf · f ′) + Dx
(
Bf ′ · f

) · (Dxf · f ′)
+ Dy

(
Bf ′ · f

) · ff ′ + Dy
(
Bf ′ · f

) · (Dxf · f ′). (.)

Taking advantage of equation (.) and Drg ·g = , we immediately see that the coefficients
of λ,λ, . . . ,λ in equation (.) are all zeros. Therefore, we obtain the following bilinear
Bäcklund transformation for the generalized-BLMP equation (.):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bf ′ · f ≡ (D
xDy + λDy + λ)f ′ · f = ,

Bf ′ · f ≡ (D
x + λDy + λ)f ′ · f = ,

Bf ′ · f ≡ (DxDy + λDx)f ′ · f = ,
Bf ′ · f ≡ (D

x – Dt + Dz – λDx + λ)f ′ · f = ,
Bf ′ · f ≡ (D

x + λDx – λ)f ′ · f = .

(.)

In the following, we would like to derive explicit solutions the generalized-BLMP equa-
tion (.) by using the bilinear Bäcklund transformation (.). To begin with, we start
with a simple solution f = , from which we can get the original solution u = –(ln f )x = .
Substituting f =  into equation (.), one can readily obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ′
xxy + λf ′

y + λf ′ = ,
f ′

xx + λf ′
y + λf ′ = ,

f ′
xy + λf ′

x = ,
f ′
xxx – f ′

t + f ′
z – λf ′

x + λf ′ = ,
f ′

xx + λf ′
x – λf ′ = .

(.)

Case . By setting

λ = , λ = , λ = ,

λ = –k, λ = –
k

l
, λ = –l, λ = –k,
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we get a class of exponential wave solutions of equation (.):

f ′ =  + εekx+ly+mz–ωt+ξ , (.)

where k, m, ε, ξ are arbitrary constants and l �= , ω = – 
 m – 

 k. Hence, u = –(ln f ′)x

solves the generalized-BLMP equation (.).
Case . Let

λi =  ( ≤ i ≤ ),

k, l, m are arbitrary constants and ω = – 
 m, it is easy to check that

f ′ = kx + ly + mz – ωt (.)

satisfies the bilinear generalized-BLMP equation (.), and so

u = –
(
ln f ′)

x =
–k

kx + ly + mz – ωt
(.)

gives a class of rational solutions for the generalized-BLMP equation (.).

6 Conclusions
In this paper, bilinear Bäcklund transformations and explicit solutions of a ( + )-
dimensional nonlinear equation are investigated. By virtue of the Bell-polynomial ap-
proach, two bilinear forms of equation (.) are derived and two kinds of bilinear Bäcklund
transformations are constructed. Furthermore, explicit solutions for equation (.) are also
obtained. It is interesting to note that one can obtain different bilinear forms and bilinear
Bäcklund transformations via different approaches. We think that there is still much to do
to explore more methods of constructing bilinear forms and bilinear Bäcklund transfor-
mations for NLEEs.
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