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1 Introduction and preliminaries

Many physical phenomena are described by equations involving nondifferentiable func-
tions, e.g., generic trajectories of quantum mechanics [1]. Several different approaches to
deal with nondifferentiable functions are followed in the literature, including the time scale
approach, the fractional approach, and the quantum approach.

Quantum difference operators are receiving an increase of interest due to their appli-
cations see, e.g.,, [2—10]. Roughly speaking, a quantum calculus substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondifferentiable
functions.

In [11], Hahn introduced the quantum difference operator D,,, where g € (0,1) and
> 0 are fixed. The Hahn operator unifies (in the limit) the two best-known and most-
used quantum difference operators: the Jackson g-difference derivative D,, where g € (0,1)
(¢f [6,12,13]); and the forward difference D,, where w > 0 (¢f. [14—16]). The Hahn differ-
ence operator is a successful tool for constructing families of orthogonal polynomials and
investigating some approximation problems (cf. [17-19]).

The aim of this paper is to introduce new concepts of Hahn’s difference operator, the
qi, wx-Hahn difference operator, to establish a calculus based on this operator and to con-
struct the associated integral. The steps are parallel to [20]. While some properties are
straightforward extensions of classical results, some others need special treatments. As
applications of the gx, wx-Hahn difference operator we establish existence and uniqueness
results for first- and second-order impulsive fractional differential equations.

Impulsive differential equations serve as basic models to study the dynamics of pro-
cesses that are subject to sudden changes in their states. Recent development in this field
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has been motivated by many applied problems, such as control theory, population dynam-
ics, and medicine. For some recent works on the theory of impulsive differential equations,
we refer the interested reader to the monographs [21-23]. Impulsive quantum difference
equations have been established by Tariboon and Ntouyas in [24] by improving the classi-
cal quantum calculus which does not work when there exists at least one impulsive point
appearing between two different points in the definition of g-derivative. For recent re-
sults on the topics of initial and boundary value problems of impulsive quantum difference
equations, we refer the reader to [7].

We organize this paper as follows. In Section 2, some basic formulas of Hahn’s differ-
ence operator and the associated Jackson-Norlund integral calculus are briefly reviewed.
Our results are formulated and proved in Section 3. Applications to impulsive fractional
difference equations are given in Section 4.

2 Preliminaries
Let g € (0,1) and w > 0. Define

= — 2.1
wo 1-¢ ( )

and let I be a real interval containing w.

Definition 2.1 (Hahn'’s difference operator [11]) Letf :I — R. The Hahn difference oper-
ator of f is defined by

[0qe) gy

Dyuf(®) =4 "0
S (o), t = wo,

(2.2)

provided that f is differentiable at wy.

The function f is called ¢, w-differentiable on I, if D, f(t) exists for all £ € I.
Note that when g — 1 we obtain the forward w-difference operator

St +w)-f()
a) ’

Dyof (2) = (2.3)

and when w = 0 we obtain the Jackson g-difference operator

f(®)-f(qt) t 7_/ 0

Dyof )= M0 (24)
f(0), t=0,

provided that f'(0) exists. Here f is supposed to be defined on a g-geometric set A C R,
for which gt € A whenever ¢ € A.

Hence, we can state that the D, operator generalizes (in the limit) the forward w-
difference and the Jackson g-difference operators [6, 25].

Notice also that, under appropriate conditions,

qa]f,ra?aqu"‘*f(t) =f®).

The Hahn difference operator has the following properties.
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Lemma 2.2 ([20]) Letf,g:1 — R be q, w-differentiable at t € I. Then the following state-
ments are true:
(i) Dgolf +8)(t) = Dyuf () + Dy,ug(t),
(i) Dywfg(t) = g(t)Dyuf (£) +f(qt + @)Dy,ng(t),
(iil) Dgwcf(t) = cDguf (), for any constant c € R,
(IV) Dq,w(é)(t) — g(t)Dq,wf(t)_f(t)Dq,wg(t),for g(t)g(qt + CL)) 710,

g(glgt+o)
(v) f(tg +w) =f(t) + (gt + @) =)Dy f(£), t € 1.

Let h(t) = gt + w, t € I. Note that % is a contraction, h(I) C I, h(t) < t for ¢ > wy, h(t) > t
for t < wy, and h(wg) = wy.
We use the standard notation of the g-number as [«], = % for @ € R.

Lemma 2.3 ([20]) Letk e Nand t € l. Then

H(t)=hoho---oh(t) =gt +wlkl,, tel. (2.5)
N———— e —

i-times
Next, we define the notion of a g, w-integral, known as the Jackson-Norlund integral.

Definition 2.4 ([20]) Let f : I — R be a function and a, b,y € I. The g, w-integral of f

from a to b is defined by
b b a
[ 50duas= [ 161 dyas= [ 50 yus 2.6
a wQ o
where
t o0
&) dgus = (t0-q) - 0) Y g (tg" + wlkly), tel, 2.7)
«o k=0

provided that the series converges at t =a and ¢t = b.

The function f is g, w-integrable over [ if it is ¢, w-integrable over [a, )], for alla,b € I.
Note that in the integral formulas (2.6) and (2.7), when @ — 0, we obtain the Jackson

q-integral

/abf(s)dqsz _/Obf(s)dqs—/oaf(s)dqs’

where
[ 165 =t0-0 Y drted), e
k=0

(see, e.g., [26]); while if ¢ — 1 we obtain the Nérlund sum,

/ub F6) s = / : F(5)Ds - / Oo F6)Aus
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where

/t f)Ays=-w ff(t + kw)
+00 k=1

(see, e.g, [15, 27, 28]).
The following properties of Jackson-Norlund integration can be found in [20].

Lemma 2.5 Letf,g:1 — R be q,w-integrable on I, K € R, and a, b, c € 1. Then the follow-
ing formulas hold:
(W) [, f®dgot =0,

() [P KF@®) dgt = K [7 () dyot,

(iii) [ f (&) dgut =~ [ () dyot,

@) [2F @) dgot = [PF (&) dgot + [ F(E) dgut,

W) L@ +gO)dyot = [ f O dgut + [} g0) dyot,

W) [7F(ODg0g(t) dyot = F(O)gO1: ~ [ Dyuf (0)g(gt + @) dyut.

Property (vi) of the above lemma is known as g, w-integration by parts.
The next result is the fundamental theorem of Hahn calculus.

Lemma 2.6 ([20]) Letf :I — R be continuous at wy and define F(t) := faiof(s) dgws. Then
F is continuous at wy. In addition, D, F(t) exists for every t € I and

D, F(t) =f(2). (2.8)
On the other hand,
b
/ Dy of (s)dgws =f(b) —f(a) foralla,bel (2.9)

Existence and uniqueness results for first-order abstract Hahn difference equations were

studied in [29], by using the method of successive approximation.

3 New concepts of Hahn calculus

Let there be a dense interval Ji = [#, tx+1] € R and given constants 0 < g <1, wr > 0 and

O = @ + Ix. (3.1)
1—qx

Note that if £, = 0, gx = g, and wy = w, then 6 = w,, where wy is defined in (2.1).

Definition 3.1 Let f be a function defined on Ji. The gx, wi-Hahn difference operator is
given by

) —flqt + 1 — qi)tx + wx)
(L —qi)(t - t) — ok

wDgpunf ) =4 . 32)

and ; Dy, , f(0k) = f'(6k) provided that f is differentiable at 6;.
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We say that f is g, wi-differentiable on Ji provided ;, Dy, ., f(t) exists for all £ € J;. Note
thatif wy = 0in (3.2), then , Dy, of = Dy, f, where , D, is the gi-derivative of the function
f(t) which was first established in [24] by

S@) —fqrt + (1 - Qk)tk)'

L= a0(—t) 3.3)

Uk qkf (t) =
It is easy to see that if £ = 0 and gx = g, then (3.3) is reduced to the Jackson g-difference
operator in (2.4).

Example 3.2 Let f(t) = t* for ¢ € J; = [2,16] and constants g = 1/2, wi = 3. Then 6; = 8
and the g, wr-Hahn derivative on Ji is given by

—( t+4)?
)(t—2)—3
3> — 16t — 64

S Toeos 0 7

2Dy Sf() =

and ZD%'Bf(8) = 64.
It is easy to prove the following results.

Theorem 3.3 Letf,g:Jk — R be qi, w-differentiable at t € Ji. Then the following formu-
las hold:

() 4 Dgpon (f +@(8) = 4 Dy (8) + 4, Dy &(0),

(ii) Dy f2(E) = (1) Dgpwnf () + f gt + (1 — qi)tx + )y, D gy, 8(£),
(iii) £ Dy, wkcf( )= ctk qw.onf (), for any constant c € R,
)

Dy op S (O)~f &)1y Dy 00, 8(8)
(iv) 4 qkwk( (1) = L% O qk)tfkﬂ‘k ==, for g(t)g(qrt + (1 — qr)tx + ax) # 0.

Next, we define the higher-order g, wi-derivative of functions.

Definition 3.4 Let f be a function defined on J;. We define the second-order g, w-
derivative 2k o provided Dy . f is qi, wi-differentiable on Ji with ka;k,w J =
4 Pagron (g Pgroif) : Je — R. In addition, we define the higher-order g, wi-derivative

wDy o f Tk — R, with , D f = tquk,wk(tkngj; J) and tkng,wkf =f.
The new definition of gy, wi-integral is given as follows.

Definition 3.5 Assumef : Jy — Risa function and a, b € Jy. We define the g, wi-integral

of f from a to b by
b b a
[ 16 dupansi= [ £ s [ £V s (3.4)
a O Ok
where

oo

f() oS = [(E= 81— @) — ] D qif (qit + (1- gi) te + exlily,) (35)

i=0
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for t € Ji, provided that the series converge at ¢ = a and ¢t = b. The function f is called
gk, wi-integrable on J; and we say that f is gk, wi-integrable over [a, b] for all a, b € J.

Note that if & = 0, gx = g, and wy = w, then (3.4) and (3.5) are reduced to (2.6) and (2.7),
respectively.

As customary, the following properties should be to stated. However, the proof is easy
and we omit it.

Theorem 3.6 Letf,g:Jr — R be qi, wi-integrable on Ji, K € R, and a, b, c € Jx. Then the
following formulas hold:
(i) f:f(s)tk Agons =0,
(i) fab Kf (8)y dgpons =K fabf(s)tk Ay
(iii) fabf(s)tk AgopS == fbaf(s)tk Agp.r S
(iv) f:f(s)tk AgonS = fcbf(s)fk Agp.onS + facf(s)tk Ay S
v) fab(f(s) +8(8))y dgy oS = fabf(s)tk AgonS + fubg(s)tk Agpon S

Lemma 3.7 Let h be the transformation
h(t) == qrt + (1 - q)tx + o ¢ €k (3.6)
and 6y € Jx is defined by (3.1). Then the ith-order iteration of h is given by

W(@t)=hoho---oh(t)=qit+ (1-q})tx + wlily, te€k (3.7)
N— ———

i-times

In addition, the sequence {h(t) %, is an increasing (a decreasing) sequence in i when t < 0
(O < t) with

lim #'(t) = 6;, te. (3.8)
1—> 00

Proof By directly computation, it is easy to show that (3.7) holds. For ¢ € Jy and i € N, we
have

B = 1 (1) = qi (L= qi) (= 0) + o (i + 1, = [ily,)

= g (1 - o) (O — 1)

If £ < O or Ok < t, then we see that the sequence {/()}%, is increasing or decreasing, re-
spectively. Therefore, equation (3.8) is true for all £ € Ji. g

Now, we will state and prove the fundamental theorem of g, wg-Hahn calculus.

Theorem 3.8 Suppose that the function f : Jx — R is continuous at 0k € Ji.. We define

F(t):= /H )y dposs  tE i (3.9)

Then we have, fort,a,b € J,



Tariboon et al. Advances in Difference Equations (2016) 2016:255

(1) tquk,ka(t) :f(t):
(i1) Sy, s Paonf ) daggns = £ (8) =f (60,
(ii) fab Dot )y Agpns =1 (b) —f (a).

Proof From (3.9), we observe that

F(qrt + (1 - o)t + w)

= [((qrt + @ = gt + i) — 1) (1 - qi) — i

X Zfﬁcf((ﬂlkt + (- gt + o) gh + (1 - qi)te + wxlily,)

i=0
= [t =) + o) A= qr) —n] D qif (a e+ (1— gt + anli+ 1)
i=0

Then, by (3.2), we have

_ F(t) - Fqrt + (1 = qi)tx + ox)
PO = = =t -

=> 4 [f (git + (1 - gt + oxlily,)
i=0

(Qk(t - tk) + (,()k)(]_ — q) —wi i . ‘
B (1 —qi)(t—tx) —owx flat+ (1-q; )tk+wk[z+1]qk)]

[e¢]

=Y dlf (gt + (1-gi) e + exlily,)

-0
—aif (gt + (1= g ")t + wxli + 114, ) ]

=f(®).

This shows that (i) holds.
To prove (ii), by Definitions 3.1, 3.5, and Lemma 3.7, we get

t

p 4D )ty dgpn s
k

=[(t -t - q0) = 0] Y Gelo g it + (1= i) tx + il )
i=0

= [t - t) 1 - qi) — o] Z 7

i=0

y flait + A= gt + xlily,) — fla(apt + (1= q)tx + wxlily,) + A — )t + o)

1 - q)(git + (1 - gtk + wxlily, — ) — wk

=2 (gt + (L= gt + onliley) =/ (a e + (1= @it + onli + 1],
i=0

=f(&) = f(O).

Page 7 of 19
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Now, we show that (iii) holds. From (ii) for any a, b € J, we obtain

b b a
/ Do )y Aggons = /9 DS )y g s = /9 uDgp o )y dggos
a

k k

=f(b) - f(a).
This completes the proof. d

Lemma 3.9 Letf,g:Ji — R be qi, wi-integrable on Ji. Then the following integration by
parts formula holds:

b
/ 8)aDaponf (8)y gy s
b b
- [F6)e®)]’ - / F(@es + (L= )t + 1) 5D @(5)s, g

Proof By Theorem 3.8 we have

b
/ tquk,wk [f(s)g(s)]tk qu,wks = (fg)(b) - (fg)(ﬂ)

On the other hand, by (ii) of Theorem 3.3 and (v) of Theorem 3.6,

b
1 Daor [f(s)g(s)]tk Agp.ox S

a

b
:/ &)y Dy oS () Agyn s
b
+ / f(qks + (1 - Qk)tk + wk)tquk,a)kg(S)tk qu,a)ks'

Combining these two equalities we get the desired formula. O

Lemma 3.10 Let 0k € Jy, « € R, and € R\ {-1}. Then for t € J the following formulas
hold:

(1) 4Dy (=) = [e]g, (¢ = 6)* 7,

) Jo (6 = 00" dggans = (ZHD(E= 00"

Proof From Definition 3.1, for ¢ # 6k, we have

(£ =01 — (qrt + (1 — gt + o — Ok)®
D,, (=0 =
4Daor (8= 00) (1 - gt —t) — wi

_(E=6)" = gt = 0p)”
(L —qi)(t—6k)
= [o]y, (£ - 67

For ¢ = 0k, we obtain 4, Dy, ., 0 = 0. Therefore the formula (i) holds.
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Now, we are going to prove (ii). For 8 € R \ {-1}, Definition 3.5 implies

/ (5= 6%, oy = [(6 ~ 801 - qe) — o]

Ok
[o¢]
x> gildit + (1 - qi)t + xlily —6c)"
i=0
= (1-g)lt -6 Y qi(ai(t - 00)"
i=0
1
(%) (t - 0/<)ﬂ+1-
1-qp
The proof is completed. O

Corollary 3.11 For a,b € Ji, the following formula holds:

b 1
/ (s = 00)P 4 Agpes = <%> [ -6 = (a-6)"]. (3.10)
a qk

Example 3.12 From Corollary 3.11 for a4, b € Jx, we have the following cases:
(i) If B =0, then f“b Ly dgywms=b-a.

(ii) 1f B =1, then [(s — 0y, g = L21b+a - 264].

(b-ti)* o (b—tr)
1+qp ‘

o b
(111) '[tk (S - tk)tk qu,wks =

(i) and (ii) are obvious. To prove (iii), from (i) and (ii) we obtain

b b b
/ (S - tk)tk qu,a)ks = / (S - Gk)tk qu,wks - (tk - 6/() / i qu,wks

tx ty 3
b-
(1 )[b+tk—29k] (b - 0)(b 1)
b-1) 201
C l4gi [b_tk_l—qk] 1- k(b_tk)
_ (b - t)* — wr(b—t)

1+qx

Theorem 3.13 Let f be the qi, wi-integrable function on Ji. Then we have

f f My g Tty Ageon S = f / Sy g Sty Aggon T (3.11)
O J Ok qir+(1-qp) b+

Proof By Definition 3.5, we have

t s
/ f(r)tk qu,wk Ty kovwkS
6,

k v Ok
o0

= / [(S - tk)(l - Qk) - wk] Z q;f(%s + (1 - QZ)tk + wk[i]qk)tk qu,wks

Ok i=0
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=(1- ’Zk)zqk/ Qk)f qk5+ (1 qk)tk + wk[l]qk)tk qroxS

= (1-qu)*(t-6) Zq; (Z 4 (gt + (1 - 4) tx + iy, - 6)

i=0 j=0

xf(qz(fiw<1—4;>tk+wkmqk)+<1—qz>tk+wkmqk>)

=(1-qu)?(t- kazquZ’f H’t+ qi+j)tk+wk[i+j]qk).
i=0 j=0

Indeed,

S G (- g el + 1)

i=0 j=0
o)

[qif (qit + (1 - g )t + wlilg,) + @>f (a7 + (1 - gt + wli + 1],
i=0

i+4 i+2 i+2

+q (g7 + (1- g
+ @i o (g%t + (1- i)t + wli+3g) + -]

=fO + qif (axt + A= gte + oxllly,) +qef (ait + (1 - qp)te + ox[2]y,)
+q°f (qit + (
+qif (qit + (

+ qkf(qkt + (1 qi)te + o [2]g,

e+ oli +2]g,)

1-q3)t + i [Blg) + -+ + quf (axt + (1 = q)tx + a1, )
1-q)tx + xl2lg) + f (gpt + (1 - q3) t + ok [3ly,) +-

0 )

)

+qif (qit + (1— i) tx + wx[3ly,)

+ qkf(qkt + (1 qk)tk + o4y )+ + qkf(qkt + (1 — qk)tk + a)k[S]qk) +

=f () + gL+ q)f (qet + (1 — gt + o [1,)
+qr(1+ qc + a)f (apt + (1- 4t + ox[2]y,)

+ @i (L+ g+ @ + ) (it + (1- 42 tr + ex[3g,) +

)j qit + (1 - g)tx + wxlnly,).

S n+1

(T

Hence, we obtain

t s
/ f(’")tk qu,wk Tty quvwks
Ok

Ok
= (U -q)(E=00 )i (1—gi™) (- 00)f (qie + (1 - q§)t + wxlnlg,)
i=0

t
= / (t —4qkr — (1 - Qk)tk - wk)f(r)tk qu,wkstk qu,wkr
Ok

t pt
= / / Sy Ao Sty Aoy -
O qrr+(l-qp)tg+ox

This completes the proof.

Page 10 of 19



Tariboon et al. Advances in Difference Equations (2016) 2016:255 Page 11 of 19

4 Impulsive gy, @(-Hahn difference equations

In this section, we use our results on g, wg-Hahn calculus to establish existence and
uniqueness results for impulsive g, wx-Hahn difference equations of the first and second
order. Let Jo = [0, t1], Jx = (tx, trs1] for k =1,2,...,m be subintervals of J = [0, T] such that
O € Jx for k =0,1,2,...,m. Let PC(J,R) = {x : ] — R : x(¢) is continuous everywhere ex-
cept for some #; at which x(¢{) and x(#;) exist and x(¢;) = x(t), k =1,2,...,m}. PC(J,R) is
a Banach space with the norm ||x| pc = sup{|x(¢)| : £ € J}.

4.1 First-order impulsive g, wx-Hahn difference equations
In this subsection, we study the existence and uniqueness of solutions for the following

initial value problem for first-order impulsive gk, wy-Hahn difference equation

L‘quk,wkx(t) =f(t:x(t))’ t G], t 7‘/tkr
Ax(ty) = or(x()), k=1,2,...,m, (4.1)
x(0) = a,
wherea e R, 0=¢fy<ti<ly< - <l <+ <ty <tm1=T,f:] x R— Risa continuous
function, ¢x € C(R,R), Ax(tx) = x(tf) — x(tx), k =1,2,...,m, and quantum numbers 0 <

qi <1, wr > 0 such that 6y € J; for k=0,1,2,...,m.

Lemma 4.1 Let x € PC(J,R) satisfying (4.1). The impulsive qi, wi-Hahn difference initial

value problem (4.1) is equivalent to the integral equation

x(t) = a + Z /kf(s,x(s))tkf1 gy on S+ Z <pk(x(tk))

to<ty<t ¥ tk-1 to<tp<t
¢

+ / S (5,5(5)) g dgpons (4.2)
Lk

with . . = 0.

Proof Fort € Jy, applying qo, wo-integral from ¢ to ¢ in the first equation of (4.1) and using

Theorem 3.8(iii), we obtain

x(t)=a+ /tf(s’x(s))to Ago.005-

Since 6, € Jy, we have t; > 6 and also, for ¢t = £,

x(t) =a+ / 1f(s,x(s))t0 Ao oS-

to

For ¢ € J;, taking the g1, w;-integral to the first equation of (4.1) with k = 1 and applying

Theorem 3.8(iii) again, we have

x(t) = x(£) + _/ F(5:5(8)) e dgyns.
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From the impulsive condition x(¢) = x(t1) + ¢1(x(t1)), we get

x(t)=a + / lf(s,x(s))to Ao w08 + / S (5,%(9) e, dgyons + 1 (x(11)).

to

For t € J,, the g2, w,-integration and impulsive condition imply

x(t) = x(t;) + / f(srx(s))tz Ao 008

17}

o+ /tlf(s,x(s))t0 Qo008 + /

to 5]

f (s,x(s))tl Ay S + / f (s,x(s))t2 AynS
+@1(x(t1) + @ (%(t2)).

From the above process, for any ¢ € Jx, k = 0,1,...,m, we obtain the desired result in (4.2).
Conversely, for any ¢ € Ji, k = 0,1,...,m, applying gi, wix-derivative to (4.2) and using
Theorem 3.8(i), we have

Dy x(0) = f (£, %(0)).

By direct computation, we have Ax(tx) = ¢r(x(¢x)) and also x(0) = a. The proof is com-
pleted. 0

Now, we are in a position to prove an existence and uniqueness result for the problem
(4.1), via Banach contraction mapping principle.

Theorem 4.2 Suppose that the following assumptions are fulfilled:

(Hi) the continuous function f : ] x R — R satisfies
[f(t,x) —f(t,y)| <Ljlx-y|, Li>0Vie],x,yeR;
(Hp) the continuous functions ¢ : R — R, k=1,2,...,m satisfy
loc(®) — k)| < Lol —yl, Ly >0,¥x,yeR.
If
LiT +mL,y <1, (4.3)

then the impulsive qi, wx-Hahn difference initial value problem (4.1) has a unique solution
on].

Proof Let us define an operator A : PC(J,R) — PC(J,R) by

Ax(t) = a + Z/ sxs) tk1 Ay 1 on S+ Z (ok tk))

to<ty<t k-1 to<ti<t

+/tkf(s,x(s))tk Ay oS>
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with Zlo<to = 0. Let sup,; [f(t,0)| = M; and max{|g(0)| : k =1,2,...,m} = M. Choosing
a positive constant r such that

la| + My T + mM,
p> s T2
T 1-(ILWT+mLy)’

and setting a ball B, = {x € PC(J,R) : ||x|| < r}, we will show that AB, C B,. For any x € B,
and ¢ € J, we have

A0 < ol + Z/ (5260 g ronrs+ 3 (x|

to<ty<t ¥ k-1 to<t<t

+/ lf(s’x(s))|tkd‘1k;wks
= ol + Z / -f(t O)| V t, O)I)tk 1 g0k S

to<tg<T tk-1

+ 3 (o (x(8)) - 9x(0)] + | (O)])

to<tg<T

T
+/ ([f(s,x(s))—f(t,O)M[ft0)’) Agprom$
< la| + (Lir + M) Z/ ey A yon a8

to<tg<T Lk-1
+m(L2r+M2)+(L1r+M1)/ Agiom$

= |la| + MiT + mMy + r(LiT + mLy) <r.

This means that || Ax| < r, which yields AB, C B,.
For x,y € PC(J,R) and for each ¢ € J, we have

A0 - A0 = 3 [ 17(5:009) (6309 s 5

to<t<t ¥ th-1

+ Z |0k (2(80)) — ox (y(80)) |

to<tr<t

; f (5.26) ~ £ (5,70 | g

= LIHx y” Z te-1 qk—l W— 1

to<tg<T L1

T
emlally =3l + L=yl [ o,y
tm
= (L1 T + mLy)|lx - yl,
which leads to || Ax — Ay|| < (L1 T + mLy)||x — y||. As L1 T + mL; < 1, it follows from the

Banach contraction mapping principle that A is a contraction. Hence, we deduce that .4
has a fixed point which is the unique solution of (4.1) on J. This completes the proof. [
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Example 4.3 Consider the first-order impulsive g, wx-Hahn difference initial value prob-
lem of the form

2O 2x(0)]) -t , 3 B
Dllxé ki3x(t) t2+40)(W) 4’ te];t#tk—ky
_ i
Ax(tk)—m, k=12,...,9, (4.4)
x(0) = 2.

Here J =[0,10], gk = (k + 1)/(k + 2), wx = 1/(k + 3), k=0,1,...,9, m=9, T =10, f(t,x) =
(L/(£2 + 40))((x* + 2]x])/(|x| + 1))e™* + (3/4), and @i(x) = (|x])/((4 + k)(|x| + 4)). Observe
that O = wr/(1 — qi) + tx = (k2 + 4k + 2)/(k + 3) € Ji, k=0,1,...,9. Since |[f(t,x) — f(t,y)| <
(1/20)|x — y| and |@x(x) — px(¥)] < (1/20)|x — y|, then (H;) and (H,) are satisfied with L; =
1/20 and L, = 1/20, respectively. We can show that

9 19

1
LiT+mly=—-+—=—«<1
2 20 20

Therefore, by Theorem 4.2, we deduce that the problem (4.4) has a unique solution on
[0,10].

4.2 Second-order impulsive gy, @¢-Hahn difference equations
In this subsection, we consider the second-order initial value problem of the impulsive
gk, wx-Hahn difference equation

uD5 ¥ =f(t,x(2), teltFt,

Ax(ty) = or(x(t)), k=1,2,...,m,

4 Do) — 4 Do ®) = o5 (), k=1,2,...,m
x(0) = o, t0Dg0,00%(0) = B,

(4.5)

where ¢, e R, 0=tfp <ti <ty < <ty < - <ly<twa=T,fecClUxRR), ¢r,pf €
C(R,R), Ax(tx) = x(£f) — x(t), k =1,2,...,m, and the numbers 0 < gx <1, @i > 0 such that
O € Jifork=0,1,2,...,m

Lemma 4.4 A function x € PC(J,R) is the solution of (4.5) if and only if x satisfies the
integral equation

x(t) = o+ pt+ (f f u, x(u))tk Vg o1 Uy Ag_ oS+ (,01(( (tk))>

to<tp<t

Al S ([ o9 o o)) |

to<tp<t k-1

- ([ S s i )

to<ty<t

+/ /f(u,x(u))tkqu,wkutkqu,wks, (4.6)
e Jitg

with ), . =0
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Proof For t € ]y, taking go, wo-integral for the first equation of (4.5) and using the second
initial condition, we get

t
tquolwox(t) = tquo,wox(O) +/ f(s’x(s))fo dqo,wos
to

t
=B+ / f(s,x(s)),f0 Ao w005 (4.7)
to
which leads to

A}
toDgo.wp¥(t1) = B + / f(s’x(s))to Ago,005-

Lo

For ¢t € Jy, the gy, wp-integration for (4.7) and the first initial condition of (4.5) imply

t s
x(t) =o + Bt + / / f(u’x(u))to Ago,00 Wty Ago,w05-
to Jio

In particular, for ¢ = £;, we have

t1 s
x(t) =+ Bt + / / f(u,x(u))to Ago.00 Uty Ago,woS-
to to

Let us consider the interval J; = (¢, £;]. By the ¢, @;-integration for (4.5) with respect to
t € J1, we have

¢
4 Dgyn%(8) = tqul,wlx(t;) + / f(s,x(s))tl Agr,enS-
5

From the second impulsive condition of (4.5), that is, ;D w*(t]) = 1, Dgpwe*(t) +
@7 (x(t1)), we obtain

0 Dgy i ®(8) = B + / 1f(s,x(s))t0 Ago 00 + / F(5,2(8)) 1, dgrons + o1 (x(t1)). (4.8)

to

For ¢ € ], taking the g, w, -integration for (4.8) and using Example 3.12(i), we get

x(t) = x(¢) + |:,B + / 1f(s,x(s))t0 AgowoS + 97 (x(tl)):|(t —-h)

to

t s
+ / [ f(”’x(”))tl Agy.on Uty Agy oS-
1 Y4
Applying the first impulsive condition of (4.5), that is, x(¢]) = x(#1) + ¢1(x(¢1)), we obtain
151 s
x(t) =a+ B + / / f(u,x(u))to Ay 0 Uty Bgy,meS + P1 (x(tl))
to to
5]
+ |:IB + / f(s’x(s))to dqo,a)()s + goik (x(tl))] (t - tl)

to

t s
+ / / f(u’x(u))tl dqlvwl Uy dfh,a)ls
h Ju
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s
=a+Bi+ / / S (142(10)) 25 Ao o0 ity B0 + 21 (%(11))
to Jto
f
+ |:/ f(S,x(S))to dqo,wos + (p;‘ (x(tl))i|(t —t)
to
+ -/tl /ﬁf(u,x(u))t1 Ay ooy Uity Ay 5.

Repeating the above method, for ¢ € J, we obtain (4.6) as desired.
Conversely, it can easily be shown by direct computation that the integral equation (4.6)
satisfies the impulsive initial value problem (4.5). This completes the proof. O

From Example 3.12(iii) with b = £, we set the notation

(tks1 — te)* — i (trar — te)

Qk) =
© L+ gk

Also, we use the notations

m+1 m
w(U) = U <Z QUk=1) + Tt — to) + Y txltx — rk_l))
k=1 k=1

+mly + Us (mT + Z tk) , (4.9)

k=1
where U € {L,N}.

Theorem 4.5 Assume that the conditions (Hy) and (Hy) of Theorem 4.2 are satisfied. Fur-
ther, we suppose that:

(H3) The continuous functions ¢ :R — R, k=1,2,...,m, satisfies
&
loc(®) - 9i)| <Lslx-yl, L3>0,¥x,yeR.

if

W(L) <1, (4.10)

where V(L) is defined by (4.9), then the impulsive qi, wx-Hahn difference initial value prob-
lem (4.5) has a unique solution on J.

Proof In view of Lemma 4.4, we define an operator Q : PC(J,R) — PC(J,R) by

0s)=arpts 3 ([ [ S50 doso st dyst lste))
te—1 Y tk-1

to<tp<t

Al S ([ 690t o)) |

to<t<t NV k-1

- % [ SN i i)

to<ti<t Lk-1

t ps
+ / / f(u,x(u))tk d‘]kvwkutk d‘lkvwks’
be Jtg
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with )", = 0.By transforming the impulsive initial value problem (4.5) into a fixed point
problem x = Qx, we will show that the operator Q has a fixed point which is a unique
solution of problem (4.5) via the Banach contraction mapping principle.

Setting sup,; |f(£,0)| = Ny, max{|gx(0)| : k = 1,2,...,m} = Ny, and max{|g;(0)| : k =
1,2,...,m} = N3, we will prove that QB C Bg, where B = {x € PC(J,R) : |»|| < R} and
the positive constant R satisfies

R BT+ V(N)

> D (4.11)

For x € By, taking into account Example 3.12(iii), we get
|Qx(t)| <l +1BIT

s ( / /:_I(V(u,x(u)) ~f(w,0)]

to<tp<T

+ [f(u, 0) |)[k—1 qu—lvwk—l Uy, qu—l:wk—ls B ("pk (x(t/()) - (pk(0)| B |<,0k(0) |)>

+T[Z

to<tx<T

([ 06560 6.0 16,0 g
+(loi(ote0) -4 ] + i 0)) )

+ Z Z (/ k (V(s,x(s)) —f(s,())| + V(S’ O)|)tk—1 Ao 018

to<ty<T k-1

(07 6s0) -0 + [ 0))
T K
+ f / (V(u,x(u)) —flu, O)| + V(M’O)Dfm Agosom Wt AegpsomS

<ol +|BIT + Y _((LiR+N)Qk—1) + LoR + Ny)
k=1

+ T[Z((tk = t)(LiR + N1) + L3R +N3)i|
k=1
+ 3 te((t = teaa) (LR + Ny) + L3R + N3) + (LR + Ny)Q(m)
k=1

= |la|+|B|T +R¥Y(L) + ¥(N) <R.

Then we have || Qx|| < R, which implies OBy C Bg.
Finally, for x,y € PC(J,R) and for each ¢ € ], we get

ox- 0| = 3 ( [ [ 17000) =0 00) s 10

to<tx<T

+ | (2(8)) — ox (y(8)) |)
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et ([ 1659 566

to<tp<T

ot (x(6) - 01 ((20) |)]
+ Z tk(/ [fsx(s))—f(sy )‘tkl Gr-1:0k-15

to<tp<T
+ | (x(8)) = <P7f(y(tk))!)
T s
+ /t /z‘ [f(u,x(u)) —f(u,y(u)) ’tm Ao om Wty BegysromS

< Y [LQk=D)llx -yl + Lyl - ylI]

k=1
m
+ T[Z[(tk ~ ) lalle -yl + L3||x—y||]}
k=1
+ 3 (6 - o) Lallx = 31 + L lle = y1l] + L) [~y
k=1
= W(D)x -yl

It follows that || Qx — Qy|| < W(L)|lx — y||. As W(L) < 1, we deduce from the Banach con-
traction mapping principle that Q is a contraction. Therefore, we see that the operator Q
has a fixed point which is a unique solution of the impulsive gy, wx-Hahn difference initial
value problem (4.5) on J. The proof is completed. d

Example 4.6 Consider the second-order impulsive g, wx-Hahn difference initial value

problem of the form

2 x2 x”(8)+2]x(t)| e‘“’s t 1 _
D4kk+36 2/7(+15x(t) oo (sl T +3, telt#t=k
+ +

()| 2 —
Ax(te) = sgemmemmn * 30 k=129, (4.12)
_ lsinx@)l 3 g _
D4]7<++36 21;(»;1536(1.‘/() 2D e M% #(l) = 10(v/k+40) e k=12,....9,
x(o) = %, tOD%,%x(O) = g.

Here J = [0,10], gx = (k + 3)/(4k + 6), wi = (k +1)/(2k +5), k =0,1,...,9, m =9, T =
10, & = 2/3, B = 5/7, f(t,x) = (L/(£2 + 10))((x + 2|x])/(L + |x]))(e <" 1/88) + (1/2), gu(x) =
(Ixl/(5(k + 5)(1 + |x[))) + (2/3), and ¢} (x) = (| sinx|)/(10(~k + 40)) + (3/4). Observe that
O = /(1 — qk) + tr = (6K + 19k + 6)/(6k +15) € Ji, k = 0,1,...,9. Also, we can find that

2, Q(k —1) = 4.720324567.

Since |f (£, %) —f(£,y)| < (1/440)|x~yl, o (x) — ok (¥)] < (1/30)|x~yl, and |g; (x) — o7 ()] <
(1/410)|x — y|, (Hy), (Hz), and (H3) are satisfied with L; = 1/440, L, =1/30, and L, = 1/410,
respectively. From the above information, we find that

W (L) = 0.9468144850 < 1.
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Therefore, by Theorem 4.5, we deduce that the problem (4.12) has a unique solution on
[0,10].
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