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1 Introduction
Concrete nonlinear difference equations and systems have become of some interest re-
cently. Experts have proposed various classes of the equations and systems hoping that
their studies will lead to some new general results or will bring about some new methods
in the theory (see, e.g.,, [1-22]). Many of the papers study or are motivated by the study of
symmetric systems (see, e.g., [4-7, 9, 10, 14, 17-22]). It turned out that some of the equa-
tions and systems can be solved, which motivated some experts to work on the topic (see,
e.g,[1,8,11,13-17,19-22]; for some old results see, e.g., [23—25]). One of the motivations
for the renewed interest in the area has been Stevi¢’s method/idea for transforming some
nonlinear equations into solvable linear ones (see, for example, [11, 13, 19, 20] and numer-
ous related references therein). It also turned out that many classes of nonlinear difference
equations and systems can be transformed to solvable ones by using some tricks and suit-
able changes of variables (see, e.g, [8, 13, 16, 19] and the related references therein).
Numerous recent equations and systems are closely related to product-type ones, which
are solvable for the case of positive initial values (see, e.g., the equation in [12], which is a
kind of perturbation of some product-type and the system in [18]; see also the related ref-
erences therein). If the initial values are not positive, then there appear several problems.
Thus, it is of some interest to describe the product-type systems with complex initial val-
ues which are solvable. A detailed study of the problem has been started recently by Stevi¢
et al. in [14, 15,17, 21, 22] (some subclasses of the class of difference equations studied in
[16] are also product-type ones). During the investigation we realized that the solvability
of some product-type systems is preserved if some coefficients/multipliers are added. The
first system of this type was studied in [14]. Based on this idea, quite recently in [22] it
has been shown that the solvability of the system studied in [17] is preserved if two coeffi-
cients/multipliers are added. On the other hand, it can be seen that there are only several

classes of product-type systems of difference equations which can be practically solved in
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closed form, due to the well-known fact that roots of the polynomials of degree d > 5 can-
not be solved by radicals. Hence, it is of interest to find all the classes of practically solvable
product-type systems of difference equations and present formulas for their solutions in
terms of the initial values and parameters.

Here we present a new class of product-type systems of difference equations which are
solvable under some natural assumptions. Namely, we investigate the solvability of the
system

a b c d
Zpyl =O0Z, W, 4, Wyil = ﬂwn_lzn_p ne NO: (1)

where a,b,¢c,d € Z, o, B € C and z_1, 29, w_1, Wy € C. It is interesting that none of the sub-
classes of the class in (1) has been previously treated in our papers on product-type sys-
tems, so that all the formulas presented here should be new. The formulas are obtained
by further developing the methods in our previous papers, especially the ones in [14] and
[22].

A solution to system (1) need not be defined if its initial values belong to the set

U ={(z-1,20,w-1,wp) € C*: 2.1 = 0 or 29 = 0 or w_; = 0 or wg = 0}.

Thus, from now on we will assume that z_1, zg, w_1, wy € C\ {0}. Since the cases « = 0 and

B =0 are trivial or produce solutions which are not well defined we will also assume that

aff #0.

Let us also note that we will use the convention Zfz « 4i =0, when [ < k, throughout the

paper.

2 Main results

The main results in this paper are proved in this section.

Theorem 1 Assume that b,c,d € Z, a =0, a, B € C\ {0}, and z_1,z9,w_1,wo € C \ {0}.
Then system (1) is solvable in closed form.

Proof Since a = 0 system (1) is
_ b _ C d
Zpy1 =0W,_q, Wyil = ﬂwn_lzn_p n € Ny. (2)
Using the first equation in (2) in the second one, we obtain
Wyl = ﬂadwf,_lwza_lgr n>2, (3)
from which it follows that
Wane1 = Baws, whe o, meN, (4)

and

d bd
Wonsa = Bawi, won 5, neN. (5)
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Case bd = 0. In this case equations (4) and (5) become
Wopsl = ,Bocdwgnfl, neN, (6)
and
Wona = Baws,, neN, (7)
from which it follows that
o = (Ba) 0w = () (e, )

nog gyl ol n
= g0 gt 20 w' 2%, neN, (8)

n-1

Wy = (ﬁad)zinjd 5 = (Ba? )Z/n 0 (ﬂwon)

B ®
Hence
Wl = ,3l s = mlzdi , neN, (10)
,Blcad 1c“wf)zg , n>2, (11)
when ¢ #1, and
Wone = B a™w_ 2%, neN, (12)
Woy, = ,B"ad(”_l)wozg, n>2, (13)
when ¢ =1.

By using (8) and (9) in the first equation in (2) with n — 2n and n — 2n - 1, respectively,

we get
b LY bt
Zops1 = AWy, 4 =0ff 270 % X, n=2, (14)
b n-2 j n-1
Zom=awh, =0 Wt >3 (15)

Hence, from (14) and (15) we have

Zops1 = o8 =3 wbc1 , n=>2, (16)

Zoy = aﬁblilfl wgcnfl, n>3, 17)
when ¢ #1, and

Zonn = afPW, n>2, (18)

zon =" Dwh, n>3, (19)

whenc=1.
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Case bd #0. Let y := fa*
a) =¢, bl = bd, X1 = 1.

Then (4) and (5) can be written as

X1 ,,,0 b1
Wope1 = Y M Wop Wy, 3, HEN,

and

x1,,01 b1
Wopeo = Y IWo, Wy, 5, neN.

By using (21) with n — n — 1 into (21), we get
b b
Wang = ¥ (VWZL-swzi,—:;)ul W3

_ L x+ay ., maithby bia
=Y Won's Wous

_a,X2 . A2 b2
=Y W) Wan-3)+1

for n > 2, where

ay =a1a) + bl, b2 = blﬂl, X2 i=X1 + 4.

Assume that

Xy, Ok b
Wonel =V Woi i1 Wan—k-1)+1°

for some k > 2 and every n > k, where

ax := mag-1 + by, b := biag_1, Xk 1= X1 + Ag.

Using (21) with n — n — k into (25) we get
ar by

%k al b1
Won1 =Y (VWz(n-k-1)+1W2(n-k-2)+1) Woln-k-1)+1

_ . xp+ay Maktbi Dray
=Y Won-k-1)+1W2(n-k-2)+1

I A S8 | bi+1
=V Wolmk-1) i1 Woln—k-2)+17

for every n > k + 1, where

ks = aray + by, bis = bay, Kjeyl = Xf + Ak

Page 4 of 20

(20)

(21)

(22)

(25)

(26)

(27)

(28)

Equalities (23), (24), (27), (28), along with the induction show that (25) and (26) hold

for all natural numbers k and # such that 2 < k < n. Moreover, because of (21), equality

(25) holds for1 <k < mn.
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For n = k, (25) becomes
Wopsl = y""wf"wlj’{, neN. (29)
Using the equalities w; = ﬂwilzfl, A = cdy + by, and x,,,1 = X, + a,, in (29) it follows that

Wonsl = (ﬂad)xn (,ch_lzil)aﬂwlf{

— adxn ﬁxnﬂ Wi‘i}’l*brl Zfﬁlln

= oo grnt By e N, (30)
Using (30) in the first equation in (2), we get
Zoper = @B glnypn bty > g, (31)
By using the same procedure it is proved that
Waniz = ¥ W;]((n—kﬂ)wzl((n—k)’ (32)
for all natural numbers k and # such that 1 < k < n, where (ax)ren, (Dk)ken, (*¥k)ken satisfy

(20) and (26).
For n = k, (32) becomes

Woneo = y"”wg”wg”, neN. (33)

Since wy = ,Bwf)zg, Xpsl = X + ay, and a1 = ca, + by, from (33) we have

Wans2 = (ﬂad)xn (ﬂw(c)zg)an Wgn

= o grnst it gan -y, e N, (34)
Using (34) in the first equation in (2), we get
Zomsg = a0 g Wgﬂn ngam’ n>2. (35)
From the first two equations in (26) we have
ar = aai_1 + bag_s, k>3. (36)

From (36) and since by = bya_1, we see that (by)xen is also a solution of (36).
From (26) with k = 1 one obtains

a) =a1ap + b(), bl = bldo, X1 =Xo + adp. (37)

From this and since b; = bd # 0, from the second equation in (37) we get a¢ = 1, which

along with the fact x; = 1 and the other two relations in (37) implies by = xo = 0.
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This and (26) with k = 0 imply
1= ag=ai1a_1 + b—h 0= bO = bla_l, 0= Xo=X_1+a-, (38)
which along with b; # 0 and the second equation in (38) implies a_; = 0. This along with
the other two relations in (38) implies that we must have b_; =1and x_; = 0.
Hence (ax)i>-1 and (bx)k>—_1 are solutions to (36) satisfying the (shifted) initial conditions
a_1 = 0, ag = 1; b,l = 1, bo = O, (39)
while (x;)k>-1 satisfies the third equation in (26) and

X_1=X0 = 0, X1 = 1. (40)

From the third equation in (26) along with x; =1 and g, = 1, we have

k-1 k-1
xk:1+Zaj:Za/. (41)
j=1 j=0

The characteristic equation associated to (36) is A2 — cA — bd = 0, from which it follows
that

cEt+/c*+4bd

Al = ,
12 )

are the corresponding characteristic roots.
If ¢ + 4bd # 0, then

Ay = A + o)),

which along with a_; = 0 and 4 =1 yields

n+l n+l
_ )‘1 B )‘2

= 42
- (42)
From this and since b,, = b1a,,_1, we have

A=A
b, =bd-2—"2, (43)
M — Ay
If ¢ + bd # 1, which is equivalent to A #1 # A,, from (41) and (42), it follows that
n-l, j+1 j+1 n+l n+l
Ay =N Ao — DA — (M = 1A AM—A
xnzzl 2:(2 )1 (M )2+1 2' (44)
o M (A =12 =1)(A1 = 22)

If c+ bd =1, that is, if one of the characteristic roots is one, say A,, then A; = —bd, so that

n-1

xnzzx{*1—1: 1 (A)\f—l ):(—bd)”+1+(n+1)bd+n

- 4
-1 a-p\ M1 7" 1+ bd)? (45)

j=0
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If ¢ + 4bd = 0, then

n
P c
a,=(C1 + czn)<§> .

This along with a_; = 0 and ag =1 yields

a, =(n+1)(§)n. (46)

Using the relation b,, = ba,,_; along with the fact bd = —c%/4, we get

n-1 n+l
b, =bdn(f) =—n<5) . (47)
2 2

From (41) and (46), we have

n-1 j 1- 1)(£)" c\n+l
xn=Z(j+1)(§) ) <n+(i<_2)§):n(2) | s)
j=0

if ¢ #2.If c = 2, we obtain

n-1

, _n(n+1)
xn-20+1>- S (49)
j=0
completing the proof of the result. d

Corollary 1 Consider system (1) with b,c,d € Z, a = 0, and o, 8 € C\ {0}. Assume that
z_1,20,w_1, Wy € C\ {0}. Then the following statements are true.

(@) Ifbd =0 and c #1, then the general solution to system (1) is given by (10), (11), (16),
and (17).

(b) Ifbd =0 and c =1, then the general solution to system (1) is given by (12), (13), (18),
and (19).

(c) Ifbd #0, ¢? + 4bd # 0, and c + bd #1, then the general solution to system (1) is given
by (30), (31), (34), and (35), where the sequence (a,),>_1 is given by formula (42),
while (x,)y>_1 is given by (44).

(d) Ifbd #0, c* + 4bd # 0, and c + bd = 1, then the general solution to system (1) is given
by (30), (31), (34), and (35), where the sequence (a,)n>-1 is given by formula (42),
while (x,),>_1 is given by (45).

(e) Ifbd #0, ¢? + 4bd = 0, and c # 2, then the general solution to system (1) is given by
(30), (31), (34), and (35), where the sequence (a,)n>-1 is given by formula (46), while
(%n)n>—1 is given by (48).

(f) Ifbd #0, c* + 4bd = 0, and c = 2, then the general solution to system (1) is given by
(30), (31), (34), and (35), where the sequence (ay),>-1 is given by formula (46) with
¢ =2, while (x,)y>_1 is given by (49).

Theorem 2 Assume that a,c,d € Z, b =0, o, 8 € C\ {0}, and z_,z9,w_1,wg € C \ {0}.
Then system (1) is solvable in closed form.
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Proof Since b =0, we have
Zns1 = 020, Wpsl = ,BWZJZZJ, n € Ny.
From the first equation in (50) we get
Zy = azf;’lajzgn, neN.

Hence, if a # 1, we have

while ifa =1,
z,=a"zyg, nelN.
Using (51) in the second equation in (50), it follows that

Ay 24 n-1
Wyl = Ba 20 Zga Wfq,l, n>2.

Using (54) twice, we get

d 22:”0’3 & da2n? .
W = B = Zg Win_2

2n=3 Jj 1 on-2 2n=5 j 5 on-4
- B (g )

AN 213 i de§2n=5 j 2n-2 2n—4 2
_ ﬂlﬂa Z/:O Z/:() Zgﬂ +dca Wgnfzp

for every n > 3, and

A 2n=2 i g 2n-1
Wapsl = ﬂa ZI:O ﬂzgu 5

2n-1

2n=2 j 1 2n-1 2n—4 i 2n-3
- pa S (T )

— ,BHCOld 212:62 @ +de 212:164 ﬂjzdaz”’l+dcaz"’3 2
- 0

Wy, 3, N=2.

Assume that, for a natural number %, it has been proved that

k-1 j k-1 is2n-2i-3 j dYy KL da?22
YEad dY iy a j=0 ¢
Woy = BI=0 " " =07 =20 Zy Won-2k>

forn>k+1,and
-yl

k-1 j k-1 iy 2n-2i-2 j dY K do
Sod dy iy Y a j=0 ¢
Wons1 = B0 7 o7 im0 &0 A Won-2k+1>

for every n > k.

Page 8 of 20

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(58)
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Using (54) with n — 21 — 2k — 1 and n — 2n — 2k, in (57) and (58), we obtain

k=1 j k-1 is~2n-2i-3 i dY Kl a2
Yiod dYisoc il ad j=0
Woy, = ﬁ j=0 ° oy i=0 j=0 ZO
Ay PR ggan2k2 &
x (Bo = Zg W2n—2k—2)

k 2n=-2i=3 j dzk a2 g
= ﬁz’ 0 dZ, 0¢ I/ Won-2k-29 (59)

forn >k +2,and

; : k-1 2n-2j-1
k ICI dzl . 1 22:;'1()—21—2 a dz/’:O da 7/
J ZO

Wansl = ﬁ
k-2, k
dy #s2 2n-2k-1 ¢
X (:30‘ Zg w2n—2k—l)
Thod (d¥kod Y2 AT e g
=B== o Z Won_ok-1’ (60)

for every n > k + 1.
From (55), (56), (59), (60), and the induction it follows that (57) holds for all natural

numbers k and 7 such that 1 < k < n—1, while (58) holds for all k and z such that1 < k < n.

By taking k = n —1in (57), we get

n-2 , iN2n-2i-3 j dY "2 daY
1o c n a =0
pLi-o 4L ¢ LG zy’ ws o, n>2. (61)

By using the relation wy = fw5zd in (61) we get

_ —2i-3 j dY 12 da?n-Y-2 -1
Zn q CI Z g Cl ZZ:VIO 2i-3 a j=0 ¢ d\¢
=p~ e Zg (Bwoz5)

o a2n-2-2

n-1j iy2n-2i-3 jj d Y} "
—,BZ/OC ZLOCZFO “Zo / w,, neN. (62)

By taking & = # in (58), and using the relation w; = fw* 2%, we get

o n-1 j_2n-2j

SIS G A ¢ o
W2n+1:ﬂ /=0 =0 /=0 2 w1
dzn 1 LZ2H —2i— “/ dzn l 2” -1

T (Bwe,)

: . -1 j 2n-2j-1
j d iy2n-2i-2 j dY "5 Ja" n+l g
_ ﬂZ, 0% o Zz 0 ¢ 2ik0 @ zZ, J Wil zﬁ , (63)

for n € N. It is also easy to check that (63) holds also for #n = 0 when ¢ # 0.

Subcase a #1 # ¢, ¢ # a®. In this case we have

2n-2i-2 g[“ ="
il- a 2_ n
,Blcazzoc ZO“‘WS’
2n_.n
n-1 2n-2_ n—1 a” —c
e ad J aral
= ;3 I-c o a“—c ZO WO ,
2
ot dazel=ad) (el gt
(64)

BT« (1-a)(1—c)(a%—c) zy T wy,
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for n € N, and

X 2n_.n
1l 1 i1-a2n-2i-1 ad® 2_0 ol
cil=a” T . dc
Wonsl = ﬂ I-c Zl 0 a2z, o W71 Z1
2n

Lot d (1 7a42”—6") ad %= n+l  gon

_ = T-a (T 7 at-c " de

= 1< « a”=¢ "2, w2z,
Ll d@@—cr(ard(1-a)"~(1-a"*1) ad“i;—:zn ol gen
— /3 < (1-a)(1-c)(a®~c) 2y W, 227,

for every n € N.

Subcase a #1 # ¢, ¢ = a®. In this case we have

A2 g2y 23 ) d Yig a¥a?y2 oy
Won = ,B - /= 2y Wy
ﬂl a?" W 2 2 1-a2""272 a2” 2i-2 Zd 1a2n= 2
2n 2n-2
l-a d_(l-a (n-1)a?"-2 2n-2  2n
BT g Ta g —(-0a™)dna
=B 12 «a 1-a zg WS s
1-a2n  d(-na®"=24(n-1)a®") -2 o
=frdq @) a0 s )
2m-2i-2 j dY "l a¥a? Y1 g0 o
Z ay Z 12 Z,: a j=0 7+ 42N
W2n+l—/3 /=0 =0 /=0 29 Ziil
1?2 dzn 1a2tl —g2n-2i-1 dna?n—1 2n+2  g.2n
= ﬂ 1-a2 i=0 I-a Z, w Zf
2n+2 2n
l-a d_(1-a" _ 2n-1 2n-1  2n+2 g.2n
=p 12 ol (o —na )Zdnu w® P
0 1 1
1_a2n+2 d(l—nazn_l—a2”+na2”+1)

= ﬁ 1-a2

for everym e N.

(a+1)(a-1)2

dnaZn—l 2n+2 da2n
2 wh 2

Subcase a* #1 = c. In this case we have

122
_ pTI ATIE T A

Wan Wo,
. dzn 21, a2n —2i-2 d“ﬂ T
=p'a zo 7 wo,
A (n-1-a2 @21y 44t L 2
— /3”0[ T-a 221 ZO 1 wo,
d(azn—naz-m—l) 1122"—1
=p"a @@ z Ty, neN,
L n-1_2n-2j-1
Zn: 1 n:—1 22:}1—21—2 a dezO a
Won+l :ﬂ =0 o 0 &j=0 2y w1z

_ ﬂn+l

d(a2”+1

— ﬁrHla

for everym e N.

¢
T-a

2n
2m-2i-1 gd %=1
n+l d i 171 4
=p Lito =T Zy

2_
a’-1 W—lzil

a1 211y ad <
2

(n-aZ
12“

a1 W*lzdly

1
W_1Zf1

+n(1—a2)—u) adazn—l
—1)2
(a-1)%(a+1) ZO

’

Page 10 of 20

(65)

(66)

(67)

(68)

(69)
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Subcase a = -1, ¢ = 1. In this case we have

. —1(_1\2n-2j-2
1 d 2_;«1 2i— (-1y d ”:0 (-1)
Wan = B0 1 Lic0 x Zy Wo,
= B"2"wy, neN,
2m-2j-1
N 1 d 2n 2i-2 1)/ dz (-1) d
Wonsl = ﬂ /=0 w1224
n-1 1-(-)2n-2i1 dz';}(_n
_ﬂn+1 dy iy j W—lzﬁl
_ ,BnHOlan(;an,lZfl,
for every n € Ny.
Subcase a =1, ¢ # 1. In this case we have
Z C/’ dz cz ZZH—Z[—?: 1 d 0 CI n
ﬁ j=0 i=0 j=0 z 1 wt
0 0
. 1"
_ ays 2(on-2i-2)c! AT | o
= prea Z W
_cn-1 1—(n—1)c”’2+(n—2)c”’1 1-c"
1= d((2n-2) 52 5 ) dEe
= ﬂ 1-c ¢ (1-c) ZO c
1 2d(n—1—n2£+cn) 1-c" "
=BTcq (-9 o ‘wy, mneN,
i J
Z{’l: Jd d Cl 22}1 2i— 21 dZ} 0¢ Cn+1 M
W2n+1:ﬂ =07 o IO w4 Zfl
1+l n=lio, o: 1y d—lfcn n+1 n
_ :3 = Old o (2n=2i-1)c Zy T—c il zfi
1l 1" nl i1y dBS g
_ — d((2n-1)35--2¢> il , 2 T=¢ ¢ dc’
_IBICO[ 1-c i=1 ZO W—lz—l
1 n
1+l 1= o 1=nd" T+ (n=1)c” 1 d
_ ’Bﬁad(ﬂn l)—ke 2c o2 ) d ’”lzdc
1+l d(2n—1—(2n+1)c+c”+c"+l) ll—f:’ il gen
= ﬂ I-c o 2y w_, 2z,

for everym e N.

Subcase a = ¢ = 1. In this case we have

n-1
IBZI oladZ’VtOZZZn —2i— 31 Z 1

n-2 .
— ﬂn()ld Yo (2n—2z—2)zgln Wo

— ﬂnad(n—l)nzgnwo,

Wonsl =

_,Bn+1 dy i 1 (2n-2i-1)

:’Bruladn dn

Zy W12y,

for every n € N.

neN,

Z,ol Ayl y 222y dZ,ol J
B A w.

d

n
zo"'waz2)

Wo

~1Z2_4

Page 11 of 20

(70)

(71)

(72)

(74)

(75)

O

Corollary 2 Counsider system (1) with a,c,d € Z, b =0, and o, 8 € C\ {0}. Assume that

z-1,20, W-1,wo € C\ {0}. Then the following statements are true.



Stevic et al. Advances in Difference Equations (2016) 2016:253 Page 12 of 20

(@) Ifa#1#candc+a?, then the general solution to system (1) is given by (52), (64),
and (65).

(b) Ifa#1%#candc=a®+#0, then the general solution to system (1) is given by (52), (66),
and (67).

(c) If a* #1 = c, then the general solution to system (1) is given by (52), (68), and (69).

(d) Ifa=-1and c=1, then the general solution to system (1) is given by (52), (70), and
(71).

(e) Ifa=1and c #1, then the general solution to system (1) is given by (53), (72), and
(73).

(f) If a =c =1, then the general solution to system (1) is given by (53), (74), and (75).

Theorem 3 Assume that a,b,c € 7, d =0, , 8 € C\ {0}, and z_y,z9,w_1,wg € C \ {0}.
Then system (1) is solvable in closed form.

Proof In this case system (1) becomes
Zp4l = azﬁwﬁ_l, Wp = Bw;,_;, neNg. (76)
From the second equation in (76) it easily follows that
Wop, = ﬂzﬁ(’l Ciwf)n, neN and wyy = ,BZ/ZOC/WTI, n € Ny, (77)
which, for the case ¢ #1, implies that
g

wz,qz,Bll_chwo, nel, (78)

and

1=+l Cn+1
)

Wyl = ﬂ I-c w4 ne NO) (79)

while, for the case ¢ = 1, we have
Wop = IBWWOy ne N: (80)

and

n+l

Won1 = B wo, meNo. (81)
Employing (77) in the first equation in (76) we obtain
=T WA, =2, (82)
Zopsl = aﬁbzﬁ(’l Cjwfﬁnzgn, neN. (83)
Combining (82) and (83) it follows that

3 bz(t:—OZCj bcn—l hz{‘l;()ZCj bcn—l a a
Zon = aff” =0 " wy (Olﬁ N 2n—2)

2

n-2 j n-1
= oM (W) 4, (84)
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for n > 2, and

Zon+l = 0[‘3

by -1 n L2 n-1 a
0w (aﬁ 0w )

n-1_ o
A KR K (7T M S (85)
Assume that, for some natural number k we have proved that

(1+a) YL a¥ ,b(1+a) p S e I A Zk,lazfc” L 2k
2oy = Ry, B i e T ( w* ) Z5, ok (86)

forn >k +1and

(I”Z)Z] 0“ /3 Z{(()I“Zl Zrz i 1C1+uzn =2 j ( ab bc)z quCn—/—l 2k (87)

Zopsl =X Zon-2k+1

for every n > k.
By using (84) with n — n — k into (86), and (85) with n — n — k into (87), it follows that
Zop = l+a Zk ﬂ b(1+a) Z; 0 ) a% Zn - ZC]( gwﬁli)z,k;& a¥ -1

k-1 2k

+a) k-2 a
% (O(Haﬂ 1 Z ( bWab) szzn - 2)

=(x

1 1 H—i— 2 aZ/cn—/’—l 2Ue+2
+a ZJ 0¥ ﬁ +a Z =0 (waab)Z; 0 Zgn—zk—Z’ (88)

for n > k + 2 and

(1+“)ZI 0“ lgbZ{(()l“Zl Zrz i— lc’+uZ” =2 j ( ahwbc)z 1 a1

Zon41 = A 1
1 anlc/+aznk2 b b 2 ﬂzk
x (o' p” (g i)
(L+a) a¥ ob a2 g Y2 b b Z Pl ) 3%
=al b [ T E ( o why) 2n-2k-17 (89)

for everym > k + 1.

From the equalities in (84), (85), (88), (89), and by induction we see that (86) holds for
all natural numbers k and # such that 1 < k < n — 1, while (87) holds for 1 < k < n.

If we choose k = n—1in (86) and k = n in (87) we get

_(1+a Zj 02 “211317(1%1)2? 02“2[ Zn =24 ( b ab)z 2 a¥cni- lzaZ”‘Z

Z2n - 2
1*“ Zn b(1+a) Y I 0 2 g2 Zn 24 b ab\ > 0 2 % -1 1+a,a? ab b -2
ﬂ - ( 1 (o' 25 w 1Wo)
1 n102 2i y-i-2 ¥ om
a( +a) Z]:O ﬁ +a Zz -0 @ Z ( b ﬂb)z Z?) , (90)

for every n € N, and

1+a Z -1 a¥ bzn 1a2l Zn i— 1c’+u2" i 2 b be Zn:—olachn—j—l 20
Zopsl = =0 ( Wo W—1) 21

_ (1+a)zn;1a2j Zn 1 a2 Zn i 1c/+u2" i— 261) b be chnj -1 b a2n
=a TR (wwhs) > (czgw’y)

1 il —ii2 n— 1 a2 n—i-1 a2 cn—j
fo@ gh X @ (S dra i) zbZ e PR ate pma

=« w_; zy (91)

for everym e N.
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Subcase ¢ # a*> #1 # c. In this case we have

i-1 a2n_cn
b(l+a) Y2 a2 ) Wb 2n
Zop=0Q 1 —a ;3 2o I—c ( ) — Zg
1a2n b(1+a)( a2n-2 _Ea2n—27cn—1) a2rz N 2
- - - ) 2 b ab _
= I-a ﬁ ¢ 1-a a’—c (WO ) a?-c ZO
b(l+a)(a? —c+c—a? +ca®M —a M) a2n_cn
1-a?" a=c on
=a T« ff (1-0)(1-a2)(a®~c) (Wgwall’) a2 Zg ,

2ixn—i-1 j —i2
ZI 0@ IBbZ’ Oa’(Z;':Ol cl+az;7:0l c/)w

ab Z;’;ol a¥ -1 wb Z;l:o a2jc”’izﬂ2n+1

Zon+1 = 0
X . 2n_ 1 2n+2 _ n+l

S L S L S W R S

—q T pbLi = < 'w, w4 20
2n 2n+2 _ n+l
2n 2n_.n a® —c a —c

B 1- 6112n+1 ﬁ(lifa —(c+a) 2 276 ) ab 2oc b 2 ¢ 2n+1
=a L« f8 at—c "W, w_;

1=g! b call- g seraa)e) gp@pet p T
=q T2 B 1-00-a)aZ—0) wy “TCw, ¢z,

for every n € N.

Subcase a* #1 # ¢, ¢ = a®. In this case we have

1+a Z”
Zon =

=a WoW_1
2 _g2n-2 _
1-a*" 1 1017“2 _(n_l)LZZn 2)( b ab)

= I-a

pra

WoW

b(l—nn2”’2+(n—l)ﬂ2”)
(a+1)(a-1)2

1-a2n
= l-a :3

2o+l =

a2n=2i 2n-2i-2

—q Ia

L 1-a?"
T\ 2~

1_g2n+l

2n—1)
= I-a ﬂ

0 -1

b(l—azn—naz"”lﬁ-nazm’l)
(a+1)(a—1)2

for everym e N.
Subcase a* #1 = c. In this case we have

Zon =

b(L+a) Y12 i nmict) (- ab T
- 1 a ﬁ +a) (=i (WOWfl) T-a

1 p(lra)((n-1) a2 g2 1l

,3 b(1+a) Y12 ¥ 2;4:—01'—2 2 (W

(W(b) Wﬁ?)naZrt—ZZg ,

. . . 1 2 2n-2j-2 Vl
2n j 2i (5~ n—i-1 _2j n-i-2 2jy ab E "aa T~ b E
Z —0 @ ﬁbZ, 0a Qo a¥+a} Dy a W w

2n+1 -1 2 l-a
l-a n- I 74,“7
13 Z 1-a2 1-a2 )W

2n-1
wg”“ w

+(n-2)an=2 ) 1-g2h

2j 2n-2j-2 oy,
a’a
swe )Z’ 0 z5

o

2n-2 9y

1_g2n n=2 2i1-a?=2i-2
- IBb(1+a)Zl 0@ T( bwab)’m Zg

na®h 2n
T

2n

bna?L b(n+1)a®”
0 w1 b

2n-1  p(n+l)a2" ,2n+l
whna®t Tt blnsl) P

0

b(n+1)a® g2+
1 2y

1
1+az 1 215 (1+a) 210“2127121( b ab)zlo“2] a?"
Z

2n
a
)

— 051—,3 1-a2 (1-a

b(n—l—mz2 +u2")

1-a2n 1-a?
—q Ta B @ha1? (wgwfl;) -a
2o+l =

1- 2n+1
=

IBbZ” L 2i(1+a)n—-a— (1+a)z) ably
0

D )

) ) ) e
YHd pb Y I (I e Y ) @b
o =—i=0 ﬁ i=0 j=0 j=0 WO

2n

n
2

L% bZ}LOaW 2l
w_, )

a’n
—a

2n+2

ploa—"  ona

-1 0

a2n=2
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(92)

(95)

(96)
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2n-2

_2n+l ~ 1-a?" 2 1-na +(n=1)a*" 1-q2" 1-g2n+2
= ahf-—aﬂb(((lm)n DEZ ™ @i-aP )ng T-a Wlil I=a Z82n+1
2. 2n+l 2n+2
1_g2n+1 b(n—a—na“+a ) ablfﬂ bl a 2+l
—q Fa B (@i’ w, ™, 97)
for every n > —1.
Subcase a = -1, ¢ = 1. In this case we have
-b\ 2js0 (-1
Zoy = (wow 1) zo
b b
= (WOW 1) 20, (98)
by N -1)Y bz"(l 241
ZZ _1y bY ( 1% ZVI i-1q_ Zn -2 ) bz}:o( 1) 0 (~1)2m+
Zopp1 =0 B Wo W4 20
_bn. b(n+l) -
= afPwg w2, (99)
for every n € N.
Subcase a =1 # c¢. In this case we have
n 1 n—i- 2 n—j-1
1 [4
Zon 20 ,3 Z ( )Z’ 0 20
n—2 1-c*~ i-1
2y F (bb)“ZO
—aznﬁlcnlc )(bb)1czo
M b Yo
—a¥p o (whwy) Tz, (100)
nl nlll ”12” bznln[l bz M
— c+ j=
2o+l = / 0 ﬂ Z w_; ZO
=i q_n—i-1 1-c" 1=t
=a2”+1,3bzyzol(llc—c = wz I l_J = 20
b 1-c 1-cM 1-c" 1-¢"t1
_ a2n+lﬁﬁ(2n—c 1—Cc - 1fC )wg - wlzl I-—c 20
b@n-1-2n+l)c+c +cH1) pl=c” hl c”*l
_ a2n+1[3 (1-c)2 Wy 1-c w_, 20, (101)
for m e N.
Subcase a = ¢ = 1. In this case we have
o n11 .2 n-i=2) nly
oy = TR ST ) B
2 (. b b \"
G ni- )( oW—l) Zo
— n
_ o2 ghon 1)"(Wgwlfl) %, (102)
n—i-1 n—i-2 bz 11 bz 1
1+ 1) j=0 j=0
Zon41 = o ﬁ S0 w_ ' Zo
2n+1 pb Y " @n-2i-1) bn_ b(n+l)
o™ po 0 Wo W 2o
2 b(n+l
— a2n+1[3hn WgnW_({H )ZO: (103)

for every n € N, completing the proof. O
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Corollary 3 Counsider system (1) with a,b,c € Z, d = 0, and o, 8 € C\ {0}. Assume that
z_1,20, Ww_1,wo € C\ {0}. Then the following statements are true.
(@) Ifc#a® #1 #c, then the general solution to system (1) is given by (78), (79), (92), and

(93).

(b) Ifc=a®#1+c, then the general solution to system (1) is given by (78), (79), (94), and
(95).

(c) Ifa® #1 = c, then the general solution to system (1) is given by (80), (81), (96), and
(97).

(d) Ifa=-1and c=1, then the general solution to system (1) is given by (80), (81), (98),
and (99).

(e) Ifa=1and c #1, then the general solution to system (1) is given by (78), (79), (100),
and (101).

(f) If a =c =1, then the general solution to system (1) is given by (80), (81), (102), and
(103).

Theorem 4 Assume that a,b,c,d € Z,bd #0, a, § € C\ {0}, and z_1,zy,w_1,wy € C\ {0}.

Then system (1) is solvable in closed form.

Proof First note that the conditions «, 8 € C\ {0} and z_;,zg, w_1,wp € C\ {0} along with
the equations in (1) imply z,w, # 0 for n > —1. Hence, for every such a solution the first

equation in (1) yields

Zp+1
’

a

az,

wh | = n e Ny, (104)

while from the second one it follows that

wh ,Bbwzc_lzbd n € Np. (105)

n+l = n-1’
From (104) and (105) one obtains

l-cpb —ac_bd
Zz=a Pz 020 12,72,0, neNg, (106)

which is a fourth order product-type difference equation.
Note also that

7 =azZiw’, 2z = a(azgwh;) wh = ot“”zgzw‘fl{wg. (107)
Let § = a~¢p?,
a =a, b =g ¢ = —ac, dy = bd, =1 (108)

Then equation (106) can be written as

b a4

= M
Zni3 = 82 02,02 2L, nmeNg. (109)



Stevic et al. Advances in Difference Equations (2016) 2016:253

Using (109) with n — n — 1 into (109) we get
di \a1_b d
Zniz = 87 (5ZZ‘+1231Z21_12”1_2) 1ZV11+1Z:11Z711—1’

_ ey1+ay  @a1+by biai+c;  cia1+d diay
=4 Zn+1 Zn 2y Zn—2

= 57222 222 22,
for n € N, where
ay =aya; + bl, b2 = bldl + ¢y, Cy=Ca; + dl,
dz = dlﬂl, Y2 =) ta.
Assume that, for a k such that 2 < k < n + 1, we have proved that
Zn+3 = ‘SykZ:is-kzzﬁz-kziil-kzsz’
for n > k — 1, and that
ar = a1ag-1 + br1, bi = g1 + ¢k,
Ck = C1aj-1 + di-1, di = dray_1,
Yk = Yk-1 + Ak-1.
Using (109) with n — # — k into (110) one obtains
d ai by c d,

_ Sk (8§,M b a k k
Zn+3 =3 (8Zn+2—kzn+1—kzn—kzn—k—l) Zys2-k%ni1-kZn—k

:8yk+akza1ak+bkzb1ak+ck cag+dy _diay
n+2-k “n+l-k “n-k n—k-1

— SVk+1 5%k b1 ki1, kel
=&k Zy142-kZn+1-kZn—k “n—k-1’
for n > k, where
k41 = aray + by, b1 = bag + ¢,

Cre1 1= C1axk + di, dis1 1= dhay,

Yi+1 = Yk + Gk

Page 17 of 20

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

This along with (110), (111), and the method of induction shows that (112), (113), and (114),
hold for every k and # such that 2 < k < n + 1. In fact (112) holds for 1 <k <n +1 (see

(109)).
Hence, choosing k = n + 1 in (112), and using (107) we have

Anil buil _Cnil _Ansl
Zp43 = 83’n+122n+ Zlm ZO}H Z—T

_ (al—clgb)yml (0[1+azzg2 Wfllzwg)ﬂml (OlZgWﬁl)an ngl Z('—i?+1
=a

(A=c)yns1+Q+a)an1+bps1 ﬁb}’;ﬁl 232“n+1+“bn+1 +Cn+l

X W‘jll’aml*bbml Wgaml ZL_Z?H, ne NO-

(118)
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From (113) we easily see that (ay)i>4 satisfies the difference equation
ax = a1ax_1 + biax_s + crax_3 + diai_s. (119)

Since by = axy — aag, ck = by — biag, dy = diag_1, and from the linearity of equation
(119) we see that (b)ken, (cx)ken, and (di)ken are also solutions to the equation.
System (113) with k =1 yields

a) =adg + bo, bl = bl(lo + Co, C1 =Cag + do,
(120)
dy = dhay, J1=Yo + do-

The condition d; = bd # 0 along with the fourth equation in (120) implies a¢ = 1. Using
this and y; =1 in the other equalities in (120) we get by = co = dp = yo = 0. Repeating the
procedure for k = 0,—1, -2, is easily obtained

(121)

ds=1, d,=0, d_=0, do =0.

Hence, (ak)i>-3, (Dk)i>-3, (ck)i>-3, and (di)k>—3 are solutions to (119) satisfying initial
conditions (121), while (yx)«>_3 satisfies the following conditions:

y-3=yY-2=y1=y =0, n=1 (122)

and (114), from which it follows that
k-1
Y=Y _a. (123)
j=1

Since equation (119) is solvable, it follows that closed form formulas for (ax)i>-3,
(bk)k>-3, (ci)k>-3, and (di)r>-3, can be found. From (123), the form of the solution ay,
and by using some known summation formulas it follows that the formula for (yx)«>_3 can
also be found. From these facts and (118) we see that equation (106) is solvable too.

From the second equation in (1), we have that for every well-defined solution

n-1 ,Bwi,_l 0 ( )

while from the first one it follows that

2 =a%w, neN,. (125)

From (124) into (125) one obtains

d pl- —ac,, bd
Wz = o BwW0 owh  w, P woh,  me Ny, (126)

which differs from (106) only by the constant multiplier.
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We have

wi =B 2% and  w, = Bzl (127)
As above one obtains, for all natural numbers k and n such that1 <k <n+1,

W43 = nykWzli&szliszwfqﬁlfkwjlik’ n>k-1, (128)

where 1 = a1, (ax) ke, (br)kens (ck)ken, and (di)xen satisfy (113) with initial conditions

(108), while (Jk)ren satisfies (114) and (122), so that (123) holds where yy is replaced by .
From (128) with k = n + 1 and by using (127) we get

Cn+l WdYH

y a b
Wyies = )7)’n+1 W2V1+l w, n+1 W

— (adﬂl—a)j’nﬂ (ﬂwgzg)anu (ﬁwilzg_il)hnﬂ wgn+1 WﬁTI

— qPnn ﬂ(lfa)jfn+l+an+l+bn+1 Wgﬂn+1+cn+1zgan+1chn+1+dn+1ziﬂlﬂn+1’ (129)

for n € Ny.

As above the solvability of (119) shows that formulas for (ax)i>_3, (bi)k>-3, (ck)k>-3, and
(di)k>_3 can be found, and consequently a formula for (Jx)x>_3. This fact along with (129)
implies that equation (126) is solvable too. Hence, system (1) is also solvable in this case,
as desired. O

Corollary 4 Counsider system (1) with a,b,c,d € Z, bd #0, a, 8 € C\ {0}. Assume that
Z_1,20,W-1,Wo € C\ {0}. Then the general solution to system (1) is given by (118) and (129),
where the sequences (ax)ren, (bk)ken, (Ck)ken, and (di)ken satisfy the difference equation
(119) with initial conditions in (121), while (yk)ken and (Ji)ken are given by (123) and satisfy
conditions (122).
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