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Abstract

This paper is concerned with a class of fuzzy BAM cellular neural networks with
distributed leakage delays and impulses. By applying differential inequality
techniques, we establish some sufficient conditions which ensure the exponential
stability of such fuzzy BAM cellular neural networks. An example is given to illustrate
the effectiveness of the theoretical results. The results obtained in this article are
completely new and complement the previously known studies.
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1 Introduction

In recent years, a lot of authors pay much attention to dynamics of bidirectional associative
memory (BAM) neural networks due to their potential application prospect in many dis-
ciplines such as pattern recognition, automatic control engineering, optimization prob-
lems, image processing, speed detection of moving objects and so on [1-4]. Since time
delays usually occur in neural networks due to the finite switching of amplifiers in practi-
cal implementation, and the time delay may result in oscillation and instability of system,
many researchers investigate the dynamical nature of delayed BAM neural networks. For
example, Xiong et al. [5] discussed the stability of two-dimensional neutral-type Cohen-
Grossberg BAM neural networks, Zhang et al. [6] investigated the global stability and
synchronization of Markovian switching neural networks with stochastic perturbation
and impulsive delay. Some novel generic criteria for Markovian switching neural networks
with stochastic perturbation and impulsive delay are derived by establishing an extended
Halanay differential inequality on impulsive dynamical systems, in addition, some suf-
ficient conditions ensuring synchronization are established, Wang et al. [7] made a de-
tailed analysis on the exponential stability of delayed memristor-based recurrent neural
networks with impulse effects. By using an impulsive delayed differential inequality and
Lyapunov function, several exponential and uniform stability criteria of the impulsive de-
layed memristor-based recurrent neural networks are obtained. Li et al. [8] studied the
existence and stability of pseudo almost periodic solution for neutral type high-order Hop-
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field neural networks with delays in leakage terms on time scales. Applying the exponen-
tial dichotomy of linear dynamic equations on time scales, a fixed point theorem, and the
theory of calculus on time scales, the authors established some sufficient conditions for
the existence and global exponential stability of pseudo almost periodic solutions for the
model. For more related work, we refer the reader to [9-20].

Some authors argue that a typical time delay called leakage (or ‘forgetting’) delay may oc-
cur in the negative feedback term of the neural networks model (these terms are variously
known as forgetting or leakage terms) and have a great impact on the dynamics of neural
networks [21-30]. For example, time delay in the stabilizing negative feedback term has a
tendency to destabilize a system [31], Balasubramanianm et al. [32] pointed out that the
existence and uniqueness of the equilibrium point are independent of time delays and ini-
tial conditions. In real world, uncertainty or vagueness is unavoidable. Thus it is necessary
to introduce the fuzzy operator into the neural networks. In 2011, Balasubramaniam et al.
[33] considered the global asymptotic stability of the following BAM fuzzy cellular neural

networks with time delay in the leakage term, discrete and unbounded distributed delays:

®j(t) = —ai(t — o) + 37 az(O)fi((0)
+ Z;Zl bi()fi(y;(t - T(2))) + Z;Zl cii(t)w;
+ A\ @ [ k(= 9)fi(i(s) ds + Vi By [ kit = 9)fi(yy(s)) ds
+ N\ Tjwp + 2 Hywp + 1, £>0,i=1,2,...,1,
Yj(t) = =by(t — 09) + 21y ai()gilxi(8)) + Yoy Bia(D)gi(xi(t — p(2)))
+ Y Gl + N\, @i f_too ki(t — 5)gi(xi(s)) ds
+ Vi B [ kit — 9)gilxi(s)) ds
+ ALy Tjioi + \/ 1 Hioi + ], £>0,j=1,2,...,m.

(11)

The meaning of all the parameters of system (1.1) can be found in [33]. By applying the
quadratic convex combination method, reciprocal convex approach, Jensen integral in-
equality, and linear convex combination technique, Balasubramaniam et al. [33] obtained
several sufficient conditions to ensure the global asymptotic stability of the equilibrium
point of system (1.1).

Considering that time-varying delays in the leakage terms inevitably occur in electronic
neural networks due to the unavoidable finite switching speed of amplifiers [34], Li et
al. [34] considered the existence and exponential stability of an equilibrium point for the
following fuzzy BAM neural networks with time-varying delays in leakage terms on time
scales:

x(t) = —ai(t — 0i(0) + 27, ci()fi (¢ = ()
+ A i = Ta®) + N2 Ty + V2 Bidi (¢ = 7i(®))
+ViHiwj+ 1, teT,i=12,...,n,

V(&) = byt — mj(0)) + 2_7L, di()gi(xi(t — 05(2)))
+ jrzlpijgi(xi(t —0i(®))) + Ny Fyvi + Vi 4igi(xi(t — 035(2)))
+ VL Gyi+);, teT,j=12,...,m,

(1.2)

where T is a time scale. Applying fixed point theorem and differential inequality tech-
niques, Li et al. [34] obtained the sufficient condition which ensures the existence and
global exponential stability of an equilibrium point for system (1.2). Noticing that the im-
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pulsive perturbations usually occur in neural networks, Li and Li [35] investigated the ex-
ponential stability of the following BAM fuzzy cellular neural networks with time-varying
delays in leakage terms and impulses:

®(8) = —ai(t)xi(t — ai(t) + 37, ag(@)fi(;(0) + 27 by(Of (e — ()
+ Y ci(wy + Ny aie) [1o it = s)fi(y(s)) ds
+ Vi Bii(t) ffoo kit - $)f;(y;(s)) ds
+ /\]'Z1 Tjw; + \/jmle,-ja), +A(t), t>0,t#t,i=12,...,n,
Axi(te) = (e (&), i=1,2,...,mk=1,2,...,
J/,/»(t) = —bi(t)y;(t - Bi(0) + 21y di()gi(xi(2)) + Doy pii(0)gi(xi(t — p(2)))
+ Y g + Nisy v5i(2) f_too ki(t — s)gi(x:(s)) ds
+ VL mii®) [1 kit — 9)gixi(s)) ds
+ ALy R + /iy Sjii + Bi(8), 6> 0,6 #tk,j=12,...,m,
ij(tk) =]k()/l'(tk)), j=1,2,...,1’}’1,k=1,2,....

1.3)

By applying differential inequality techniques, Li and Li [35] established some sufficient
conditions which guarantee the exponential stability of model (1.3).

Here we would like to point out that neural networks usually have spatial natures due
to the presence of an amount of parallel pathways of a variety of axon sizes and lengths. It
is reasonable to introduce continuously distributed delays over a certain duration of time
such that the distant past has less influence compared with the recent behavior of the state
[1, 36]. Inspired by the analysis above, in this paper we consider the following fuzzy BAM
neural networks with distributed leakage delays and impulses:

x(t) = —ait) [y hils)xi(t —s)ds + 37 ay(e)fy(e) + 177 byf (0t — T(2)))
+ N (@) [ k(e = s 0y(6) ds + /L By0) [ Lo e = s)f oy (s)) ds
+ Ao Ty + 2 Hioy + 377 cj(t)w;
+Ait), t=0,t#tr,i=12,...,n,

Axi(te) = Iei(t),  i=1,2,..,mk=12,...,

IO = =5y (0) J5 [yt =) ds + 1Ly di(gi(xi(0) + Ty pi it = p(0)
+ ALy vi0) [ Kilt = 5)gi(ei(s)) ds + \/ Ly mi) [ kit = 9)giei(s)) dis
+ Nis Riitti + iz Sjitki + iy g6 i
+Bi(t), t=0,t#tr,j=1,2,...,m,

Ayi(t) =Tki(&),  j=1L2,...,mk=12,...,

(1.4)

which is a revised version of model (1.3). Here x;(£) and y;(¢) are the states of the ith neu-
ron and the jth neuron at time ¢, g;(¢) and fj(¢) denote the activation functions of the
ith neuron and the jth neuron at time £, u; and ; denote the inputs of the ith neuron
and the jth neuron, A;(¢) and B;(¢) denote the bias of the ith neuron and the jth neuron
at time ¢, a;(¢) and b;(¢) represent the rates with which the ith neuron and the jth neu-
ron at time ¢ will reset their potential to the resting state in isolation when disconnected
from the networks and external inputs, a;(t), b;(t), d;(t), and p;;(t) denote the connection
weights of the feedback template at time ¢ and c;(t), g;i(t) denote the connection weights
of the feedforward template at time #, y;;(t) and 7;(¢) denote the connection weights of
the delays fuzzy feedback MIN template at time ¢ and the delays fuzzy feedback MAX
template at time ¢, Ty, Ry, and Hj;, S are the elements of the fuzzy feedforward MIN
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template and fuzzy feedforward MAX template, /\ and \/ denote the fuzzy AND and
fuzzy OR operators, 0 < 7(t) < 7 and 0 < p(¢) < p denote the transmission delays at
time ¢, Ax;(ty) = xi(ty) — xi(t;), Ay;(t) = y5(t5) — y;(&;) are the impulses at moments #;
and f; <t < - - - is a strictly increasing sequence such that limy_, . £ = +00, kj(s) > 0, and
ki(s) > 0 are the feedback kernels and satisfy f0+oo ki(s)ds =1, fowo ki(s)ds=1,i=1,2,...,n,
j=12,...,m.

Our main object of this article is by applying differential inequality techniques to ana-
lyze the exponential stability of model (1.4). We expect that this study of the exponential
stability of model (1.4) has important theoretical value and tremendous potential for ap-
plication in designing the BAM cellular neural networks with distributed leakage delays.

Let R and R* denote the set of all real numbers and nonnegative real numbers, re-
spectively. For the sake of simplification, we introduce the notations as follows: f* =
sup,er [f ()], f~ =1infrer [f(£)|, where f : R — R is a continuous function.

The initial value of system (1.4) is given by

xi(8) = @i(s),  i(s) = Yj(s), se€(-00,0], (15)

where ¢;(s), ¥j(s) € C((—00,0],R), i =1,2,...,m,j =1,2,...,m.
Throughout this paper, we assume that the following conditions are satisfied.
(H1) Fori=1,2,...,n,j=12,...,m,f,g € C(R,R) and there exist positive constants L{
and LY such that

) | <Llu—vl, @) - g)| < Llu—v]

for u,me R.

(H2) Fori=1,2,...,nm,j=1,2,...,m, a;(t) >0 and by(t) >0 for t € R.

The remainder of the paper is organized as follows: in Section 2, we introduce a useful
definition and a lemma. In Section 3, some sufficient conditions which ensure the expo-
nential stability of model (1.4) are established. In Section 3, an example which illustrates
the theoretical findings is given. A brief conclusion is drawn in Section 4.

2 Preliminaries
In order to obtain the main result of this paper, we shall first state a definition and a lemma
which will be useful in proving the main result.

Definition 2.1 Let u* = (x},3,...,x%,9%,95,...,5%)T be asolution of system (1.4) with ini-
tial value ¢* = (¢, @3,..., %, Ui, ¥, ..., k)T, there exists a constant A > 0 that, for ev-
ery solution u(t) = (x1(t), %2(£), ..., %, (), y1(£), y2(£), ..., yu(t)) T of equation (1.4) with initial
value ¢(s) = (@1(5), @2(5), -, 9u(5), Y1(5), Y2 (s), -, Yiu(s)) T, satisfies

x(t) - () =0(e™),  y(O) -y @) =0(e™),
wherei=1,2,...,n,j=12,...,m.

Lemma 2.1 [37] Let x and y be two states of system (1.4). Then

N\ i®)gi) - N\ ei(Og0)| <Dl (®)]gi@) - )]
j=1

j1 j-1
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and

\/ﬂu )g(x \/ﬂu )gi() <Z\ﬂu )|lg@ -go|.

j=1 j=1

3 Exponential stability

In this section, we will consider the exponential stability of system (1.4).
Theorem 3.1 Letu* = (xf,x5,...,x5, 95,5,y )T
(H3) Fori=1,2,...,n,j=1,2,...,m,t €R,
@) [y hils)ds + af [ hi(s)sds
+ X (ag+ b)) + (o + B [y kit —s)ds)E] <0,

~bj(t) fo l(s)ds+b’r fo Li(s)sds
+ YL ld +pp) + (v + 1) fo kit —s) ds)Lf < 0.

(H4) Fori=1,2,...,n,j=12,...,mk=1,2,...,

L (%:i(8)) = =Opxi(te), 0 <6z <2,

Jei(te)) = =uy;(te), 0 <9 <2.

Then system (1.4) is exponentially stable.

Page 5 of 14

be a solution of system (1.4) with initial
value ¢* = (91, @5, ..., 05 Ui, w5, ..., ¥ )T In addition to (H1) and (H2), assume that:

Proof Let u(t) = (x1(£),%2(2), ..., %,(£), y1(), ¥2(2), ..., ym(£))T of equation (1.4) with initial

Value d)(s) = (‘PI(S): 902(3)’ ey </’n(5), 1//1(5), 1/’2(5), ceed wm(s))T Set

&l:xl(t)_xj‘(t)’ i:1,2,...,l’1,
=3O -y O, j=12....m,

and

FG0) =£G,0) + 770) [0 @), j=12..m,
GE) = g0 +20) g (©), i=12,...n

(3.2)

Fort>0,t#t,i=12,...,n,j=12,...,m k=1,2,..., it follows from (H4), (1.4), (3.1),

and (3.2) that

() = —ai(t) [y ()it — s)ds + 317, ay(£);(3;(0))
+ 2 by Of Gyt — T () + AfL ai(8) [ Ki(e = $)f(55(s)) s
+ V2 By (0) [ kit = ) (5(s) s,

5/}(1,‘) =-bj(t fo i(s)y;(t —s)ds + X1 dii(£)gi(%:(2))
+ 3 pi(OFGEi(E - p®) + NIy vii(e) [ kit = $)gi(%i(s)) ds
+ Vg i) ffoo ki(t — 5)gi(x:(s)) ds

(3.3)
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and
i () — x5 ()] = loea(t) + Do (£) — xF () — T (o (£0))
= (1 = Ou) (i (i) — 27 ()|
< i) — 7 (&),
(&) = 57 GO = yj(t) + Tk Wi(&) = 7 (&) = Tk 07 (@)
=@ = D) 0(8) = y; (&)l
= lyj(t) = ¥7 @)1
By (3.4), we have

(0] = lxei(tg) — x5 (8]

< i) —x; ()|

1%, i=1,2,...,mk=12,...,
i1 = 1y;(&) — ¥7 ()]

< Iyi(te) = y; ()l

=5, j=12,...,mk=1,2,....

Now we define continuous functions W;(¢) (i =1,2,...,n) and Aj(g) (j=1,2,...

lows:

Wi(s) = —(ai(t) [ hils)ds — ¢) +a} [y hi(s)sds

+ j=1 [(ﬂlj + b+egt ) + (al] + 131]) f k](t - S)es‘(s*t) dS]L{,
Aj(e) ==bi(t) [y hs)ds — ) + b} 5 L(s)s ds

+ 0[]+ ples) + (V,l +117) Jo " kilt = 5)es dis] LS.

Then we have

Wi(0) = ~ai(t) [y~ hi(s)ds +aj [y hi(s)sds

+ Il[(a +b3) + (g + B )f k(t—s)ds]Lf<0,
Aj(0) = fo s)ds + b} fo (s)sds

+ ZH[( p +pﬂ) + (y]l + nﬂ)f ki(t - s)ds]LS < 0.

Page 6 of 14

(3.4)

(3.5)

,m) as fol-

(3.6)

In view of the continuity of W;(¢) (i =1,2,...,n) and Aj(¢) (j = 1,2,...,m), then there exists

a positive constant A such that

(2 @) 3" hi(s)ds =) +af [ hi(s)sds

+ ,1[(a +b+ “)+(a,,+/3ll) o ki(t - s)e" 0 dsi <o,
A ==(bi(0) [ ] swh—M+b*% l(s)sds

+ 2l ﬂ+g,”)+0¢+mgk ki(t - 5)e*6-0 ds|LE < 0,

wherei=1,2,...,n,j=1,2,...,m. Let

Uit) =eMx(t), i=12,...,n,
Vi(t) = e"y(1), j=12,...,m

(3.8)

(3.9)



Xu and Li Advances in Difference Equations (2016) 2016:276 Page 7 of 14

It follows from (3.9) that

Auit) . - e d%i(t)
T reMx;(t) + e o
= U;(¢) + eM |:—ai(t) /OO hi(s)x;(t —s)ds
0
+ Y ag@fF0) + Y b (;(t - @)
j=1 j=1
+A%m/kﬂﬂmﬂm%
j=1 -
+\/ Bi(®) / kit = )f; (55(s)) dS]
j=1 -
=AU (t) — a;(¢) /Oohi(s) dsU;(t) + a;(t) /Ooh,-(s) /t U(xc) dic ds
¥ Zal,(ﬂe“f ¥i(8)) + Zbl,u)e“f (e -=@®))
j=1 j=1
+Amﬂw7nhWﬂWﬂmﬂ
=1 -
+V@®W/kﬂqﬁﬁM@, (3.10)
=1 -
de(t) g M Atdj_’i(t)
7 =re"yi(t) + e 7

= )\.V}'(t) +eM |:_bj(t) ‘/ooo lj(S)jlj(t —s)ds

+ Y di g (x:(0) + > pi)e" g (x:(t - p(©)))

i=1 i=1

+ /\ V/z / Li(t ~ 5)gi (x,(s))
/a0 / (e - 98(E0) ds}
i=1 i

:M/j(t)—bj(t)/ lj(s)dsV,-(t)+bj(t)/ lj(s)/ \'/,'(/c)d/cds

+Zdﬂ(t Mg (%:(0)) Zpﬂ(t e gi(%i(t - p(2)))

= i=1

+Amﬂe/lﬁsm@w

+ \/ it [ i(¢ - $)gi(%i(s)) dis, (3.11)
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wherei=1,2,...,n,j=1,2,...,m. Let

YT = max{lrggix { |Ui(s) Vj(S)

Ui(s)[}, max {[V(s)],

s € (00,01},

It follows, for ¢ € (~00,0], t #t,and i =1,2,...,1,j = 1,2,...,m, that

\u@)| <, \u@)| <, Vi0)] <, [Vio)] <. (3.12)
Next we prove, for t>0andi=1,2,...,n,j=1,2,...,m, that

luw| <y, ||, |viol<Y, |Vo|=T. (3.13)

If (3.13) does not hold true, then there exist i € {1,2,...,n},j € {1,2,...,m}, and a first time
t* > 0 such that one of the following cases (3.14)-(3.21) is satisfied:

uE)=x, wE)=o0, |u®<Y, |U®|<T,

) (3.14)

|V](t)| <7, |V,(t)| <Y fort<th
u(¢*) = -7, Uu(¢) <o, u@l <, U] <,

) fe) <o, ] < i) < .
|V,(t)| <7, ’V,»(t)| <Y fort<th
Vi(£*) = Y, Vi(t*) > 0, u@®| <, U] <,

©) €)=0 Jul<T. 0] -
’Vj(t)| <7, ’Vj(t)| <Y fort<th
Vi(£) = -7, Vi(t*) <0, up)| <, U(t)] <,

©) W) <o Jul<T.  je]< -
’V,'(t)| <, ’V,'(t)| <Y fort<th
u(£) =", U;(¢) > 0, <7, @) <,

) ()20 o] <X, [0 < -
|\/j(t)| <7, |\/j(t)| <Y fort<t%
u(¢) = -7, () <0, Ut)| <, @) <,

) bfe)<o,  |u@l<T, i< .
|V/(t)| <7, |V,(t)| <Y fort<th
Vi(t) =, \7{(t*) >0, |u@|<Y, |U@®]<T, 5.20)
|Vj(t)| <7, |V,~(t)| <Y fort<th
Vi(t)=-T,  Vi(t)<0, |u@|<Y, |L@|<T, .

|Vj(t)|<T, |V,~(t)|<T for t < t*.

If (3.14) holds, then according to (H3), (3.8), and (3.10), we have

o0

=AU - ai(£) / Ji(s) dsUL(£°)

0

dU;(t)
dt

t=t*
00 t*

+a;(t*) / hi(s) | Uilic)di ds

0

t*—s

+ S el FG(E) + () e - e(e)

Jj=1
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t*

+ /\0511 M*/_ (t _S)_(yf S))
+ \/ lgij (t*)ekt* / k](t _ S)jj (j/l(s)) ds
jo1 -

< (A - ui(t*) /oo hi(s) ds) L[i(t*) +a} /-00 hi(s)sdsT
0

+Za L |V;(t) Zb* (e - (1))
+Zau/ J £ Mot Lf|y1 |ds
+Zﬁu/ kit —s Ms”Lf|y |ds

< (A —a,»(t*) /()oohi(s) ds)T +aj /Ooohi(s)sdsT

+ Za;L{T ¥ Zb* T+ Zau / ki(s)e* L] ¢ ds
j=1
+00
¥ Z B /0 ki(s)e* LY ds
j=1

< {—(ai(t*)/oooh[(s)ds—)\> +a;/0°ohi(s)sds

+Z[ + e ) + (af + B}) /0 kit = 5= ds}L{ }T

j=1
<0, (3.22)

which is a contradiction. Thus (3.14) is not hold true. If (3.15) holds, then according to
(H3), (3.8), and (3.11), we have

au;(t)
dt

t=t*

=) -a(e) [ " ) dsti ()
0
+a,-(t*) fmhi(s) t U(x) dx ds
0 t*—s

' i“u‘(t*)emﬁ G5(£%)) + Db () fG5(" - 2 (1))

s

Il
—_

J

t*

+/\au [ k(e -7 0)ds

oo

+\/ﬁ,, e f ki(t - s)f;(3(s)) dis

> (A a, / hi(s) ds) / hi(s)sdsT
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—Za LVi(e)| = > ke L | vy -1 (¢))]

j=1

m *

_ Za; / k,(t* _ S)ek(s—t*)L{ |y],(5)| ds
j=1 -
m * .

-8 / ki(t — )€ |y;(s)| ds
j=1 -

> (A —ai(t*) /ooh,»(s) ds)T —al /Oohi(s)sdsT
0

m +00
_Za;L{T Zb* AT LfT—Zoz;}“-/O ki(s)e* LY dis
j=1
+00
0

m
- Z ,B; / kj(s)e’“L{ Y ds
j=1

> i—(ai(t*) /Oooh,»(s) ds — k) +aj /Ooohi(s)sds

" +00
+Z*%WMW+M+WA MFm“mﬂﬁﬁm

j=1
>0, (3.23)

which is also a contradiction, thus (3.15) does not hold true. In a similar way, we can also
prove that (3.16)-(3.21) do not hold true. On the other hand, by (3.5) and (3.6), we get

X (] = i) — x5 ()]
< i) — x5 ()| = x|
= |Ui(t) e < | Te ™k,
i1 = (&) = 7 (&)l
< lyi(te) — y; &) = 15;(&)]
= |Vi(t)le Mk < |Ye ™,

(3.24)

wherei=1,2,...,n,j=1,2,...,m,k=1,2,.... It follows from (3.13) and (3.24) that we have

lx;(t) — xf ()| = O(e™), ¢>0,i=12,...,n,

3.25
O = y: O] = Oe™), £50,j=1,2,...,m 325

Therefore system (1.4) is exponentially stable. The proof of Theorem 3.1 is completed.
O

Remark 3.1 Duan and Huang [1] investigated the global exponential stability of fuzzy
BAM neural networks with distributed delays and time-varying delays in the leakage
terms, the model (1.1) in [1] does not involves distributed leakage delays and impulses.
In this paper, we studied the exponential stability of system (1.4) with distributed leakage
delays and impulses. System (1.4) is more general than those of numerous previous works.
All the results obtained in [1] cannot be applicable to model (1.4) to obtain the exponen-
tial stability of system (1.4). From this viewpoint, our results on the exponential stability
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for fuzzy BA

M neural networks are essentially new and complement previously known

results to some extent.

4 Examples

In this sectio

n, we present an example to verify the analytical predictions obtained in the

previous section. Consider the following fuzzy BAM cellular neural networks with dis-

tributed leakage delays and impulses:

yi(t) =

Ayj(te)
where

[a(0)
_bl(t)

_6111 (2)
| 42 ()

_du(t)
_dzl (2)

—bu(f)
_bzl(t)

-pu (®)
| P21 (®)

an(t)
_0l21(f)

_)/11(1f)
| v1(2)

[ Bu®)
_ﬁzl (2)

NG
_Uzl(t)

Ay () _Ik(xz(tk)) i=12,.

() = —ai(t) [y hils)xi(t — S) ds + Z,z:l a;(@)f;(y;(t))

* by OOyt = (0 + ALy ayle) [ e =10/
+ ] 1 ﬂz](t) f k S)f()/}(s)) ds
+ /\1=1 Tjw; + \/FlH,,a), + j=1 cij(t)w;
+A;t), t=0,t#t,i=12,...,n,
k=12,
fo S)y/ —s)ds+ Zz -1 d/z gl(xl( )
+ Z,-:lp,z gt - p(®) + Niy vi(®) [ Kilt - )gilxi(s)) ds

(4.1)
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+ Vi mit) [ kit - 8)gi(xi(s)) ds
+ Af Riigi + /L Sjitti + Y @£

+ Bj(t),

an@® | [0.35+02(sin¢ 073 +0.2|cost| ]
an(t) 0.45 +0.2|sin¢| 0.57 + 0.4|cost|
dn@® | [0.06+0.01sine  0.06+0.02sint |
da (2) 0.07 + 0.04cost 0.07 + 0.04sin¢ |
bia(t) ]| [0.07+0.03cost 0.07 +0.04sint |
b (2) 0.08 + 0.03cost 0.09 +0.05cos¢ |
@] [0.06+0.03sint 0.08+0.04sint |
paa(t) 0.05 + 0.03cos¢ 0.08 +0.05sint |
alz(t) [0.05+0.03cost  0.09 +0.05sin¢
ot 0.06+0.02cos¢  0.06 +0.01cos ’
y12(2) 0.06 +0.02cost 0.06 +0.01sint
Ya2(2) 0.08 + 0.04cost 0.07 +0.03cost |’
B () 0.05+0.02cost 0.05+0.01sint
B (t) 0.05 + 0.04cost 0.05+0.03cost |
n12(£) 0.04 +0.01cost 0.07 +0.01sint
n22(t) 0.07 +0.02cos¢ 0.07 + 0.03cost |’

t>0,t4t,j=12,...
]k(y/ tk))

ax(t) _
by(2)

j=12,...

0.55 + 0.2| cost|
0.45 + 0.1] sin¢|

,m,

ymk=1,2,...,

0.62 + 0.2] sint|
0.52 + 0.4 sin¢|
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Ty T _|Hu Hi| Ry Ry B
| Tor T Hy Hj Roy1 Ry I
i Tll T12 _ 11 Al (t) Az(t) _ 0.5cost 0.4sin If_
T21 T22 - 1 1 ’ Bl(t) Bz(t) N 0.4sint 0.5sint ’
h(s)  has) At 1
IS B PR A A& |l
ho) B0 | = ’ @) @] |kl I
ki(s) ka(s) e e & & -
_T(t) pm1| [0.5+0.2|cost| 1 O | | 1-0.2sin(1 +k)
o) pa| |04+02[sing| 1| O | [1+02c0s2+k) |’

where i,j =1,2. Then

ai ay| [075 082 a; a;| [055 062

bt bi| 055 092 by by| |045 052

[dy, di | [0.07 0.08 by by | [o10 o1

dy di,| o1 om|’ by, b, | |011 014
(i ph| [0.09 012] (o o] [0.08 0.14

Py P 0.08 013|’ ol ol 0.08 0.07]
i J/fz__—O.OS 0.08 ] [ 85 ;31*2___0.07 0.06
v | [012 010 B By | 1009 008
[t n, | [0.05 0.08] (2 5] 11

n mh| 009 010 | |1 1|

It is easy to check that (H1) and (H2) hold. In addition, we have

—aj / h(s)ds + af / hi(s)sds
0 0
2 +00
+ Z[(af] + b{'l) + (afj + /31;) /0 ki(t —s) ds:|L{ ~ -0.3045 <0,
j=1
o0 o0
—a, /0 hy(s)ds + a3 /0 hay(s)sds
2 +00 f
+ Z[(a;j +b3) + (o3 + B3) fo kit —s) ds:|Lj ~ -0.6822 <0,
j=1
—-b; / h(s)ds + b} / Li(s)sds
0 0
2 +00
+ Z[(d{'l +p3) + (v + ) / ki(t-s) dsi|L‘;g ~ —0.5743 < 0,
i=1 0
-b; / ly(s)ds + by / Ir(s)sds
0 0

2

+ Z[(d; +p3;) + (v + 13;) /0 ki(t —s) ds]L‘f ~ -0.9208 < 0,

i=1
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which implies that (H3) holds. Thus all the conditions in Theorem 3.1 are satisfied. Then

we can conclude that system (4.1) is exponentially stable.

5 Conclusions

In the present paper, we are concerned with a class of fuzzy BAM cellular neural networks
with distributed leakage delays and impulses. A set of sufficient conditions to ensure the
exponential stability of such fuzzy BAM cellular neural networks with distributed leakage
delays and impulses are established by applying differential inequality techniques. It is
shown that distributed leakage delays and impulses play an important role in exponential
stability of the neural networks. The results obtained in this paper are completely new and
complement the previously known work of [34, 35].
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