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Abstract
In this paper, we obtain the first-order Melnikov function of piecewise smooth
polynomial perturbation of a Hamiltonian system. As application, we consider the
number of limit cycles for perturbing the global center and truncated pendulum
inside a piecewise smooth cubic polynomial differential system. Our results show that
a piecewise smooth differential system can bifurcate more limit cycles than the
smooth one.

MSC: 34A36; 34C07; 37G15

Keywords: limit cycle; Hamiltonian system; piecewise smooth differential system;
Melnikov method

1 Introduction and statement of the main results
The second part of Hilbert’s th problem and its weak version are two open problems in
the qualitative theory of real planar differential systems; see [–]. Since both problems
are difficult, mathematicians try to study particular and simple cases. For example, Smale’s
th problem restricts Hilbert’s th problem to the Liénard systems [].

In recent years, stimulated by nonsmooth phenomena in the real world, piecewise
smooth differential systems have attracted a good deal of attention; see, for instance, [, ].
There are several papers [, ] considering the limit cycles for piecewise smooth Liénard
systems. The authors of [] studied the Hopf bifurcation for a piecewise smooth planar
Hamiltonian system. In the paper [], the authors considered the Poincaré bifurcation for
piecewise smooth Hamiltonian systems and obtained the first-order Melnikov function.
Then, they applied the first-order Melnikov function to study the number of limit cycles
that bifurcate from the period annulus of the center and obtained some new results. Later,
by introducing multiple parameters, in [], some new formulas are obtained for piece-
wise smooth systems. In the paper [], the authors considered the number of limit cycles
that bifurcate from the period annulus of the center for a piecewise smooth quadratic
isochronous center. Generally speaking, a piecewise smooth system can bifurcate more
limit cycles than a smooth one. In a recent paper [], the authors studied the limit cycles
for m-piecewise smooth Liénard system, They conjecture that the number of limit cycles
decreases as m increases.
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In this paper, we consider the following piecewise smooth perturbed Hamiltonian sys-
tem:

(
dx
dt
dy
dt

)
=

⎧⎨
⎩

( Hy(x,y)+εf +(x,y)
–Hx(x,y)+εg+(x,y)

)
, x > ,( Hy(x,y)+εf –(x,y)

–Hx(x,y)+εg–(x,y)

)
, x < ,

()

where f ±(x, y) and g±(x, y) are polynomial functions with respect to x and y.
Note that the unperturbed system ()|ε= is a Hamiltonian system with the first integral

H(x, y), and there is a family of periodic orbits Lh = L+
h ∪ L–

h surrounding the center, where
L±

h : H(x, y) = h, x >  (x < ), h ∈ (h, h). Without loss of generality, we suppose that Lh

has the clockwise orientation.
In this paper, we try to study the first-order Melnikov function for piecewise smooth

system (). Applying the first-order Melnikov function, we consider the number of limit
cycles that bifurcate from the period annulus of the center for unperturbed system ()|ε=

under piecewise smooth polynomial perturbation.

Theorem  The first-order Melnikov function of system () can be expressed as

M(h) = –
∫

L+
h

(∫ x


g+

y (x, y) dx + f +(x, y)
)

dy

–
∫

L–
h

(∫ x


g–

y (x, y) dx + f –(x, y)
)

dy, ()

where L±(h) : H(x, y) = h, x >  (x < ), h ∈ (h, h), and Lh = L+
h ∪ L–

h has the clockwise
orientation.

Moreover, if M(h∗) =  and M′
(h∗) �=  for some h∗ ∈ (h, h), then for |ε| >  sufficiently

small, system () has a unique limit cycle near Lh∗ .

Remark  If f +(x, y) ≡ f –(x, y) and g+(x, y) ≡ g–(x, y), then system () is a smooth near-
Hamiltonian system, and the first-order Melnikov function is well known; see []. Let
deg H(x, y) = m. There are many papers considering the number of limit cycles that bi-
furcate from the period annulus of the center. See, for instance, m =  (e.g. []), m = 
(e.g. []), m =  (e.g. []), m =  (e.g. [, ]), m =  (e.g. []).

As applications, we study the number of limit cycles for the piecewise smooth pertur-
bation of the global center

(
dx
dt
dy
dt

)
=

⎧⎨
⎩

( y+y+εf +(x,y)
–x+εg+(x,y)

)
, x > ,( y+y+εf –(x,y)

–x+εg–(x,y)

)
, x < ,

()

and the truncated pendulum

(
dx
dt
dy
dt

)
=

⎧⎨
⎩

( y–y+εf +(x,y)
–x+εg+(x,y)

)
, x > ,( y–y+εf –(x,y)

–x+εg–(x,y)

)
, x < ,

()
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where

f +(x, y) = ax + ay + ax + axy + ay + ax + axy + axy + ay,

g+(x, y) = bx + by + bx + bxy + by + bx + bxy + bxy + by,

f –(x, y) = cx + cy + cx + cxy + cy + cx + cxy + cxy + cy,

g–(x, y) = dx + dy + dx + dxy + dy + dx + dxy + dxy + dy.

()

Note that for ε = , systems () and () are Hamiltonian systems. These systems occur
in oscillating chemical reactor models and have been studied in several papers; see, for
instance, [, ].

Applying the first-order Melnikov function given by (), we consider the number of limit
cycles that can bifurcate from the period annuls surrounding the origin of systems () and
() under piecewise smooth cubic polynomial perturbation. Our result is the following
theorem.

Theorem  There are at least five limit cycles that can bifurcate from the period annulus
surrounding the origin of () (resp. ()) by the first-order Melnikov function.

Remark  If ai = ci, bi = di, i = , , . . . , , then systems () and () become smooth near-
Hamiltonian systems and have been studied in the papers [, ], where the authors ob-
tained that there are at most two limit cycles that bifurcate from the period annulus of the
origin for the smooth systems () and (). Our result shows that planar piecewise smooth
differential systems () and () can bifurcate three more limit cycles than the smooth one.

2 Proof of Theorem 1
We need the following lemma derived from [] to prove Theorem .

Lemma  Consider the perturbed piecewise smooth Hamiltonian system

(
dx
dt
dy
dt

)
=

⎧⎨
⎩

( H+
y (x,y)+εf +(x,y)

–H+
x (x,y)+εg+(x,y)

)
, x > ,( H–

y (x,y)+εf –(x,y)
–H–

x (x,y)+εg–(x,y)

)
, x < ,

()

where f ±(x, y) and g±(x, y) are analytic functions with respect to x, y. Assume that:
(I) There exist an interval J = (α,β) and two points A(h) = (,α(h)) and

A(h) = (,α(h)), where α(h) �= α(h), such that, for h ∈ J , we have

H+(
A(h)

)
= H+(

A(h)
)

= h,

H–(
A(h)

)
= H–(

A(h)
)
.

()

(II) The system has an orbital arc L+
h starting from A(h) and ending at A(h) defined by

H+(x, y) = h, x > . The system has an orbital arc L–
h starting from A(h) and ending

at A(h) defined by H–(x, y) = h, x ≤ .
Under assumptions (I) and (II), system ()|ε= has a family of periodic orbits Lh = L+

h ∪ L–
h

for h ∈ J . Each of the closed curves Lh is piecewise smooth in general. Further, without loss
of generality, suppose that Lh has a clockwise orientation.
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Then the first-order Melnikov function of system () can be expressed as

M(h) =
H+

y (A)
H–

y (A)

(H–
y (A)

H+
y (A)

∫
L+

h

g+ dx – f + dy +
∫

L–
h

g– dx – f – dy
)

. ()

Further, if M(h∗) =  and M′
(h∗) �=  for some h∗ ∈ J , then for |ε| >  sufficiently small,

system () has a unique limit cycle near Lh∗ .

Proof of Theorem  Since the unperturbed system ()|ε= is a Hamiltonian system with first
integral H(x, y), it is obvious that assumptions (I) and (II) are satisfied. Note that H+(x, y) ≡
H–(x, y) = H(x, y) for system (). Then

H+
y
(
A(h)

)
= H–

y
(
A(h)

)
, H+

y
(
A(h)

)
= H–

y
(
A(h)

)
. ()

Replacing () by (), we have

M(h) = M+(h) + M–(h), ()

where

M+(h) =
∫

L+
h

g+(x, y) dx – f +(x, y) dy,

M–(h) =
∫

L–
h

g–(x, y) dx – f –(x, y) dy.
()

Applying Green’s formula two times to the integrals (), we have

M+(h) =
∫

L+
h

g+(x, y) dx – f +(x, y) dy

=
∫

L+
h

g+(x, y) dx –
∫

L+
h

f +(x, y) dy

=
∮

L+
h∪–––→

AA
g+(x, y) dx –

∫
L+

h

f +(x, y) dy

=
∫∫

int(L+
h∪–––→

AA)
g+

y (x, y) dx dy –
∫

L+
h

f +(x, y) dy

=
∮

L+
h∪–––→

AA

(∫ x


g+

y (x, y) dx
)

dy –
∫

L+
h

f +(x, y) dy

= –
∫

L+
h

(∫ x


g+

y (x, y) dx + f +(x, y)
)

dy, ()

where L+
h : H(x, y) = h, x > .

Similarly, we have

M–(h) = –
∫

L–
h

(∫ x


g–

y (x, y) dx + f –(x, y)
)

dy, ()

where L–
h : H(x, y) = h, x < .
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Replacing () and () by (), we obtain the first-order Melnikov function (). Accord-
ing to Lemma , every simple zero of the first-order Melnikov function () provides a limit
cycle of system (). This completes the proof. �

3 Proof of Theorem 3
In order to estimate the number of the zeros of the first-order Melnikov function, we need
the following lemma.

Lemma  [] Consider p +  linearly independent analytical functions fi : U → R, i =
, , . . . , p, where U ∈ R is an interval. Suppose that there exists j ∈ {, , . . . , p} such that
fj has constant sign. Then there exist p +  constants Ci, i = , , . . . , p, such that f (r) =∑p

i= Cifi(r) has at least p simple zeros in U .

Proof of Theorem  First, we consider system (). From

H(x, y) =
x


+

y


+

y


= h ∈ (, +∞) ()

we obtain that

L±(h) : x = ±
√

h – y –
y


()

and

α(h) =
√

 + h – , α(h) = –α(h). ()

According to Theorem , the first-order Melnikov function is

M(h) =
∫

L+
h

(∫ x


g+

y (x, y) dx + f +(x, y)
)

dy

+
∫

L–
h

(∫ x


g–

y (x, y) dx + f –(x, y)
)

dy

=
∫

L+
h

(∫ x


g+

y (x, y) dx + f +(x, y)
)

dy

–
∫

L+
h

(∫ –x


g–

y (x, y) dx + f –(–x, y)
)

dy, ()

where f ±(x, y) and g±(x, y) are given by (). �

For simplicity, we define the following functions:

Ii,j(h) =
∫

L+
h

xiyj dy, h ∈ (, +∞). ()

Lemma  The following equalities hold: 
(i) I,(h) = I,(h) = I,(h) = I,(h) = ;

(ii) I,(h), I,(h), I,(h), I,(h), I,(h), I,(h) are linearly independent functions.
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Proof (i) Note that L+
h : x =

√
h – y – y

 and α(h) = –α(h). By symmetry we have

I,(h) =
∫

L+
h

y dy =
∫ –α(h)

α(h)
y dy = .

The equalities I,(h) = I,(h) = I,(h) =  can be proved similarly.
(ii) In order to prove that I,(h), I,(h), I,(h), I,(h), I,(h), I,(h) are linearly indepen-

dent functions, for these functions, we make the following Taylor expansions in the vari-
able h around h = :

I,(h) = –h +



h –



h + O
(
h),

I,(h) = –
√

h

 +


√




h

 –


√


,

h

 + O

(
h



)
,

I,(h) = –h +



h + O
(
h),

I,(h) = –
√

h

 +


√




h

 + O

(
h



)
,

I,(h) = –



h + O

(
h),

I,(h) = –
√




h

 + O

(
h



)
.

()

Suppose that

F(h) = kI,(h) + kI,(h) + kI,(h) + kI,(h) + kI,(h) + kI,(h) ≡ . ()

In the following, we need to prove that ki = , i = , , . . . , .
From F ′() = –k =  we have k = . Substituting k =  into (), from limh→+ F(h)

h



=

–
√

k =  we have k = . Substituting k = k =  into (), from F ′′() = –k =  we
have k = . Similarly, we can obtain that k = k = k = . �

Substituting statement (i) of Lemma  into (), we have

M(h) = (c, – a,)I,(h)

– (a, + b, + c, + d,)I,(h)

–
(

a, – c, +
b,


–

d,



)
I,(h)

+ (c, – a,)I,(h)

–
(

a, + c, +
b,


+

d,



)
I,(h)

– (a, + b, + c, + d,)I,(h). ()

By statement (ii) of Lemma  the first-order Melnikov function M(h) given by () is a lin-
ear combination of six linearly independent functions I,(h), I,(h), I,(h), I,(h), I,(h),
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I,(h) with arbitrary coefficients. From Lemma  we obtain that M(h) has at least five
simple zeros in (, +∞). According to Theorem , we can deduce that there are at least
five limit cycles that can bifurcate from the period annulus surrounding the origin of ()
by the first-order Melnikov function.

The proof of Theorem  for system () is similar. The main difference is that

L±(h) : x = ±
√

h – y +
y


, h ∈

(
,




)
()

and

α(h) =
√

 –
√

 – h, α(h) = –α(h), ()

so we omit it.
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