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Abstract
This paper is devoted to the study of an eco-epidemiological model with stage
structure in the predator and disease in the prey. To begin with, the positivity and
boundedness of the solutions are obtained. This shows that the system possesses a
bounded absorbing set. Then, by using the LaSalle-Lyapunov invariance principle,
limit equation theory, and a geometrical criterion for analyzing the distribution of the
eigenvalues, the stability of the boundary equilibria and interior equilibrium are
established, respectively. Meanwhile, the existence of Hopf bifurcations is obtained
when the delay τ varies in a limitary region. Furthermore, by employing center
manifold theory and the normal form method, an algorithm for determining the
direction and stability of the Hopf bifurcation is derived. At last, some numerical
simulations are carried out for illustrating the analytic results.
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bifurcation

1 Introduction
Ecological models that reveal the amounts of prey and predator have long been and still
will be investigated for their universal existence and importance. After the fundamental
work of Lotka and Volterra for predator-prey interactions in the middle of s, predator-
prey models were studied extensively [–]. Some literature considered the stage struc-
ture, assuming the immature predator does not consume the prey. Suppose the constant
death rate of the immature predator to be d, then the livability is e–dt after t time passed.
An epidemiological model is also widely studied. The most frequent types are SI, SIS, SIR,
and SIRS. As is well known, the basic reproduction number R makes a significant role
in such model. It presents the average number of new susceptible cells acquired from a
single infected cell, and determines the persistence of the disease.

The so-called eco-epidemiological model is the combination of infection into ecolog-
ical model. It contains two types mainly: disease in the predator [] and disease in the
prey [–, , ]. When we have disease in the prey, the predator may consume on both
the healthy and infected prey [, ]. Sometimes the infected ones are weaker or say, their
habitats are accessible to the predator (e.g. infected fish stay close to the water surface and
thus are easy to capture). The literature shows that the predation rate on infected prey
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may be  times higher than on susceptible prey []. Thus sometimes it is reasonable to
say that the predators consume the infected prey only []. The pioneer work for study of
eco-epidemiological model is Anderson and May [] in . After that, Chattopadhyay
and Arino [] used the name ‘eco-epidemiological’ first. For the detailed evolution of eco-
epidemiological model we refer to Bairagi and Chattopadhyay [].

Usually, an eco-epidemiological model of SI type contains three variables: the suscepti-
ble prey S(t), infected prey I(t), and predator P(t). We have the following assumptions:

• Only susceptible prey are capable to reproduce under the logistic law with intrinsic
birth rate constant r >  and carrying capacity K > , while the infected prey also
contribute to the carrying capacity.

• The bilinear incidence with rate ξ make the disease spreads from infected to
susceptible prey.

• Suppose the infected prey are vulnerable, thus easier to catch, so the predation on
susceptible prey is ignored. The predation on infected prey follows a Holling type II
response function.

• The natural death rates of infected prey and predator are μ and d, respectively.
Assume d to be death rate of predator due to consuming of infected prey, so the total
death rate of predator is d = d + d. Furthermore, assume the predator has no food
source other than infected prey, and the toxicity level is taken to be low enough that
eating infected prey does more good than harm.

Chattopadhyay and Bairagi [] have proposed an eco-epidemiological model in the fol-
lowing form:

Ṡ = rS
(

 –
S + I

K

)
– ξ IS,

İ = ξ IS –
mIP
a + I

– μI,

Ṗ =
mαIP
a + I

– dP.

(.)

The local and global stability of the system (.) around the biologically feasible equilibria
is obtained in [].

It is realistic and interesting for us to construct the stage-structured eco-epidemiological
model and study the combined effects of stage structure and mutual interference by preda-
tors. On the meaning of the construction of a stage-structured eco-epidemiological model
we refer to Liu and Beretta []. Most existing stage-structure models (see [–] and the
references therein) deal with single species growth, which assumes a constant resource
supply []. Gourley and Kuang [] formulated a robust stage-structured predator-prey
model with the assumption that stage-structured consumer species growth is a combined
result of birth and death processes, both of which are closely linked to the dynamical sup-
ply of resource. Enlightened by the modeling methods in [] and based on the model (.),
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we formulate the robust stage-structured eco-epidemiological model as follows:

Ṡ(t) = rS(t)
(

 –
S(t) + I(t)

K

)
– ξ I(t)S(t),

İ(t) = ξ I(t)S(t) –
mI(t)P(t)
a + I(t)

– μI(t),

ṗ(t) =
mαI(t)P(t)

a + I(t)
–

mαI(t – τ )P(t – τ )
a + I(t – τ )

e–dτ – dp(t),

Ṗ(t) =
mαI(t – τ )P(t – τ )

a + I(t – τ )
e–dτ – dP(t),

(.)

where S(t) and I(t) are as mentioned above, p(t) and P(t) represent the immature and
mature predator densities, respectively. We assume that the immature predators suffer a
mortality rate of d (the through-stage death rate) and take τ units of time to mature; thus
e–dτ is the surviving rate of each immature predator to reach maturity.

Notice that the first, second, and fourth equations of system (.) are independent of the
variable p(t), we see that (S(t), I(t), P(t)) satisfy the following system:

Ṡ(t) = rS(t)
(

 –
S(t) + I(t)

K

)
– ξ I(t)S(t),

İ(t) = ξ I(t)S(t) –
mI(t)P(t)
a + I(t)

– μI(t),

Ṗ(t) =
mαI(t – τ )P(t – τ )

a + I(t – τ )
e–dτ – dP(t).

(.)

The purpose of the paper is to study the dynamics of (.). The rest of this paper is
organized as follows: In Section , the properties of the solutions such as positivity and
boundedness are obtained. In Section . the stability of the boundary equilibria are spec-
ified by using an eigenvalue analysis and the LaSalle-Lyapunov method. The existence and
properties of a Hopf bifurcation are investigated in Sections . and ., respectively. Fi-
nally, some simulations are carried out for illustrating the analytic results in Section .

2 Positivity and boundedness
In this section, we shall investigate the positivity and boundedness of the solutions of sys-
tem (.) with nonnegative initial conditions. Define C = C([–τ , ],R), then C is a Banach
space under the norm

|ϕ| = sup
θ∈[–τ ,]

∣∣ϕ(θ )
∣∣.

Hence, R × C × C can be regarding as a phase space of system (.). In the following, we
consider system (.) with nonnegative initial condition:

ϕi(θ ) ≥  on –τ ≤ θ ≤  (i = , , ), (.)

where ϕ(θ ) ≡ const ∈R. We have the following conclusion.

Theorem . The solutions of system (.) with initial condition (.) are nonnegative and
uniformly eventually bounded.



Hao et al. Advances in Difference Equations  (2016) 2016:223 Page 4 of 23

Proof Let (S(t), I(t), P(t)) be the solution of (.) with initial condition (.). Then from the
first and second equation in (.) we have

S(t) = ϕ()e
∫ t

[r(– S(σ )+I(σ )
K )–ξ I(σ )] dσ

and

I(t) = ϕ()e
∫ t

[ξS(σ )– mP(σ )
a+I(σ ) –μ] dσ ,

respectively. These show that S(t) ≥  and I(t) ≥  for all t ≥ . Particularly, S(t) >  when
ϕ() > , and I(t) >  when ϕ() > , for all t ≥ . And S(t) ≡  when ϕ() = , and
I(t) ≡  when ϕ() = .

Next we show that P(t) ≥ . From the third equation in (.) we have

Ṗ =
mαϕ(t – τ )ϕ(t – τ )

a + ϕ(t – τ )
e–dτ – dP, for t ∈ [, τ ].

Then by ϕ and ϕ being both nonnegative, it follows that Ṗ ≥ –dP. This implies that

P(t) ≥ ϕ()e–dt ≥  for t ∈ [, τ ].

For t ∈ [τ , τ ], from the third equation in (.) and the discussion above, we have

Ṗ =
mαI(t – τ )P(t – τ )

a + I(t – τ )
e–dτ – dP ≥ –dP.

This implies that

P(t) ≥ P(τ )e–d(t–τ ) ≥  for t ∈ [τ , τ ].

By mathematical induction, one can obtain P(t) ≥  for any positive integer n and t ∈
[nτ , (n + )τ ]. Hence we have P(t) ≥  for all t ≥ .

We choose the following function:

y(t) = S(t) + I(t) +
edτ

α
P(t + τ ),

to consider the boundedness of positive solutions. Calculating the derivative of y(t) along
the solution of system (.), we get

ẏ(t) = rS
(

 –
S + I

K

)
– μI –

dedτ

α
P(t + τ ).

Then there exists a positive constant δ (δ ≤ min(μ, d)), such that

ẏ + δy ≤ (r + δ)S –
r
K

S.

Then we obtain

ẏ + δy ≤ c,
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where c = K (r+δ)

r . Thus limt→∞ y(t) ≤ c
δ
. This implies that, for any nonnegative solution

(S(t), I(t), P(t)), of (.), there exists a T ≥ τ such that

S(t) + I(t) +
edτ

α
P(t + τ ) < c + ε, t > T ,

where ε is some positive number. Hence, the nonnegative solutions of system (.) is uni-
formly eventually bounded. �

Remark . From the proof above, we have |Pt| < αe–dτ (c + ε) when t > T + τ .

Lemma . For system (.) with initial condition (.), if |ϕ + ϕ| < K , then

S(t) + I(t) < K for t ≥ .

In fact, from the first and second equations in (.) we have

d
dt

(S + I) = rS
(

 –
S + I

K

)
–

mIP
a + I

– μI. (.)

In the case of ϕ() = , by the expression of I(t) we know that I(t) ≡ . Hence (.) be-
comes

dS
dt

= rS
(

 –
S
K

)
.

This implies that S(t) < K when ϕ < K , that is, S(t) + I(t) < K for t ≥ .
In the case of ϕ() > , by the expression of I(t) we know that I(t) >  for t ≥ . For a

contradiction, we assume that there exists a t >  such that

S(t) + I(t) ≤ K for t ∈ [, t),

and S(t) + I(t) = K . Then it follows that

d
dt

(S + I)
∣∣∣∣
t=t

= –
mI(t)P(t)

a + I(t)
– μI(t) < .

The contradiction implies that the conclusion follows.
Let R+ = [,∞) and C+ = C([–τ , ],R+). Define


 =
{

(ϕ,ϕ,ϕ) ∈R+ × C+ × C+ : |ϕ + ϕ| < K , |ϕ| <
(

c
δ

+ ε

)
αe–dτ

}
,

where c and δ are in the denotation of the previous proof, ε is arbitrarily small positive
number.

By Theorem . and Lemma . we know that all solutions eventually enter and remain
in the region 
. This means that, for (.), 
 is a bounded absorbing set.

3 Stability and existence of Hopf bifurcation
In this section, we shall investigate the stability of the nonnegative equilibria of system
(.) and the existence of a Hopf bifurcation.
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3.1 Boundary equilibria and their stability
Clearly, system (.) always has two nonnegative equilibria given by

E : (, , ) and E : (K , , ).

And when

R :=
Kξ

μ
>  (.)

is satisfied, another boundary equilibrium is given by

E : (S, I, ) =
(

μ

ξ
,

r(Kξ – μ)
ξ (r + Kξ )

, 
)

.

Moreover, we make the following assumption:

mαe–dτ – d >  (.)

throughout this paper, and when

R :=
Kξ

μ
–

adξ (Kξ + r)
rμ(mαe–dτ – d)

>  (.)

is satisfied, system (.) has a unique positive equilibrium given by

E∗ :=
(
S∗, I∗, P∗)

=
(

K –
ad(Kξ + r)

r(mαe–dτ – d)
,

ad
mαe–dτ – d

,

m

(
a + I∗)(ξS∗ – μ

))
. (.)

In fact, (.) is equivalent to

K –
ad(Kξ + r)

r(mαe–dτ – d)
>

μ

ξ
,

hence S∗ > , and P∗ > .
Clearly, R > R. And R is the basic reproduction number of infection for (.) with

τ = . On the definition of the basic reproduction number of infection, we refer to [].
In the following, we use the notations introduced in []. Then system (.) with τ =  is
rewritten in the following form:

İ = ξ IS –
mIP
a + I

– μI,

Ṡ = rS
(

 –
S + I

K

)
– ξ IS,

Ṗ =
mαIP
a + I

– dP.
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Figure 1 Regions of equilibria existence in (R0,
R1) plane.

Then the infected compartment is I with m =  and n = . Meanwhile,

F =

⎛
⎜⎝

ξ IS



⎞
⎟⎠

and

V =

⎛
⎜⎝

mIP
a+I + μI

ξ IS – rS( – S+I
K )

dP – mαIP
a+I

⎞
⎟⎠ .

The equilibrium solution with I =  is E(, K , ). Following the description in [] we have

F =
(

∂F

∂I

)∣∣∣∣
(,K ,)

= ξS|(,K ,) = Kξ ,

V =
(

∂V

∂I

)∣∣∣∣
(,K ,)

=
amP

(a + I) + μ

∣∣∣∣
(,K ,)

= μ.

Thus the basic reproduction number of infection is R = ρ(FV –) = Kξ

μ
.

Define

τ  =

d

ln
mα

d + adξ (Kξ+r)
r(Kξ–μ)

. (.)

Then from the discussion above we know that, under the assumption (.), system (.)
has a positive equilibrium when  ≤ τ < τ .

We can see that the value of R and R are significant to the existence of equilibria, for
intuit, we divide the 

 plane (R > R > ) of existence regions for the equilibria into three
parts as in Figure .

In this figure, the oblique line denotes R = R. When  < R < R < , E and E exist;
when  < R <  < R, E, E, and E exist; when  < R < R, E, E, E, and E∗ exist. In the
following we study the stability of the nonnegative equilibria.

Theorem . For system (.), the following statements are true.
(i) E is always unstable.

(ii) E is globally asymptotically stable in 
 when R <  and unstable when R > .
(iii) E is asymptotically stable in 
 when R <  < R.
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Proof (i) The linearization of (.) at the origin E is given by

Ṡ = rS,

İ = –μI,

Ṗ = –dP.

Its characteristic equation is

(λ – r)(λ + μ)(λ + d) = .

Notice that λ = r > , then E is unstable.
(ii) The linearization of (.) at the fixed point E = (K , , ) is given by

Ṡ = –rS – (r + Kξ )I,

İ = (ξK – μ)I,

Ṗ = –dP,

whose characteristic equation is

(λ + r)
(
λ – (Kξ – μ)

)
(λ + d) = .

We can see λ, < , and

λ = Kξ – μ

{
< , when R < ,
> , when R > .

Hence, E is asymptotically stable when R <  and unstable when R > .
We choose a Lyapunov functional L : R× C × C →R as

L(ϕ,ϕ,ϕ) = ϕ().

The derivative of L along the solutions of system (.) is

L′|() = I ′(t) = ξ IS –
mIP
a + I

– μI

≤ I(ξK – μ)

= μI(R – ).

Therefore, L′|() ≤  for all S, I, P ≥  when R < , and L′ =  if and only if I(t) = . That is,

S =
{
ϕ ∈ 
 : L′(ϕ) = 

}
=

{
(ϕ, ,ϕ)

}
.

Define

M :=
{

E, E, (R+, , R+)
}

.
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Then M is the maximal invariant set under (.) in S . In fact, substitution I =  into (.)
leads to the following initial value problem:

Ṡ = rS
(

 –
S
K

)
,

Ṗ = –dP,

S(t) = ϕ(t) > , P(t) = ϕ(t) > , –τ ≤ t ≤ .

(.)

The claim follows.
Clearly,

lim
t→∞ S(t) = K , lim

t→∞ P(t) = .

By Theorem . in [], Chapter , we know that any solution (St , It , Pt) of (.) with
initial value ϕ ∈ 
̄ tends to M as t → ∞. Notice the structure of M, we have

lim
t→∞ It = .

Hence, from the third equation in (.) it follows that

lim
t→∞ Pt = .

Now we consider the first equation in (.),

Ṡ = rS
(

 –
S
K

)
–

(
ξ +

r
K

)
IS (.)

and

ẏ = ry
(

 –
y
K

)
. (.)

Let

f (t, S) = rS
(

 –
S
K

)
–

(
ξ +

r
K

)
I(t)S and g(y) = ry

(
 –

y
K

)
.

Then from limt→∞ I(t) =  we have

f (t, S) → g(S), t → ∞, locally uniformly in S ∈ R.

We know that {K} is an asymptotically stable equilibrium of (.). It is well known that for
any S > , the solution S of (.) with initial value S >  is bounded for t ≥ . Denote the
ω-limit set of the forward bounded solution of (.) as ω(, S). Then for any y ∈ ω(, S),
we see that the solution of (.) with y() = y >  converges to K as t → ∞. Applying
Theorem . in [] it follows that S(t) → K as t → ∞. Thus E is globally attractive in

 when R < . Furthermore, combined with the local stability of E it implies that it is
globally asymptotically stable in 
 when R < .
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(iii) The linearization of (.) at the fixed point E = ( μ

ξ
, r(Kξ–μ)

ξ (r+Kξ ) , ) is given by

Ṡ = –
rμ
Kξ

S – μ

(
r

Kξ
+ 

)
I,

İ =
r(Kξ – μ)

r + Kξ
S –

rm(Kξ – μ)
aξ (r + Kξ ) + r(Kξ – μ)

P,

Ṗ = –dP +
rmα(Kξ – μ)e–dτ

aξ (r + Kξ ) + r(Kξ – μ)
P(t – τ ).

Its characteristic equation is

(
λ +

rμ
Kξ

λ +
rμ(Kξ – μ)

Kξ

)(
λ + d –

rmα(Kξ – μ)
aξ (r + Kξ ) + r(Kξ – μ)

e–(λ+d)τ
)

= .

Obviously, the two roots induced by λ + rμ
Kξ

λ+ rμ(Kξ–μ)
Kξ

=  are negative when R > . Now
we will turn to the study of

λ =
rmα(Kξ – μ)

aξ (r + Kξ ) + r(Kξ – μ)
e–(λ+d)τ – d. (.)

Suppose that Re(λ) ≥ , compute the real part of (.), we get

Re(λ) =
rmα(Kξ – μ)

aξ (r + Kξ ) + r(Kξ – μ)
e–dτ e–τ Re(λ) cos

(
τ Im(λ)

)
– d

<
rmα(Kξ – μ)

aξ (r + Kξ ) + r(Kξ – μ)
e–dτ – d

=
r(mαe–dτ – d)(Kξ – μ) – adξ (r + Kξ )

aξ (r + Kξ ) + r(Kξ – μ)

=
rμ(mαe–dτ – d)

aξ (r + Kξ ) + r(Kξ – μ)
(R – )

< ,

when R < . This is a contradiction, hence we have Re(λ) < . This completes the proof.
�

3.2 Interior equilibrium and its stability
In this subsection, we always assume R > , and we will concentrate on the study of the
interior equilibrium E∗(S∗, I∗, P∗). Let

S̃ = S – S∗, Ĩ = I – I∗, P̃ = P – P∗. (.)

Then the interior equilibrium E∗(S∗, I∗, P∗) of system (.) is moved to the origin. We re-
move the superscript for the sake of convenience. Then (.) becomes

dS
dt

= –
r
K

S –
(

ξ +
r
K

)
SI –

rS∗

K
S –

(
ξ +

r
K

)
S∗I,

dI
dt

= ξSI –
am

(a + I∗) IP +
m(a + I∗)P∗

(a + I∗) I + ξ I∗S +
mI∗P∗

(a + I∗) I –
dedτ

α
P, (.)
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dP
dt

=
amαe–dτ

(a + I∗) I(t – τ )P(t – τ ) –
mα(a + I∗)P∗e–dτ

(a + I∗) I(t – τ ) – dP

+
amαP∗e–dτ

(a + I∗) I(t – τ ) + dP(t – τ ).

Obviously, the origin (, , ) is an equilibrium of system (.). Denote

B(τ ) =

⎛
⎜⎝

– rS∗
K –(ξ + r

K )S∗ 
ξ I∗ mI∗P∗

(a+I∗) – dedτ

α

  –d

⎞
⎟⎠ ,

B(τ ) =

⎛
⎜⎝

  
  
 amαP∗e–dτ

(a+I∗) d

⎞
⎟⎠ .

(.)

So the linearization of (.) at the origin is given by

⎛
⎜⎝

Ṡ
İ
Ṗ

⎞
⎟⎠ = B(τ )

⎛
⎜⎝

S
I
P

⎞
⎟⎠ + B(τ )

⎛
⎜⎝

S(t – τ )
I(t – τ )
P(t – τ )

⎞
⎟⎠ .

Its characteristic equation is

det
(
λI – B(τ ) – B(τ )e–λτ

)
= ,

that is,

λ + aλ
 + aλ + a +

(
bλ

 + bλ + b
)
e–λτ = , (.)

where

a =
rdS∗

K
–

rmS∗I∗P∗

K(a + I∗) –
dmI∗P∗

(a + I∗) +
(

ξ +
r
K

)
ξS∗I∗,

a =
rS∗

K
–

mI∗P∗

(a + I∗) + d, a =
(

ξ +
r
K

)
dξS∗I∗ –

rdmS∗I∗P∗

K(a + I∗) ,

b = –d, b =
dmP∗

a + I∗ –
drS∗

K
, b =

drmS∗P∗

K(a + I∗)
–

(
ξ +

r
K

)
dξS∗I∗.

Thus

a + b =
(

r
K

–
dξedτ

mα

)
S∗ +

dμedτ

mα
,

a + b =
armS∗P∗

K(a + I∗) +
admP∗

(a + I∗) + S∗
[

rμ
K

+ ξ I∗
(

ξ +
r
K

)
–

rξS∗

K

]
,

a + b =
adrmS∗P∗

K(a + I∗) > ,
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(a + b)(a + b) – (a + b)

=
(

r
K

–
dξedτ

mα

)
S∗(a + b)

+
dμedτ

mα

[
admP∗

(a + I∗) + S∗
[

rμ
K

+ ξ I∗
(

ξ +
r
K

)
–

rξS∗

K

]]

+
dμedτ

mα
· armS∗P∗

K(a + I∗) –
adrmS∗P∗

K(a + I∗) .

Here a, a, a, b, and b depend on the parameter τ , since S∗, I∗, and P∗ are continuous
functions of τ . When τ = , equation (.) becomes

λ +
(
a() + b()

)
λ +

[
a() + b()

]
λ +

[
a() + b()

]
= , (.)

where

a() + b() =
(

r
K

–
dξ

mα

)
S +

dμ

mα
,

a() + b() =
armSP

K(a + I) +
admP

(a + I) + S

[
rμ
K

+ ξ I

(
ξ +

r
K

)
–

rξS

K

]
,

a() + b() =
adrmSP

K(a + I) > ,

(
a() + b()

)(
a() + b()

)
–

(
a() + b()

)

=
(

r
K

–
dξ

mα

)
S(a + b)

+
dμ

mα

[
admP

(a + I) + S

[
rμ
K

+ ξ I

(
ξ +

r
K

)
–

rξS

K

]]

+
dμ

mα
· armSP

K(a + I) –
adrmSP

K(a + I) ,

and here S = K – ad(Kξ+r)
r(mα–d) , I = ad

mα–d , P = 
m (a + I)(ξS – μ).

By the Hurwitz criterion, we make the following assumptions on (.):

(H) : a() + b() > ,

(H) : a() + b() > ,

(H) :
(
a() + b()

)(
a() + b()

)
–

(
a() + b()

)
> ,

under which we have the following theorem.

Theorem . Assume R >  and (H)-(H) are satisfied. Then the positive equilibrium E∗

of (.) is asymptotically stable when τ = .

From the consequence of the distribution of zeros of a transcendental function given by
Ruan and Wei [], we know that as τ varies, the sum of the orders of the roots of (.)
in the open right half plane can change only if a zero appears on or crosses the imaginary
axis.
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In order to investigate the purely imaginary roots of (.) by using the method intro-
duced by Beretta and Kuang [], we rewrite equation (.) as

P(λ, τ ) + Q(λ, τ )e–λτ = ,

with

P(λ, τ ) = λ + aλ
 + aλ + a, Q(λ, τ ) = bλ

 + bλ + b. (.)

Before applying the geometry criterion in [] to (.), a sequence of conditions on P and
Q are required to be verified. This is accomplished by the following proposition.

Proposition . Let τ  = 
d

ln mα

(+ Kξ
r )ad/(K– μ

ξ
)+d

, and P and Q are defined in (.). Then

the following statements are valid for all τ ∈ [, τ ).
(a) P(, τ ) + Q(, τ ) 
= ;
(b) P(iω, τ ) + Q(iω, τ ) 
= ;
(c) lim{|Q(λ,τ )

P(λ,τ ) | : |λ| → ∞, Reλ ≥ } <  for any τ ;
(d) F(ω, τ ) := |P(iω, τ )| – |Q(iω, τ )| has a finite number of real zeros for each τ ;
(e) each positive root ω(τ ) of F(ω, τ ) =  is continuous and differentiable in τ whenever

it exists.

Proof
(a) P(, τ ) + Q(, τ ) = a + b > , that is, λ =  is not a root of (.).
(b) By the assumption (H), we know that (b) is true.
(c) From

lim|λ|→∞

∣∣∣∣Q(λ, τ )
P(λ, τ )

∣∣∣∣ = lim|λ|→∞

∣∣∣∣ bλ
 + bλ + b

λ + aλ + aλ + a

∣∣∣∣ = ,

we have

lim|λ|→∞,Reλ≥

∣∣∣∣Q(λ, τ )
P(λ, τ )

∣∣∣∣ < .

(d) We have

F(ω, τ ) =
∣∣P(iω, τ )

∣∣ –
∣∣Q(iω, τ )

∣∣

= ω +
(
a

 – a – b

)
ω +

(
a

 – aa – b
 + bb

)
ω +

(
a

 – b

)
.

It is obvious that property (d) is satisfied.
(e) The conclusion is valid because F(ω, τ ) is a cubic polynomial in ω and the fact that

ai (i = , , ) and bj (j = , ) are all continuous functions of τ . �

We also mention that

P(–iω, τ ) = P(iω, τ ), Q(–iω, τ ) = Q(iω, τ ).
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P, Q have real coefficients. This ensures that if λ = iω, for some real ω, is a root of (.),
then λ = –iω is a root of (.) as well. Let λ = iω(ω > ) be a purely imaginary root of
equation (.), then

–iω – aω
 + iaω + a +

(
–bω

 + ibω + b
)
(cosωτ – i sinωτ ) = .

Separating the real and imaginary parts yields

ω – aω =
(
bω

 – b
)

sinωτ + bω cosωτ ,

aω
 – a = bω sinωτ –

(
bω

 – b
)

cosωτ .
(.)

Squaring both sides of (.) and summing the two equations, we obtain

h
(
ω, τ

)
= F(ω, τ ) = ω + pω + qω + s = , (.)

where p = a
 – a – b

, q = a
 – aa + bb – b

 , s = a
 – b

.
Set z = ω. Then (.) becomes

h(z, τ ) = z + pz + qz + s. (.)

Therefore, equation (.) has a pair of purely imaginary roots ±iω(τ ∗) when τ = τ ∗ if and
only if ω(τ ∗) is the positive root of (.), or equivalently, z∗ = ω(τ ∗) is the positive root
of (.). As follows from (.) we get

sinωτ =
bω

 + (ab – b – ab)ω + (ab – ab)ω
b

ω
 + (bω – b) ,

cosωτ =
(b – ab)ω + (ab + ab – ab)ω – ab

b
ω

 + (bω – b) .
(.)

By the definitions of P(λ, τ ) and Q(λ, τ ) as in (.), and applying the property (b) in Propo-
sition ., (.) can be written as

sinωτ = Im

(
P(iω, τ )
Q(iω, τ )

)
,

cosωτ = – Re

(
P(iω, τ )
Q(iω, τ )

)
,

which yields

∣∣P(iω, τ )
∣∣ =

∣∣Q(iω, τ )
∣∣,

that is,

F(ω, τ ) = .

Define

I =
{
τ : F(ω, τ ) =  has positive roots

} ∩ [, τ ),
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and τ  = supτi∈I τi. Also define θ (τ ) ∈ [, π ] by

sin θ (τ ) =
bω

 + (ab – b – ab)ω + (ab – ab)ω
b

ω
 + (bω – b) ,

cos θ (τ ) =
(b – ab)ω + (ab + ab – ab)ω – ab

b
ω

 + (bω – b) .

Then we have ω(τ )τ = θ (τ ) + nπ obviously. Therefore, iω∗, ω∗ = ω(τ ∗) > , is a purely
imaginary root of (.) if and only if τ ∗ is a zero of the function Sn(τ ), which is defined
by

Sn(τ ) = τ –
θ (τ ) + nπ

ω(τ )
, τ ∈ I, n ∈N. (.)

We also know that θ (τ ) 
= , π on I in terms of (b) in Proposition ., and Sn(τ ) are
continuous and differentiable on I from Lemma . in []. The following theorem in []
can be used to verify the occurrence of Hopf bifurcations when τ = τ ∗.

Theorem . Assume that Sn(τ ) =  has a positive root τ ∗ ∈ I for some n ∈N. Then there
exists a pair of simple purely imaginary roots ±iω(τ ∗) of (.) at τ = τ ∗, and we denote

δ
(
τ ∗) = Sign

{
dReλ(τ )

dτ

∣∣∣∣
λ=iω(τ∗)

}

= Sign

{
∂F
∂ω

(
ω

(
τ ∗), τ ∗)} × Sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τ∗

}
, (.)

which determines the direction in which the pair of purely imaginary roots cross the imag-
inary axis: from left to right if δ(τ ∗) > , and from right to left if δ(τ ∗) < .

Proposition . For Sn(τ ) defined on [, τ ) in (.), the following properties hold:
(i) Sn() < , limτ→τ  Sn(τ ) = –∞;

(ii) Sn(τ ) > Sn+(τ ).

Proof By the definition of ω(τ ) and θ (τ ), we know ω(τ ) > , θ (τ ) ∈ (, π ).
(i) Sn() = – θ ()+nπ

ω() <  obviously. When τ → τ , we have ω(τ ) →  and θ (τ ) → π by
the facts that sin θ (τ ) →  and cos θ (τ ) → –. Therefore, by (.) we get
limτ→τ  Sn(τ ) = –∞.

(ii) Sn(τ ) – Sn+(τ ) = π
ω(τ ) >  due to the positivity of ω(τ ). �

Remark . If S(τ ) has no zeros in I , then so does Sn(τ ), from the degression of Sn(τ )
w.r.t. n for all n ∈N.

Define the set of possible Hopf bifurcation values by

J =
{
τ ∈ [

, τ )|Sn(τ ) = , n ∈N
}

,

from the decreasing property of Sn w.r.t. n, we know the set J is finite, so we denote the
minimum and maximum element to be τmin and τmax, respectively. Now we state the main
results in this section.
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Theorem . Assume (H)-(H) are satisfied for system (.). Then the following conclu-
sions hold:

(i) If I is empty or S(τ ) has no positive zeros in (, τ ) when I is non-empty, which
implies set J is empty, then equation (.) has no pair of purely imaginary roots,
thus the positive equilibrium E∗ is asymptotically stable for all τ ∈ [, τ ).

(ii) If J 
= ∅ and δ(τ ∗) 
=  for τ ∗ ∈ J , then () undergoes a Hopf bifurcation at E∗ when
τ = τ ∗. At this time, E∗ is asymptotically stable for τ ∈ [, τmin) ∪ (τmax, τ ).

3.3 Direction and stability of Hopf bifurcation
In the previous section, we can see that a Hopf bifurcation at E∗ when τ passes through
certain critical values may happen indeed, and sufficient conditions are obtained as well.
In this section, we shall study the direction, stability, and the period of the bifurcating
periodic solution. The way to do this is the combination of the normal form method and
center manifold theory in []. Without loss of generality, let τ ∗ be any critical value such
that equation (.) has a pair of purely imaginary roots ±iω∗, and system (.) undergoes
a Hopf bifurcation at E∗. Then, by setting τ = τ ∗ + μ, and μ =  is the Hopf bifurcation
value of (.).

After translation (.) and time scaling t �→ (t/τ ), system (.) can be written as

⎛
⎜⎝

Ṡ(t)
İ(t)
Ṗ(t)

⎞
⎟⎠ = τB(τ )

⎛
⎜⎝

S(t)
I(t)
P(t)

⎞
⎟⎠ + τB(τ )

⎛
⎜⎝

S(t – )
I(t – )
P(t – )

⎞
⎟⎠ + τ f (S, I, P), (.)

where B(τ ) and B(τ ) are defined in (.), and

f (S, I, P) =

⎛
⎜⎝

– r
K S(t) – (ξ + r

K )S(t)I(t)
ξS(t)I(t) – am

(a+I∗) I(t)P(t) + m(a+I∗)P∗
(a+I∗) I(t)

amαe–dτ

(a+I∗) I(t – )P(t – ) – mα(a+I∗)P∗e–dτ

(a+I∗) I(t – )

⎞
⎟⎠ .

For φ = (φ,φ,φ)T ∈ C := C([–, ],R), define

Lμ(φ) =
(
τ ∗ + μ

)
B

(
τ ∗ + μ

)
φ() +

(
τ ∗ + μ

)
B

(
τ ∗ + μ

)
φ(–) (.)

and

G(μ,φ) =
(
τ ∗ + μ

)
⎛
⎜⎜⎝

– r
K φ

 () – (ξ + r
K )φ()φ()

ξφ()φ() – am
(a+I∗) φ()φ() + m(a+I∗)P∗

(a+I∗) φ
 ()

amαe–d(τ∗+μ)

(a+I∗) φ(–)φ(–) – mα(a+I∗)P∗e–d(τ∗+μ)

(a+I∗) φ
 (–)

⎞
⎟⎟⎠ .

By the Riesz representation theorem, there exists a  ×  matrix η(θ ,μ), whose compo-
nents are bounded variation functions for θ ∈ [–, ], such that

Lμ(φ) =
∫ 

–
dη(θ ,μ)φ(θ ), for φ ∈ C.
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In fact, η(θ ,μ) can be chosen as

η(θ ,μ) =

⎧⎪⎨
⎪⎩

(τ ∗ + μ)B(τ ∗ + μ), θ = ,
, θ ∈ (–, ),
–(τ ∗ + μ)B(τ ∗ + μ), θ = –.

Define the operators A(μ) and R(μ) as

A(μ)φ(θ ) =

{
dφ(θ )

dθ
, θ ∈ [–, ),∫ 

– dη(ξ ,μ)φ(ξ ), θ = ,
(.)

and

R(μ)φ(θ ) =

{
, θ ∈ [–, ),
G(μ,φ), θ = .

Then system (.) is equivalent to the following operator equation:

Ẋt = A(μ)Xt + R(μ)Xt ,

where X(t) = (S(t), I(t), P(t))T and Xt(θ ) = X(t + θ ) for θ ∈ [–, ].
Let C∗ := C([, ], (R)∗). For ψ ∈ C∗, define an operator

A∗ψ(s) =

{
– dψ(s)

ds , s ∈ (, ],∫ 
– dη(ξ , )ψ(–ξ ), s = ,

(.)

and a bilinear inner form

〈
ψ(s),φ(θ )

〉
= ψ()φ() –

∫ 

–

∫ θ

ξ=
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where η(θ ) = η(θ , ). Then A() and A∗ are adjoint operators.
As shown in Section ., we know that ±iω∗τ ∗ are eigenvalues of A(), thus, they are

also eigenvalues of A∗. It can be verified that the vectors

q(θ ) = (, q, q)Teiω∗τ∗θ , θ ∈ [–, ],

and

q∗(s) =

D

(
, q∗

 , q∗

)
eiω∗τ∗s, s ∈ [, ],

are the eigenvectors of A() and A∗ corresponding to the eigenvalues iω∗τ ∗ and –iω∗τ ∗,
respectively, where

q = –
iω∗τ ∗K + rS∗

(Kξ + r)S∗ , q = –
amαP∗e–dτ∗ (iω∗τ ∗K + rS∗)

(a + I∗)[(iω∗τ ∗ + d)eiω∗τ∗ – d](Kξ + r)S∗ , (.)

q∗
 =

rS∗
K – iω∗τ ∗

ξ I∗ , q∗
 =

dedτ∗ ( rS∗
K – iω∗τ ∗)

(iω∗τ ∗ – d + deiω∗τ∗ )αξ I∗ , (.)
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and

D =  + q̄∗
 q + q̄∗

q + q̄∗
τ

∗e–iω∗τ∗
[

amαP∗

(a + I∗) e–dτ∗
q + dq

]
.

One can find that

〈
q∗(s), q(θ )

〉
= .

Following the algorithms provided in [] and using a computation process similar to that
in [, , ], we obtain the following coefficients:

g =
τ ∗

D

[
–

r
K

– q

(
ξ +

r
K

)
+ ξqq∗

 –
am

(a + I∗) qq∗
 q +

m(a + I∗)P∗

(a + I∗) q
 q∗



+
amαe–dτ∗

(a + I∗) qq∗
qe–iω∗τ∗ –

mα(a + I∗)P∗

(a + I∗) q
 q∗

e–dτ∗
e–iω∗τ∗

]
,

g =
τ ∗

D

[
–

r
K

–
(

ξ +
r
K

)
(q + q) + ξ (q + q)q∗

 –
mα(a + I∗)P∗

(a + I∗) e–dτ∗
qqq∗



–
am

(a + I∗) (qq + qq)q∗
 +

m(a + I∗)P∗

(a + I∗) qqq∗
 +

amαe–dτ∗

(a + I∗) (qq + qq)q∗


]
,

g =
τ ∗

D

[
–

r
K

– q

(
ξ +

r
K

)
+ ξqq∗

 –
am

(a + I∗) qqq∗
 +

m(a + I∗)P∗

(a + I∗) q
 q∗



+
amαe–dτ∗

(a + I∗) qqq∗
eiω∗τ∗

–
mα(a + I∗)P∗

(a + I∗) q
 q∗

e–dτ∗
eiω∗τ∗

]
,

g =
τ ∗

D

{
–

r
K

[
W ()

 () + W ()
 ()

]
+

[
ξq∗

 – ξ –
r
K

]

×
[

W ()
 () +

W ()
 ()


+ q
W ()

 ()


+ qW ()
 ()

]

–
am

(a + I∗) q∗


[
qW ()

 () + q
W ()

 ()


+ q
W ()

 ()


+ qW ()
 ()

]

+
m(a + I∗)P∗

(a + I∗) q∗

[
qW ()

 () + qW ()
 ()

]
+

amαe–dτ∗

(a + I∗) q∗


[
qW ()

 (–)e–iω∗τ∗

+ q
W ()

 (–)


eiω∗τ∗
+ q

W ()
 (–)


eiω∗τ∗

+ qW ()
 (–)e–iω∗τ∗

]

–
mα(a + I∗)P∗

(a + I∗) q∗
e–dτ∗[

qW ()
 (–)e–iω∗τ∗

+ qW ()
 (–)eiω∗τ∗]}

,

where

W(θ ) =
ig

ω∗τ ∗ q()eiω∗τ∗θ +
ig

ω∗τ ∗ q()e–iω∗τ∗θ + Feiω∗τ∗θ ,

W(θ ) = –
ig

ω∗τ ∗ q()eiω∗τ∗θ +
ig
ω∗τ ∗ q()e–iω∗τ∗θ + F,



Hao et al. Advances in Difference Equations  (2016) 2016:223 Page 19 of 23

and

F = 

⎛
⎜⎜⎝

iω∗ + rS∗
K (ξ + r

K )S∗ 
–ξ I∗ iω∗ – mI∗P∗

(a+I∗)
dedτ∗

α

 – amαP∗e–dτ∗
(a+I∗) e–iω∗τ∗ iω∗ + d – de–iω∗τ∗

⎞
⎟⎟⎠

–

×

⎛
⎜⎜⎝

– r
K – (ξ + r

K )q

ξq – am
(a+I∗) qq + m(a+I∗)P∗

(a+I∗) q


amα

(a+I∗) qqe–iω∗τ∗–dτ∗ – (a+I∗)P∗
(a+I∗) q

 e–iω∗τ∗–dτ∗

⎞
⎟⎟⎠ ,

F =

⎛
⎜⎜⎝

rS∗
K (ξ + r

K )S∗ 
–ξ I∗ – mI∗P∗

(a+I∗)
dedτ∗

α

 – amαP∗e–dτ∗
(a+I∗) 

⎞
⎟⎟⎠

–

×

⎛
⎜⎜⎝

– r
K – (ξ + r

K )(q + q)
ξ (q + q) – am

(a+I∗) (qq + qq) + m(a+I∗)P∗
(a+I∗) qq

amαe–dτ∗
(a+I∗) (qq + qq) – (a+I∗)P∗e–dτ∗

(a+I∗) qq

⎞
⎟⎟⎠ .

So far, g, g, g, g can be calculated exactly. Then we can compute the following
quantities:

c() =
i

ω∗τ ∗

(
gg – |g| –

|g|


)
+

g


,

μ = –
Re(c())
Re(λ′(τ ∗))

,

β =  Re
(
c()

)
,

T = –
Im(c()) + μ Im(λ′(τ ∗))

ω∗τ ∗ ,

(.)

which determine the properties of bifurcating periodic solutions. From the discussion in
Sections . and ., we have the following results immediately.

Assume that the conditions in (ii) of Theorem . hold. Then μ,β, T determine the
direction, stability, and period of the corresponding Hopf bifurcation, respectively:

(i) The direction of the Hopf bifurcation of the system (.) at the E∗ when τ = τ ∗ is
backward (forward) if μ <  (μ > ), that is, there exists a bifurcating periodic
solution for τ < τ ∗ (τ > τ ∗) in a sufficiently small τ ∗-neighborhood;

(ii) The bifurcating periodic solution on the center manifold is unstable (stable) if
β >  (β < ); Particularly, the stability of the bifurcating periodic solutions of
(.) is the same as that of bifurcating periodic solutions on the center manifold
when τ ∗ = τmin and τ ∗ = τmax.

(iii) The period of the bifurcating periodic solution decreases (increases) if T < 
(T > ).
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4 Numerical simulations
Under the guidance of Section ., we choose a set of parameters which satisfy conditions
(H)-(H):

r = , K = , ξ = ., m = ., a = ,

μ = ., α = ., d = ., d = ..
(.)

By direct calculation, we have τ  ≈ . and τ  ≈ .. The intersections of Sn with
τ -axis imply four Hopf bifurcation points (see Figure ), denoted by

τ ≈ ., τ ≈ ., τ ≈ ., and τ ≈ ..

From Theorem ., we know that the positive fixed point E∗ is asymptotically stable
when τ ∈ [, τ)∪ (τ, τ ) (see Figures  and ) and unstable when τ ∈ (τ, τ) (see Figure ).

From the formula (.) and the algorithm derived in Section , we calculate some im-
portant quantities as in Table .

It shows us that for system (.) with the data (.):

Figure 2 Graphs of Sn(τ ) on [0,τ 1) with parameters given in (4.1).

Figure 3 E∗ ≈ (24.25, 1.55, 28.78) is asymptotically stable when τ ∈ [0,τ1), where τ = 0.4 < τ1 ≈ 0.58,
and the initial condition is (20, 4, 35).
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Figure 4 E∗ ≈ (18.41, 4.85, 24.44) is asymptotically stable when τ ∈ (τ4,τ 0), where
47.64 ≈ τ4 < τ = 48.2 < τ 0 ≈ 79.978, and the initial condition is (30, 5, 30).

Figure 5 E∗ ≈ (23.59, 1.93, 28.46) is unstable, and sustained oscillation occurs when τ ∈ (τ1,τ4),
where 0.58 ≈ τ1 < τ = 10 < τ4 ≈ 47.64 and the initial condition is (20, 4, 35).

Table 1 List of quantities under (4.1)

∂F
∂ω δ Re(c1(0)) μ2 β2

τ1 ≈ 0.58 25.2805 > 0 > 0 –0.8258 < 0 > 0 < 0
τ2 ≈ 13.06 18.7185 > 0 > 0 –0.0921 < 0 > 0 < 0
τ3 ≈ 39.59 6.1430 > 0 < 0 –0.0230 < 0 < 0 < 0
τ4 ≈ 47.64 2.4689 > 0 < 0 –0.0093 < 0 < 0 < 0

. The direction of the Hopf bifurcation at the E∗ is forward when τ = τ and τ = τ,
and backward when τ = τ and τ = τ, respectively.

. All the bifurcating periodic solutions on the center manifold are stable. Particularly,
the bifurcating periodic solutions are stable from τ and τ, respectively.

From Figure  one can see that there maybe exist global Hopf branches even though we
have no proof of this theoretically. In the following we carry out a numerical simulation
to show this. A bifurcation diagram starting from τ = . and τ = . (see Figure ) is
constructed to show the global continuation of a periodic solution using DDE-BIFTOOL
developed by Engelborghs et al. [, ]. In Figure , we can see the periodic solution
starting from τ ≈ . does not stop until it connected with τ ≈ .. The periodic
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Figure 6 Hopf bifurcaton branches starting from τ1 ≈ 0.58, τ2 ≈ 13.06 and τ3 ≈ 39.59 on the (τ , d)
plane, where d = max S(t) – min S(t).

solution starting from τ ≈ . also goes on a long way, and the strange behavior from
τ ≈ . in the first branch needs to be studied.
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