
Wang et al. Advances in Difference Equations  (2016) 2016:225 
DOI 10.1186/s13662-016-0952-x

R E S E A R C H Open Access

Viral dynamics of an HIV model with latent
infection incorporating antiretroviral therapy
Yan Wang1* , Jun Liu1 and Luju Liu2

*Correspondence:
wangyan@upc.edu.cn
1College of Science, China
University of Petroleum (East China),
Qingdao, Shandong 266580, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we construct an HIV infection model which includes latent infection,
logistic growth for healthy CD4+ T-cells, and antiretroviral therapy. We obtain the
global asymptotic stability of the uninfected equilibrium by constructing a Lyapunov
function, and we give a sufficient condition for the local asymptotic stability of the
infected equilibrium. We also use the latin hypercube sampling technique to identify
the key parameters in determining the stability of the infected equilibrium. By
numerical simulations, we observe that the model without logistic growth would
underestimate the number of infectious virions, while the model without latent
infection would overestimate the number of infectious virions.
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1 Introduction
Acquired immune deficiency syndrome (AIDS) is caused by human immunodeficiency
virus (HIV), and it has become a very serious threat to the health of the people all over the
world since it was first found in . HIV- infects CD lymphocytes with CD molecules
in the human body selectively, especially CD+ T-cells. When individuals are infected
with HIV- over a long period of time (- years), the body’s CD+ T-cell count will
gradually decline to  cells/mm, and the viral load will increase sharply. Finally, the
body’s immune system will be severely damaged and the human body will be much more
vulnerable to a series of opportunistic infections. Fortunately, the virus replication can be
suppressed through the use of highly active antiretroviral therapy (HAART). HAART is
commonly composed of reverse transcriptase inhibitors (RTI) and protease inhibitors (PI).
RTI can prevent the formation of HIV RNA and DNA in the CD+ T-cell host, so that the
virus infection could not form provirus, and PI can restrain the virus protease hydrolysis
and inhibit infected T-cells to produce mature infectious virions. However, people living
with HIV- cannot recover in the process of long-time use of antiretroviral therapy, and
the HIV- virus cannot be eradicated thoroughly [–]. Due to the existence of the latent
reservoir, some HIV- virus particles can escape the immune clearance by hiding in the
static memory CD T-cells []. Consequently, the latent infection is a major barrier to the
elimination of HIV- virus [, –].

Mathematical models including the latent infection have been formulated to study HIV
dynamics in-host in recent years [, –]. Banks et al. investigated that the model with
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HIV latent infection was in accordance with the actual measured patient data especially
when the viral load was lower than the detectable level, and their model could better pre-
dict the trend of the virus []. Rong and Perelson [, , ] developed a kind of mathe-
matical models with latent infection and antiretroviral therapy, examined the relationships
among combination drug therapy, viral blips, and the number of latent infected T-cells,
and showed that the viral replication from the latent reservoir might result in low-level
persistence of viraemia during combination drug therapy. However, in each of these stud-
ies, a linear growth rate for healthy CD+ T-cells with latent infection models was per-
formed. In fact, Ho et al. in [] and Sachsenberg et al. in [] indicated that the mitosis
for CD+ T-cells was density-dependent on the number of T-cells, and the mitosis would
decrease if the number of T-cells increased to a certain value. Recently, mitosis in healthy
CD+ T-cells was represented by a logistic growth term in within-host HIV- models [–
], but these studies ignored the effect of latent infection. Also, Chomont et al. showed
that T-cell survival and homeostatic mitosis could drive the number of latently infected
T-cells []. Therefore, the inclusion of both a logistic growth term and latent infection in-
host model is more reasonable, and the model would have further influence on the model
progression.

The paper is organized as follows. In the next section, we will formulate an HIV infec-
tion model including latent infection, drug therapy, and logistic growth for healthy CD+

T-cells, and we will address the positivity and boundedness of the model solutions. In Sec-
tion , the basic reproduction number is derived by the next generation method. Stability
analyses of the uninfected equilibrium and the infected equilibrium are given. In Section ,
sensitivity analyses with the latin hypercube sampling method are conducted. Numerical
simulations with realistic parameter values are illustrated to demonstrate model behaviors
in Section . Finally, we conclude our work and mention future work.

2 Model and well-posedness
In this section, we will extend the basic HIV latent infection model with logistic growth
for healthy CD+ T-cells and drug therapy. The model includes healthy CD+ T-cells (T ),
latently infected CD+ T-cells (L), productively infected CD+ T-cells (T∗), and free virus
(V ). Because of the use of protease inhibitors, we divide the free virus into infectious virus
(VI ) and noninfectious virus (VNI ). The model can be described as

d
dt

T(t) = λ – dT T + rT
(

 –
T

Tmax

)
– ( – nrt)kVIT ,

d
dt

L(t) = η( – nrt)kVIT – dLL – aL,

d
dt

T∗(t) = ( – η)( – nrt)kVIT – δT∗ + aL,

d
dt

VI(t) = ( – np)NδT∗ – cVI ,

d
dt

VNI(t) = npNδT∗ – cVNI .

()

Here, healthy CD+ T-cells are produced from precursors at a constant rate λ, the param-
eter dT is the natural death rate of CD+ T-cells, r denotes the logistic growth rate, and
Tmax represents the carrying capacity of the CD+ T-cells population. The parameter k



Wang et al. Advances in Difference Equations  (2016) 2016:225 Page 3 of 15

denotes the rate of infection between T-cells and infectious virus, and η is the fraction
of infections leading to latency. dL and δ are the death rates of latently infected T-cells
and productively infected T-cells, respectively. The parameter a is the activated rate from
latently infected cells to productively infected T-cells. We assume a productively infected
T-cell can release on average N viral particles during its lifespan with the mean period /δ,
and the clearance rate of the HIV virus is c. nrt and np represent the drug efficacy of RTI
and PI ( ≤ nrt <  and  ≤ np < ), respectively.

It should be noted that the fifth equation is independent from the first four equations
in system (). Therefore, the stability analysis of system () is equivalent to the following
subsystem:

d
dt

T(t) = λ – dT T + rT
(

 –
T

Tmax

)
– ( – nrt)kVIT ,

d
dt

L(t) = η( – nrt)kVIT – dLL – aL,

d
dt

T∗(t) = ( – η)( – nrt)kVIT – δT∗ + aL,

d
dt

VI(t) = ( – np)NδT∗ – cVI .

()

For simplicity, we denote

k̄ := ( – nrt)k, N̄ := ( – np)N , ε =  – ( – nrt)( – np).

The following theorem illustrates that the solutions of system () are positive and
bounded.

Theorem . Let (T(t), L(t), T∗(t), VI(t)) be the solution of system () with the initial val-
ues (T(), L(), T∗(), VI()) ∈ R

+, where R
+ = {(x, x, x, x)|xj ≥ , j = , , , }, Then

T(t), L(t), T∗(t), and VI(t) are all unique non-negative and ultimately bounded.

Proof The right hand side functions of system () are continuous and satisfy the Lipschitz
condition; by the existence and uniqueness of solutions for ordinary differential equations
[], we see that system () has a unique solution (T(t), L(t), T∗(t), VI(t)) ∈ C([, +∞), R

+)
with non-negative initial values.

By the first equation of system (), we obtain Ṫ |T= = λ > . Then we see that T(t) ≥ 
for every t ≥  [].

By the second equation of system (), we get L̇|L= = ηk̄VIT ≥ . Thus, we derive that
L(t) ≥  is established. In the following, we will use reduction ad absurdum to prove the
correctness of this statement.

Assume there is a t >  with t = inf{t|L(t) = , t > }, such that L̇(t)|L(t)= = ηk̄VI(t) ×
T(t) < . That is to say, L(t) = , L(t) >  with t ∈ [, t) and VI(t) < . As VI() ≥ , there
exists a t >  with t = inf{t|VI(t) = , t ∈ [, t)}, and thus V̇I(t) ≤ . Moreover, we get
V̇I(t) = N̄δT∗(t) ≤  from the fourth equation of system (). Therefore, we can deduce
that T∗(t) ≤ . Since T∗() ≥ , there exists a t >  with t = inf{t|T∗(t) = , t ∈ [, t)},
and thus Ṫ∗(t) ≤ . On the other hand, from the third equation of system (), Ṫ∗(t) =
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( – η)k̄VI(t)T(t) + aL(t) >  ( < t < t < t), which is a contradictory to the hypothesis.
Similarly, we can verify that T∗(t) ≥  for every t ≥ .

From the last equation of system (), we get V̇I |VI = = N̄δT∗ ≥ , so we have VI(t) ≥
, t ≥  [].

Now, we show the boundedness of solutions. From the first equation of (), we have

Ṫ ≤ λ – dT T + rT
(

 –
T

Tmax

)
,

so

lim
t→+∞ sup T(t) ≤ T, ()

where

T =
Tmax

r

[
r – dT +

√
(r – dT ) +

rλ
Tmax

]
. ()

We define F = T + L + T∗, and computing the derivative of F along the trajectories yields

Ḟ = λ – dT T + rT
(

 –
T

Tmax

)
– δT∗ – dLL

≤ –dT T – dLL – δT∗ + λ + rT

≤ –hF + M,

where M = λ + rT, h = min{dT , dL, δ}. Therefore, we see that F is ultimately bounded.
From (), we know that T(t) has an ultimate bound T, therefore, L(t) and T∗(t) are ulti-
mately bounded with some M. From the fourth equation of system (), we can easily see
that VI(t) is ultimately bounded with some M. �

Denote M = max{M, M}. It follows that T(t) ≤ T, L(t) ≤ M, T∗(t) ≤ M and VI(t) ≤ M,
for sufficiently large time t.

Next, we will analyze the dynamics of system () in the following bounded feasible re-
gion:

� =
{(

T , L, T∗, VI
) ∈ R

+ : T ≤ T, L, T∗ and VI ≤ M
}

.

It can be observed that all solutions of () eventually enter and stay within �, and � is a
positive invariant set.

3 Model analysis
We will find the possible equilibria of system () and will analyze their stabilities. First of
all, we find the equilibria of system () by solving the following algebraic equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 = λ – dT T + rT( – T
Tmax

) – ( – nrt)kVIT ,
 = η( – nrt)kVIT – dLL – aL,
 = ( – η)( – nrt)kVIT – δT∗ + aL,
 = ( – np)NδT∗ – cVI ,

()
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for the unknown constants T , L, T∗, VI . From equation (), we can easily get an uninfected
equilibrium E(T, , , ), where T is given by the expression of (). The other equilib-
rium is Ē = (T̄ , L̄, T̄∗, V̄I), where

T̄ =
c(a + dL)

k̄N̄[a + ( – η)dL]
,

L̄ =
cηV̄I

N̄[a + ( – η)dL]
,

T̄∗ =
cV̄I

N̄δ
,

V̄I =
λ – dT T̄ + rT̄( – T̄

Tmax
)

k̄T̄
.

There are some methods to determine the basic reproduction number R [, ]. By
the next generation method of Van den Driessche and Watmough [], we obtain

R =
a + ( – η)dL

c(a + dL)
k̄N̄T. ()

For the detailed calculation process refer to [] with τ = τ = . If η = , then the basic
reproduction number is R̃ = k̄N̄T/c, which is the same as that of the HIV model with-
out latent infection [–]. Since  < η < , we see that R < R̃. Biologically, the model
without latent infection would overestimate the average number of infected T-cells.

It turns out that the value of R determines the existence of the infected equilibrium,
that is, Ē exists if and only if R > . In fact,

λ = dT T – rT

(
 –

T

Tmax

)
,

then

V̄I =
dT T – rT( – T

Tmax
) – dT T̄ + rT̄( – T̄

Tmax
)

k̄T̄

=
(T – T̄)[dT – r( – T

Tmax
) + rT̄

Tmax
]

k̄T̄

=
( T

T̄ – )( λ
T

+ rT̄
Tmax

)

k̄

=
(R – )( λ

T
+ rT̄

Tmax
)

k̄
> .

Through the expression of R, we can also rewrite T̄ = T
R

.
To study the stability at the equilibrium Ē(T̄ , L̄, T̄∗, V̄I), we let y(t) = T(t) – T̄ , y(t) =

L(t) – L̄, y(t) = T∗(t) – T̄∗, y(t) = VI(t) – V̄I . The linearized system of system () at
Ē(T̄ , L̄, T̄∗, V̄I) is

d
dt

y(t) =
(

–dT + r –
rT̄
Tmax

)
y – k̄T̄y,
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d
dt

y(t) = ηk̄V̄Iy – (dL + a)y + ηk̄T̄y,

d
dt

y(t) = ( – η)k̄V̄Iy + ay – δy + ( – η)k̄T̄y,

d
dt

y(t) = N̄δy – cy.

Theorem . The uninfected equilibrium E for system () is locally asymptotically stable
if R < , and it is unstable if R > .

Proof The characteristic equation for system () at the uninfected equilibrium E is
(

ξ + dT – r +
rT

Tmax

)(
ξ  + aξ

 + aξ + a
)

= , ()

where

a = a + dL + c + δ,

a = (a + dL)(c + δ) + cδ – ( – η)δk̄N̄T

= (a + dL)(c + δ) + cδ
(

 – ( – η)
R(a + dL)

a + ( – η)dL

)

= (a + dL)(c + δ) + cδ
(

 – R +
aηR

a + ( – η)dL

)
,

a = (a + dL)cδ – aηδk̄N̄T – (a + dL)( – η)δk̄N̄T

= (a + dL)cδ – aδk̄N̄T – ( – η)δdLk̄N̄T

= (a + dL)cδ – Rcδ(a + dL)

= (a + dL)( – R)cδ.

Clearly, ξ = –dT +r – rT
Tmax

= – λ
T

– rT
Tmax

<  is a negative root of equation (). The remaining
roots of equation () are determined by the following equation:

ξ  + aξ
 + aξ + a = . ()

It is obvious that a = a + dL + c + δ > , and a = (a + dL)( –R)cδ >  if R <  is satisfied.
Furthermore,

aa – a = (a + dL + c + δ)
[

(a + dL)(c + δ) + cδ
(

 – R +
aηR

a + ( – η)dL

)]

– (a + dL)( – R)cδ

= (a + dL)(c + δ)(a + dL + c + δ) + (a + dL)
cδaηR

a + ( – η)dL

+ (c + δ)cδ
(

 – R +
aηR

a + ( – η)dL

)
,

and it follows that aa – a >  if R <  is satisfied. By the Routh-Hurwitz criterion, we
know that equation () has negative real roots. Therefore, the uninfected equilibrium E

is locally asymptotically stable if R < .
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If R > , it is easy to see that a < . So, equation () has at least one positive root.
Therefore, the uninfected equilibrium E is unstable when R > . �

Theorem . If R < , the uninfected equilibrium E for system () is globally asymptot-
ically stable.

Proof Define a Lyapunov function W : R × R × R × R → R

W =
[
a + ( – η)dL

](
T – T – T ln

T
T

)
+ aL + (a + dL)T∗ +

a + dL

N̄
VI

for T > , L ≥ , T∗ ≥ , VI ≥ , and it is obvious that W ≥ . By the calculus knowledge
of a multi-variable function, we can derive that W has a global minimum value attained
at E and thus, W =  if and only if (T , L, T∗, VI) = (T, , , ). Computing the derivatives
of W along the trajectories of system (), and using the equalities λ = dT T – rT( – T

Tmax
)

and k̄N̄T[a + ( – η)dL] = cR(a + dL), we derive that

Ẇ =
[
a + ( – η)dL

][
λ – dT T + rT

(
 –

T
Tmax

)
– k̄VIT

](
 –

T

T

)

+ a(ηk̄VIT – dLL – aL) + (a + dL)
(
( – η)k̄VIT – δT∗ + aL

)

+
a + dL

N̄
(
N̄δT∗ – cVI

)

=
[
a + ( – η)dL

][
(T – T)

(
dT – r +

rT

Tmax
+

rT
Tmax

)
– k̄VIT

](
 –

T

T

)

+
[
a + ( – η)dL

]
k̄VIT –

c(a + dL)
N̄

VI

=
[
a + ( – η)dL

][
(T – T)

(
λ

T
+

rT
Tmax

)
– k̄VIT

](
 –

T

T

)

+
[
a + ( – η)dL

]
k̄VIT –

c(a + dL)
N̄

VI

=
[
a + ( – η)dL

][
–

(T – T)

T

(
λ

T
+

rT
Tmax

)
– k̄VI(T – T)

]

+
[
a + ( – η)dL

]
k̄VIT –

c(a + dL)
N̄

VI

= –
[
a + ( – η)dL

] (T – T)

T

(
λ

T
+

rT
Tmax

)
–

c(a + dL)
N̄

( – R)VI .

It is clear to see that Ẇ <  if R < . Ẇ =  if and only if

T = T, L = T∗ = VI = .

So, the maximum invariant set in {ψ ∈ �|Ẇ = } is only the set {E}. By the LaSalle in-
variance principle [], we get the global attraction of E. This and Theorem . indicate
the global asymptotic stability of E. �
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To prove the stability of the infected equilibrium Ē, we denote

B := dT – r +
rT̄
Tmax

+ k̄V̄I =
λ

T̄
+

rT̄
Tmax

> ,

B := cδ – ( – η)δk̄N̄T̄ = cδ
(

 –
(a + dL)( – η)
a + ( – η)dL

)

=
cδηa

a + ( – η)dL
> .

Theorem . When R > , the infected equilibrium Ē for system () is locally asymptot-
ically stable if the condition dT – r + rT̄

Tmax
>  is satisfied.

Proof The characteristic equation for system () at the infected equilibrium Ē is

ξ + bξ
 + bξ

 + bξ + b = , ()

where

b = B + a + dL + c + δ > ,

b = B(a + dL + c + δ) + (a + dL)(c + δ) + B > ,

b = B
[
(a + dL)(c + δ) + B

]
+ ( – η)δk̄N̄V̄I T̄ > ,

b = cδk̄V̄I(a + dL) > .

In the following, we will use the Routh-Hurwitz criterion to verify the stability of the
infected equilibrium. We have

H = b > ,

H = bb – b

= (B + a + dL + c + δ)
[
B(a + dL + c + δ) + (a + dL)(c + δ) + B

]
– B

[
(a + dL)(c + δ) + B

]
– ( – η)δk̄N̄V̄I T̄

= B
 (a + dL + c + δ) + (a + dL + c + δ)

[
(a + dL)(c + δ) + B

]
+ B(a + dL)(a + dL + c + δ) + B(a + dL)(c + δ) + B(c + δ)

– ( – η)δk̄N̄V̄I T̄

= (a + dL + c + δ)
[
B

 + (a + dL)(c + δ) + B
]

+ B(a + dL)(a + dL + c + δ)

+ B
(
c + δ) +

(
cδB – ( – η)δk̄N̄V̄I T̄

)
= (a + dL + c + δ)

[
B

 + (a + dL)(c + δ) + B
]

+ B(a + dL)(a + dL + c + δ)

+ B
(
c + δ) + cδ

(
B –

( – η)(a + dL)
a + ( – η)dL

k̄V̄I

)

> (a + dL + c + δ)
[
B

 + B + (a + dL)(c + δ)
]

+ B(a + dL)(a + dL + c + δ)

+ B
(
c + δ) + cδ(B – k̄V̄I),
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H = bH – bb


>
[
B

[
(a + dL)(c + δ) + B

]
+ ( – η)δk̄N̄V̄I T̄

]{
(a + dL + c + δ)

[
B

 + B

+ (a + dL)(c + δ)
]

+ B(a + dL)(a + dL + c + δ) + B
(
c + δ) + cδ(B – k̄V̄I)

}
– cδk̄V̄I(a + dL)(B + a + dL + c + δ)

= D + D + D + D,

where

D =
[
BB + ( – η)δk̄N̄V̄I T̄ – cδk̄V̄I

]
(a + dL)(c + δ + B)(a + dL + c + δ + B)

=
{

BB + k̄V̄I
[
( – η)δk̄N̄T̄ – cδ

]}
(a + dL)(c + δ + B)(a + dL + c + δ + B)

= B(B – k̄V̄I)(a + dL)(c + δ + B)(a + dL + c + δ + B),

D =
(
BB + ( – η)δk̄N̄V̄I T̄

)[
B(a + dL) + (c + δ)

(
B

 + B
)

+ B
(
c + δ)

+ cδ
(

B –
( – η)(a + dL)
a + ( – η)dL

k̄V̄I

)]

>
(
BB + ( – η)δk̄N̄V̄I T̄

)[
B(a + dL) + (c + δ)

(
B

 + B
)

+ B
(
c + δ)

+ cδ(B – k̄V̄I)
]
,

D =
[
B(c + δ) – cδk̄V̄I

]
(a + dL)(a + dL + c + δ + B) + B

 (c + δ)(a + dL),

D = B(c + δ)(a + dL)
[(

B
 + B

)
(a + dL + c + δ) + B(a + dL)

+ B(c + δ) –
( – η)(a + dL)
a + ( – η)dL

cδk̄V̄I

]

> B(c + δ)(a + dL)
{(

B
 + B

)
(a + dL + c + δ) + B(a + dL)

+
[
B(c + δ) – cδk̄V̄I

]}
.

With the condition dT – r + rT̄
Tmax

> , we have B > k̄V̄I , then

B(c + δ) – cδk̄V̄I = B
(
c + δ) + cδ(B – k̄V̄I) > ,

D > , D > , D > , D > .

Thus,

H >  and H > .

It is clear to see that

H = bH > .

The Routh-Hurwitz criterion is satisfied, thus we see that equation () has negative real
roots. Therefore, the infected equilibrium Ē is locally asymptotically stable with the con-
dition dT – r + rT̄

Tmax
> . �



Wang et al. Advances in Difference Equations  (2016) 2016:225 Page 10 of 15

4 Sensitivity analysis
In Section , we have discussed the dynamics for system () at the uninfected and in-
fected equilibria, respectively. It has been proved that the conditions H >  and H > 
(they are more easily to satisfy than the condition dT – r + rT̄

Tmax
>  numerically) are suf-

ficient to guarantee the local asymptotic stability of the infected equilibrium Ē if R > .
From Table , we observe that some parameters have large variations in our model, which
may affect the outcomes greatly. Therefore, it is necessary to do an uncertainty analysis
and a sensitivity analysis, so that the key parameters which can impact the stability of the
infected equilibrium can be discovered.

To examine the uncertainty analysis of the local stability of the infected equilibrium, we
use the latin hypercube sampling (LHS) method to sample parameter ranges [–]. We
choose the sample size n = ,, and we treat each input variable (λ, dT , r, k,η, dL, a, δ, N , c,
nrt , and np) as a uniform distribution and treat each set of value of H, H, and R – as the
output variables. All the parameter ranges can be found in Table  in detail. A thousand
data sets are generated from the  input variables distributions and , output data
sets of the three output variables are obtained. Repeating the above procedure ten times,
we investigate that there are a minimum of  and a maximum of  in , values
satisfying R >  for determining the existence of the infected equilibrium, and we also
observe that there are a minimum of  and a maximum of  in , values satisfying
H > , H > , and R >  for identifying the local stability of the infected equilibrium.
Therefore, we conclude that the probability of the local stability for the infected equilib-
rium is between . and ., and thus the local stability for the infected equilibrium
is likely to occur. This phenomenon is consistent with the actual situation. Moreover, we
observe that the sufficient conditions H >  and H >  are always satisfied when the basic
reproduction number R > . That is to say, there is no stability changes at the infected
equilibrium if R > , numerically.

To detect the key parameters to impact the local stability of the infected equilibrium, we
compute the partial rank correlation coefficients (PRCCs) between each input parameter
and three corresponding outputs. Figure  shows the PRCCs results for each input param-
eters. The sign of the PRCCs indicates that the input parameter has a positive or negative

Table 1 List of parameters

Paras Definition Unit Data1 Data2 Data3 Range Source

λ T-cells source term μl–1 day–1 10 10 10 1-10 [4, 11, 12, 20]
dT Death rate of healthy

T-cells
day–1 0.03 0.01 0.01 0.01-0.1 [4, 11, 12, 20]

r Growth rate of T-cells day–1 0.1 0.03 0.1 0.03-0.1 [20]
Tmax Carrying capacity of

T-cells
μl–1 1,500 1,500 1,500 1,500 [20]

k Infection rate μl day–1 10–4 10–4 10–4 10–5-10–2 [4, 11, 12, 16, 20]
η Fraction of infections

that result in latency
0.02 0.001 0.5 0.001-0.5 [4, 11, 12]

dL Death rate of latently
infected T-cells

day–1 0.001 0.004 0.2 0.001-0.2 [4, 11, 12]

a Transition rate day–1 0.1 0.01 0.3 0.01-0.3 [4, 11, 12]
δ Death rate of infected

T-cells
day–1 1 1 0.8 0.5-1.4 [4, 11, 12, 20]

N Burst term virions/cell 1,000 200 500 200-3,000 [4, 11, 12, 16, 20]
c Clearance rate of virus day–1 20 3 15 3-36 [4, 11, 12, 20]
nrt RTI efficacy 0.4, 0.5, 0.7 0.4 0.3 0-1 -
np PI efficacy 0.5, 0.6, 0.8 0.5 0.4 0-1 -
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Figure 1 The PRCCs between input parameters
and three outputs (H2, H3 and R0 – 1). The
parameters k and N have a positive effect on the
three outputs, while np and nrt have a negative
effect.

effect on the corresponding output. From Figure , we observe that parameters k, N , and λ

have a positive effect on the size of H and H (|PRCC| > .), while the parameters np and
nrt have a negative effect, and we also find that the parameters k, N , and r have a positive
effect on the size of R – , while the parameters np, nrt , dT , and c have a negative effect.
As we have seen, the local asymptotic stability of the infected equilibrium depends on the
sign of these three outputs (H > , H > , and R –  > ) from Section , Figure  further
indicates that the parameters k and N have a positive effect on the three outputs, while np

and nrt have a negative effect.

5 Numerical simulations
In this section, we carry out numerical simulations to explore the cell and viral dy-
namics of system (). Using Data values in Table  and computing, R = . > 
with nrt = ., np = . (combination drug efficacy ε = .), R = . >  with
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Figure 2 With the increase of the combination drug therapy ε , the number of the healthy CD4+

T-cells becomes larger (a), while the number of the latently infected CD4+ T-cells, productively
infected CD4+ T-cells and infectious virions (b), (c), (d) become smaller. The virus can be eliminated
when ε = 0.94. For the parameters see the Data1 values of Table 1.

nrt = ., np = . (ε = .), and R = . <  with nrt = ., np = . (ε = .), re-
spectively. To show how antiretroviral therapy impacts the T-cell count and viral load,
we choose the infected equilibrium without drug therapy (T(), L(), T∗(), VI()) =
(., ., ., ,.) as the initial value. Figure  shows that the in-
fected equilibrium is locally asymptotically stable when the combination drug efficacy
ε = . and ε = ., while the infected equilibrium does not exist and the uninfected
equilibrium is globally asymptotically stable when the combination drug efficacy ε = ..
With the increase of combination drug efficacy, the number of healthy CD+ T-cells be-
comes larger, while the number of latently infected CD+ T-cells, productively infected
CD+ T-cells and infectious virions become smaller. Also, the influence of drug therapy
on T-cell count and viral load changes dramatically. Figure  also demonstrates that the
stability of the equilibrium changes as combination drug efficacy increases.

In order to examine the effect of the logistic term rT( – T
Tmax

) in system (), we choose
the infected equilibrium without drug therapy when r =  (that is, the model in [, ])
(T(), L(), T∗(), VI()) = (., ., ., .) as the initial value, and we
use Data values in Table . We observe that the logistic term can cause transient oscil-
lations at the beginning of the viral progression, and it has no effect on the stability of
the infected equilibrium (see Figure ). Figure  also demonstrates that the model with-
out logistic term would underestimate the number of the latently infected CD+ T-cells,
productively infected CD+ T-cells, and infectious virions, while it does not change the
number of healthy CD+ T-cells obviously.

Researchers have done a lot of work about HIV model, and most of them did not con-
sider latent infection. Here, we consider the model without latent infection which has been
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Figure 3 When R0 > 1, compared system (2) to the model without logistic term, the logistic term can
cause transient oscillations to all populations at the beginning, and finally the model without logistic
term may underestimate the number of the latently infected CD4+ T-cells, productively infected CD4+

T-cells, and infectious virions (b), (c), (d), while there is no too much difference with the number of
healthy CD4+ T-cells (a). For the parameters see the Data2 values of Table 1.

studied in [–]:

d
dt

T(t) = λ – dT T + rT
(

 –
T

Tmax

)
– ( – nrt)kVIT ,

d
dt

T∗(t) = ( – nrt)kVIT – δT∗,

d
dt

VI(t) = ( – np)NδT∗ – cVI .

()

It is a special case of system () with η = dL = a = . In order to observe the effect of la-
tent infection of system (), we choose the infected equilibrium of system () without
drug therapy ((T(), T∗(), VI()) = (, ., ,.) with tiny latently infected
T-cells –) as the initial value, and use Data values in Table . The dynamics of system
() and system () is shown in Figure , which indicates that system () would underesti-
mate the total number of CD+ T-cells and overestimate the number of infectious virions.

6 Conclusions
We have studied an HIV model including latent infection, antiretroviral therapy and a
logistic growth for healthy CD+ T-cells. If the basic reproduction number is less than
one, we obtained the global asymptotic stability of the uninfected equilibrium. If the ba-
sic reproduction number is greater than one, we proved local asymptotic stability of the
infected equilibrium. Through latin hypercube sampling method, we investigate that, as
long as the infected equilibrium exists, it should be locally asymptotically stable ultimately.
Furthermore, we derive that the infection rate k and the burst size N have a positive ef-
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Figure 4 When R0 > 1, compared to system (2), system (10) may underestimate the total number of
T-cells (a), and overestimate the number of infectious virions (b). For the parameters see the Data3
values of Table 1.

fect on the stability of the infected equilibrium, while the drug efficacy np and nrt have a
negative effect.

Comparing our model behaviors with those established in Perelson et al. [] and Rong
and Perelson [] without logistic growth, we found that their models would underestimate
the number of the latently infected CD+ T-cells, productively infected CD+ T-cells and
infectious virions. Also, comparing our model with [–], which do not include latently
infected T-cells, we observed that those models would underestimate the total number
of T-cells, and overestimate the number of infectious virions. Our conclusion can be re-
garded as an extension of the work of Perelson et al. [] and Rong and Perelson [] when
r = .

In fact, cytotoxic T lymphocyte (CTL) is closely related to the suppression of viral repli-
cation and disease progression, and it plays a major part in the control of viral infection
[]. A mathematical model including latent infection and the influence of CTLs will be
our future research work.
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