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Abstract

The g-symmetric analogs of Cauchy’s formulas for multiple integrals are obtained. We
introduce the concepts of the fractional g-symmetric integrals and fractional
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1 Introduction

The g-quantum calculus is an old subject that was first developed by Jackson [1, 2]. It
plays an important role in several fields of physics, such as cosmic strings and black holes
[3], conformal quantum mechanics [4], nuclear and high energy physics [5], and so on.
As a survey of this calculus we refer to [6]. Starting from the g-analog of cauchy formula
[7], Al-Salam started the fitting of the concept of g-fractional calculus. After that he [8,
9] and Agarwal [10] continued by studying certain g-fractional integrals and derivatives.
Recently, perhaps due to the explosion in research within the fractional calculus setting,
new developments in this theory of fractional g-difference calculus were made, specifi-
cally, g-analogs of the integral and differential fractional operators properties such as the
q-Laplace transform, and g-Taylor’s formula [11, 12]. More recently, the authors in [13, 14]
studied the problems of g-fractional initial value and approximation solutions by means
of the generalized type of the g-Mittag-Leftler function introduced. Baleanu and Agar-
wal [15] established some inequalities involving the Saigo fractional g-integral operator in
the theory of quantum calculus. There are also many papers dealing with the existence of
solutions for g-fractional boundary value problems (see, e.g., [16—23]).

The g-symmetric quantum calculus has proven to be useful in several fields, in par-
ticular in quantum mechanics [24]. As noticed in [25], consistently with the g-deformed
theory, the standard g-symmetric integral must be generalized to the basic integral de-
fined. However, to the best of the authors’ knowledge there are no results available in the
literature introducing basic definitions for fractional g-symmetric integrals and fractional
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q-symmetric derivatives. The basic theory of g-symmetric quantum calculus needs to be
explored. The object of this paper is to define a fractional g-symmetric operator corre-
sponding to the g-symmetric analog of f; f (T)ﬁqr. Besides this we shall investigate the
fundamental properties of this operator. A study of these fractional g-symmetric opera-
tors is expected to be of great importance in the development of the g-function theory,
which plays an important role in combinatory analysis.

2 The g-symmetric analogs of Cauchy’s formulas

For a real parameter g € R*\{1}, we introduce a g-real number [a], by

lal, = (a € R).
q

For a nonnegative integer n, let

0,=1  [nl!=Tn-1,---0,

Also, the g-symmetric analog of the power (a — b)X is

k-1
@-5"=1 @-5"=[]la-b4"") (keNabeR).

i=0

Their natural expansions to reals are

" 00 (1 _ b2+l
R 1‘[]:["1(01( b;jm)zl) (@ €R,a #0). 2.1)
i=0\+ " 4

The g-symmetric gamma function is defined by

- 1—[?:0(1 _ q2i+2) -
Ty) = o0 g (L )
D oyl .
=(1-¢9 '(1-9°) (x e R\{0,-1,-2,...}). (2.2)
Obviously,

F=0-9"01-¢)"=1  Ty+1) =[x,

The basic g-symmetric integrals are defined through the relations
X - oo
(Iof)() = / fOdt=x1-4"))_ 7*f(xg*), (2.3)
0 k=0

Tyaf)(®) = / f()dgt = / f)d,t - / f®d,t.
a 0 0
The g-symmetric derivative of a function f(x) is defined as

(gx) —f(q"%)

B -SELED Bp0=r0) 4)
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and the g-symmetric derivatives of higher order as
B)W =, (D)) = (B D)), neN-.
As for g-symmetric derivatives, we can define an operator 7"; by
(10 f ) @) = £ (%), )= ([l f) ), neN*. (2.5)
For operators defined in this manner, the following is valid:
(Delpo)f @) =f (), (TpoDyf)(x) = £(x) ~(0). (2.6)

The formula for g-symmetric integration by parts is

b ~ ~
/ u(gx)(Dgv)(x) dgx = [ (x)v(x ]| —/ q x)(D u)(x)dqx

Using (2.1) and (2.4), we may obtain the very useful examples of the g-symmetric deriva-

tives of the next functions:

« =[al,(¢7'x - a) (OH), (2.7)

bz

¢ (x—a)

(1)

«Dy(a - q7x) “ . ~[al,(a-x) (2.8)

Next, we consider the form of the multiple g-symmetric integration as follows:

x t th-1 ~ ty ~
(') (x) = / d,t / Aty / Ayt s+ / dgti. (2.9)
0 0 0 0

Theorem 1 The form of the multiple q-symmetric integration (2.9) is equality to

(I of ) () =

— q(g) /x (x — r)(”_l)f(q”’lt) Eqr, (2.10)
- l]q! 0

where
n\ I'(n+1)
k) Tk+DI(n-k+1)
Proof We prove (2.10) by using mathematical induction.

Ifn=1,0 ) = [5f()dyt.
If n = 2, we have




Sun et al. Advances in Difference Equations (2016) 2016:222 Page 4 of 18

_ (x(l _ q2))2 i i q2kq2m+lf(q2m+2x)

[o¢] m
_ (x(l _ q2))2 Z Z q2kq2m+1f(q2m+2x)
m=0 k=0
212 i 2+l g 2m+2
= ((1-4%)" ) =" (")
m=0 -4
- x(l _ q2) Z(x q2m+2x) 2m+lf(q2m+2x)
m=0
qx -
= x-1)f(r)dyT
0
X
~q [ &= rand,
We see that (2.10) holds.
Next, suppose that Theorem 1 holds for n = k. We consider the case n = k + 1.
By (2.5), we have

(55 )(x)=7q,o([k K q® / G- (g )3,;)
(z) —%! dtd
[k— //(s ) o) dyTdys

(k) 2m 2m+1 4. _
[k—] A Zq f (=)

_ (") 2 k+122q21 2m+1m (qkl 2142 )

(k_l)f(qk_lr) Eqr

[k— 1! o
k ad ! 4&—1)
_ ( )(1 q k+1 ZqZIf(qZHkH Zq2m+1 om+l _ 21+2)
[k_ 1! =0 m=0
On the other hand
k+l (k+1) —
(15 ——q (x 0 f(d7)d,
k]q
K+l ad (k)
_ ( ) x Z q21 x x qz“l f( q21+1<+1 x)
[k] ! n

o0
k+1 (k)
_ q( )xk+1 1- q Zqzl 1 q21+1 (q%k”x).
[K],! 1=0

Since

*k l 2W1+1 2m+1 21+2 *-D
K, _a )
m=0

- (- Wl + @)
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———(k-1)
+ q21+1 (q21+1 _ qzl+2)

(1-q*) kI ((1- qz’“)

)

(k-1)

_ (1 _qz)mq(qzlk(l q) 2(1 Dk —(1 _qg)(k—l) .
- q2l*l)(k7 . (1 g2 1)"( 1))
k-2 k-2
= ( VK] ( )k |:q2k l‘[(l_qmz) +[a q2z+4)i| PR qs)(k‘l) N
i=0 i=0
(1 q21+1)(k1)>
k-3
= ( )& ( )k(l q2k+2) 1—[(1 — P 4 g u 2>k(1 _q5)(k‘” .\
i=0
(1 q21+1)(k1)>
k-3 k-2
= ( )[k] ( )k|:(1 q2k+2) (1 q21+4) + (1 q21+6)j|
i=0 i=0
q2(1 3)k (1 q7)(k—1) N (1 q21+1)(k_1)>
k-4
— (1 _ q2) [k]q (q (I-2)k (1 2k+4) (1 2k+2) (1 q21+6)
i=0
qw 3k (1 q7)(k_1) + (1 q21+1)(k_1)
- ( )[k] ( 21+2)(1 _ q21+4) . (1 _ q2k—2)(1 _ q2k+2) . (1 _ q21+2k)
=(1- q21+1)(k).
We may see that (2.10) holds when n = k + 1. (I
3 The‘Tg"0 operator
We now introduce the fractional g-symmetric integral operator,
o 1 (1) a-1_\7 +
I )6 = 5o fla o) dr (@ k), (3.)
q
where
a) IN'a +1)
(k) “TheDr@_kep KN

To prove the semigroup property of the fractional g-symmetric integral, we need
Lemma 1.
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Lemma 1 [12] For u,«, B € R*, the following identity is valid:

L (- g - g )Y (1 g
Z -

q - )
~  A-gNa-q¥ (L-q)+FD

where

b
() _ a® H?jo(l ~ qu)

_b LL=0 a1 7
(a-b) 0= Lgh

(a,beR,a+#0).

Theorem 2 Let o, B € R*. The fractional q-symmetric integration has the following semi-
group property:

(TooTro/) @) = (I40"f) @).

Proof By (3.1) and (2.3), we have

YN, m/ i)

6+ o) [T ~ o~
= qa)F ® b ( K / (q“‘ls— r) f(q’g_lt) dyTdgs
(g)““(g) > — (a-])
q N
" F a7 L )
q q k=0
q‘”zkx - -
X /(; (¢*ex—1)" f(g" 1) d,t
_ q(ot) (ﬁ) q2)2xa+ﬂ
(a)Fq(ﬁ)
% Z(Z g geem aﬂ) 7" (g% - q2k+2m+1)(ﬁ - (1 - g2 1)‘“‘1)
k=0 \m=0
Xf( a+ﬂ+2k+2mx)
= q(Z) (Z)Wﬂ q2)2xa+ﬁ
q(Ol)Fq(,B)
o 3 I o s FE e M (s M P
k=0 m=k
a+f
= ﬂ( — ) xP
Ly(e)ly(B)
« Z(Z (P - qzmu)(’s’” (1- qzku)(“1))q2mf(qa+ﬂ+zmx)
m=0 \ k=0
3%
=~q~ (l_q)2a+ﬁ
Fq(a)rq(ﬂ)

x Z (Z qzkﬂ 2m 2k+1)"3_1) (1 _ q2k+1)(a_l)>q2mf(qa+ﬂ+2mx)'

m=0 \ k=0
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Next, we denote ¢* = g, then

(ﬂ—l) 1_[;300 (1 q2m—2k+lq2[+1)
l_[ 1 q2m 2k+1q (i+ﬂ—l)+1)
l_[zojo _ —m k+z+1)

T S0-7)

— (1 _ qm—k+l)(ﬁ*1)

(1 — g2m-2k+1)

and

F=0-9""1-4)"

e _TTR0-a)
= ( -9 ) [, = g2reD+2)

) (1 _)1 . l_[ (1 _al+1)
Mro-7"
- (1-9 -9«

Using Lemma 1, we obtain

i qzkﬂ (1 _ qu—2k+1)(ﬂ D (1 _ q2k+1)(a_l)
k=0
(8-1) (a-1)

(1 _ q2k+1)

Z qZkﬂ g2 2k+1)

Z qkﬂ m k+1)(ﬂ—1) (1 _ ak+1)(a—1)

—a-gpea-gend - _m)l),fl ’
Thus
ot
ToTea ) = oy = 0
. Zoq% g %f@wﬂm
g 2\ ash N 2y = \@HD) 0 e pram
=m(1—q)x ’3;061 (L= ) f (g P
) Nq(azﬁ) 1-¢) i (= ) PV gy

Lylo +ﬁ) -
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(3 % ~
97 (@+f=1) 1 0ip1
= (x-1) f(g* P t)d,T
q(a +8) Jo ( ) !
= (40 1) ). 0
Theorem 3 For o € R*, the following identity is valid:

’ ” fO 6.
TGan)@ = Ga'Dof ) + gy

Proof Using the g-symmetric integration by parts and (2.8), we obtain

Otl) ~

f@e)dgr

) e 1 _ 71 (Ot))
qwm (ff )

q(a)( (x—q‘lr)(a)f(q"‘r)m +f0 q"(x—r)(a)f)qf(q"‘r) :iqr)

me»

q(oz +1)

1 o —— ()
= (2) — —q- o
Cylo + l)q ( (x 1 lx) f(q x)
a * AT @R a_\ 7
+xf(0)+/(; q*(x—1) qu(q l')dq‘l,'>
G(HIqu)

4 The fractional g-symmetric derivative of Riemann-Liouville type
We define the fractional g-symmetric derivative of Riemann-Liouville type of a function

f(x) by
~ (T8N (x), a <0,
(DGof) ) = f (), =0, (4.1)
D)), o> 0.
Here [«] denotes the smallest integer greater than or equal to «.
Theorem 4 For o € R\ Ny, the following is valid:
(DeDiof) @) = (D31 ) ).
Proof We consider three cases. For « < -1, according to Theorem 3 and (2.6), we have

(DgD%of ) () =
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In the case —1 < o < 0, we obtain
(DD2of) ) = (DyLaf) ) = (Do ™f) ) = (D23'f) @).

For o > 0, we get

~

(DgDgof ) ) = (DD T f) @) = (Dysf) ). O

Theorem 5 Fora € R\ Ny, the following is valid:

(Bqﬁg,of)(x) = ( qu)(x) b f(0) q<7(l12+1))x_“_1.
q( —a)

Proof Let us consider two cases. For « <0,

(DyD5of ) @) = (Dol if ) )
= DT3[ 0Duf)() + £(0)]

(Dgl,§T10Dgf ) %) +£(0) (DI 51)
= (D,

oz+1qu) (x) +f(0)q(72a) F(_;_qu—a

~, —(a+1) 1 -
= (B D)) +£(0)g >Fq(_a)x L

If o > 0, there exists [ € Ny, such that « € (/,/ + 1). Then applying a similar procedure, we
get

(DyD2of ) () = DD TH 2 f) ()
= DT [ [0 Do) @) + £(0)]
q (l+1—a

2") ~ pE—
l+2 _
)Fq(z+1-a)<Dq /o(x v dr)

I+1-a

= (DI~ Dyf ) () + £(0

[+277] l+2 o
(D 1 qu)(x) +f(0)7~ Fir2-a)

a —(a+1) 1 Cae
= (DgoDyf ) (%) +f(0)g( 2 )f:q(—a)x L -

N2 +1-a
(D)

Theorem 6 For o € R\ Ny, the following is valid:
(D2 oI of ) (%) = ().
Proof

(Ds T2 of ) () = (DET0 T2 of ) () = (DTS ) () = f (). O



Sun et al. Advances in Difference Equations (2016) 2016:222 Page 10 of 18

Theorem 7 Let o € (0,1). Then
(7“ D“ x) = f(x) + Kx* 71,

Proof Let A(x) = (I“ D 0f)(x) —f(x).
Apply D‘;O to both 51des of the above expression, and using Theorem 6, we get

(B50)A0 = (B T ) ) = (Biaf ) o) = (B ) 0) = (Biaf )9 =0,
On the other hand,
/x (x— r)(fa) (q“”r)at_1 Zqu
0

=x(1-¢%)

qzmm(_"‘) ( P s x)a—l

M

0

qum(_a) (q—oz q2m+1)0¢—1'

NERE

=(1-4°)

0

3
I

Using the above form and according to (3.1), (4.1), we obtain

~ ~ ~ (e 1 F () a-1
DY x* ' =D, I *x* = D, (12)~7/ x—T T d,t =
4,0 alq,0 79 T - Jo ( ) (q ) q
Hence A(x) = Kx*1, O

Theorem 8 Let « € (N —1,N]. Then for some constants ¢; € R,i=1,2,...,N, the following
equality holds:

I0D% of ) (%) = f () + x4 e 2 4o+ o, (4.2)
Proof By Theorem 3 and Theorem 7, we have

(7;,053, x) — (7 DNNN o

~a . w1 —1]N af(o)
= Iq,ongl 1}7\[ f)(x) q( )T
— 101 2DN 27N~ af)(x) (oz Z)ng 2[ *‘1 (O)xa—Z
q((x 1)

(Dt 1) IN_af(O)
-q - 0 =
Fq(a)

(Ot N+1) D 1 —Ot (0)
q(a N+2)

Iot N+1D0¢ N+lf)( ) a—N+1 _
a-1 1] 0 f(O)
— g2 )7
1 Fq(“)

= f(x) + x4 ax® 2 4N, O
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5 The fractional g-symmetric derivative of Caputo type
If we change the order of operators, we can introduce another type of fractional g-
derivative.

The fractional g-symmetric derivative of Caputo type is

N I8 (@), <0,
(‘Dfof) ) = 1/, @=0, (5.1)

@Dl (), a>0.
Here [«] denotes the smallest integer greater than or equal to «.
Theorem 9 For o € R\ Ny, and x > 0, the following is valid:

N 0 ()t g <
(D)) - (DipDyf ) = | Tt 70 @ =70 52)

, o> -1

Proof Clearly, (5.2) holds for « = —1. Next, we will consider three cases.
(i) < -1, according to (5.1), (2.8), and (2.6), we have

(Dyif) ) = (L5 7))
=157 (I,oDyf @) + £ (0))

- (D) + 2oy
RN T f() (arl)y o
= (DioDaf) o)+ = g5 xe

(ii) =1 < @ < 0, we obtain
(D) = (o "Dof ) 6) = (I,5Dof ) ) = (D Df ) ()
(iii) ¢ >0, weassumea =n+¢&,n € Ng,0 <e <1,thena +1 € (1 + 1,1 + 2), so we obtain
(D)@ = (5 Dy )@ = (I Dy *Daf ) () = (D Do) @) 0l
Theorem 10 For o € R\ Ny, and x > 0, the following is valid:

~ ~ 1 01 o 5 _1,
( D, D¢ af) (x) - (CDZ,Bf) (%) = Bg’]f(o) ([a]—éowl))

Ig(lo]-a)

(5.3)
x 1l a>-1.

Proof We will consider two cases.
(i) @ < 0, using Theorem 3, (5.1), (2.6), and (2.8), we obtain

(gD of ) &) = (DyLef ) ()

~ ~ 0 (7
- (Dqlqja“qu)(xn - (f_ (a) l)q 2)Dq(x_°‘)
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R 7N f(O) —lerl)y
= ( Dq,Oqu)(x) + Fq(—()l)q( 2 )x L

By Theorem 9, the required equalities are valid both for « < -1and -1 <« <0.
(ii) >0, weassumea =n+¢e,neNy,0<e<1, thena+1e€ (n+1,n+2), by Theorem 3,
(5.1), (2.6), and (2.8), we obtain

(~ cDaof)(x) — ( Dn+lf)(

N 72-¢ yn+ 5}/H.lf(o) 1-gy ~ e
= (ing,o Dy 2f)(x) + %q( 2 )Dq(xl )
D"” 0) ey —
_ (cDaBIf) %q( 2 )qg[l — 8]qx_8
q
= (¢D2*1 w (") -
_(Dq’o )(x)+Fq(n+1—a)q o a

Theorem 11 Let o € (N — 1,N]. Then for some constants c; € R,i=0,1,...,N — 1, the fol-
lowing equality holds:

(T;OCZND;‘,Of)(x) =fx)+co+cax+ Cox® + o+ ey L
Proof By (5.1), (2.6), and (2.7), we have

(125D of ) () = (12105 aDNf ()
- (B4,D)
—1”1(( 1f)(x) ( 7 /)0)

o 2)(DY11)(0)
=@01D2[ lf)(x)— [N 1] ‘
(‘Nwzfu_q(”')“f><0> va_ B0
[N -2],! N-1],!
1) (D
f -3 T2DO
o (k]! O

6 The application
In this section, we deal with the following nonlocal g-symmetric integral boundary value

problem of nonlinear fractional g-symmetric derivatives equations:

(D2ou)(®) +f(gtu(q7t)) =0, te(0,4), (6.1)
w©0)=0,  u(1) = n(Iou)(), (6.2)
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where g € (0,1),1<a <2,0< 8 <2,0<n<1,and u > 0 is a parameter, 5;‘,0 is the g-
symmetric derivative of Riemann-Liouville type of order «, f : [0,1] x R* — R* is con-
tinuous.

We give the corresponding Green’s function of the boundary value problem and its prop-
erties. By using the Krasnoselskii fix point theorem, an existence result of positive solu-
tions to the above boundary value problem is enunciated.

For convenience, we need some preliminaries.

Let g% = g, then by (2.2), we have

1_[?:0 (1 B q2i+2) 1 2\1-x
15, (1 — g2s-D+2) (1-4°)
i=

=1-9)"VA-9" " =Tyx) (x€R\{0,-1,-2,...}). (6.3)

Ty(x) =

The basic g-integrals are defined by
U )0)= [ f@dyt=201-) 3" dF(sa") (6.4)
0

k=0
Lo )0) = / FO)dyt - /0 FO)dyt - fo orm

Definition 1 ([23] (g-Beta function)) For any x,y > 0, B,(x,y) = fol to (1 - gt)0V d,t.

Recall that
_ Fq(x)F q(3’)
Bq(x!y) = Fq(x +y) .
Therefore,
Bq(x,y) - r?(x)r§(3’) _ Fq(x)rq(Y) (65)

Fz(x+7y) - Fq(x+y)’

Lemma 2 For \ € (-1,00), the following is valid:

o~ (A +1)
() Tognt= =22
FA+a+1)

T,0.+1)
T, —a+1)

(‘;)+Aax)\+a (0[ c R+),
(3) e i (¢ eRY A - +170).

(i) DEgx’ =

Proof (i) For A #0, according to (3.1), we have

) / T () e
a0 Fq(a) 0 7
s
_ L6 gl / (1_£> (E) 3q(£)
Iy(«) 0 x x x
1

1
- e [ T
Fg(e) o
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Let ¢> =g, by (2.3), (6.3), (6.4), and Definition 1, we get

1 - 7( )
f (1-s) —S) Vs dqs— (1- q ZqZk 7<) )
0 k=0

k+z+1)

1 q Z q2k l_[ 1-— q k+L+a) )Lk
—k+t+1
_q2 (1 q)qul_[ 1- qk+z+oz

o0
_ (a—1)_
=q2 (1 q Z k k+1 q)\k
k=0

:q)\/ (1 - gx)* V" dyx
0

>~

=q2B;(x + L)
N Fq(a)Fq(A +1)
Fq(k +oa+l)

Hence, we obtain the required formula for *) when A #0.
If A = 0, then using (2.8), we have

1 oy [F——(a-1) ~
o = = () _
(Fo1) rq(aﬂ | &,

) (X — Dy(x—q't) ‘L') 5
q(a / —[a]q "

— 5[01] (~ Fq()\ + 1) q(a O() ([a]-a) A+[a]a>
o+ o] —a+1)

~ T, (h+1)
T, 4[] —a+1)

[a]-a ~
g2 )qM[a]—a)D([Ia](xmal—a)

__ T+ () glo-a) =5l
Fg+[a] —a+1)

T, +[al-a+1) ,_,
L,(h—a+1)
L0+ yhagia -
A —a+1)
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Lemma3 Let M = T (o + ) - Mno‘*ﬂ‘lq(g)*(“‘l)ﬁfq(a) > 0. Then, for a given y € C[0,1],

the unique solution of the boundary value problem

(Degu) ) +¥(q) =0, te(0.¢°)1<a <2, (6.6)

subject to the boundary condition

w0)=0,  u(l)=pulpoum), 0<p=2,0<n<l, (6.7)
is given by
1 ~
u(t) :/ G(t, s)y(qils) dgs, tel0,1], (6.8)
0
where
Mta—l
G(t,s) =g(t,s) + i H(n,s), (6.9)
(1) (1)
Il -s) —(t-s) , 0<s<t<l,
gt ==—qD 1 ", (6.10)
Fq(Ol) e t1-s) 7, 0<t<s<l,
—(a-1) ——————(a+p-1)
o+ 1- —-(1-n-lg* , 0<s< ﬁr
H(ﬁ,S) — na+ﬁ—1q( 2’%)—/3 ( 3)(01_1) ( n—q S) =s=nq (611)
1-s)y ng? <s<1.
Proof In view of Theorem 8, we have
ut) = %t 4ot 2 — - S) ) .5 te[0,1], (6.12)

for some constant ¢y, ¢y € R. Since #(0) = 0, we have ¢, = 0.

Using Lemma 2, Theorem 2, we have

(15,0”)(’5) = Cl[ﬂot%1 (1 ;Sﬁy) ()

q(Ol) (’g)+(a—l)ﬁta+ﬂ—l
' q<a T+’

=cC

(a +B) q((”ﬁ)/ (-9 0‘ . Dy(qﬁ - )dq5~
a

From the boundary condition u(1) = MTQOM(W), we get

s)d

—S

q(a+ﬂ 1
s

B j2 (a;ﬂ) — (a+p-1) B-1 ~
Farp)! fo(n s (g S)dq3>'
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Hence

21T (1 oy [P, o~
u(t) = ’;V;x+’3 (Fq(oc)q(z)./o (1—5)( l)y(q 's) dgs

! A [ Wl)d)
@ ,,(%) /o =9 y(qs)d,s
q(z)/ =9 y(q7's) dys
)5
I e g

,bLtOFI a+f (a+B-1) _ ~
s q<2)/ =9 "y (g 5)d,s
0

q(a)

a-1

1 N 1 ~
- / g(t,s)y(q’ls) dgs+ g / H(n,s)y(q’ls) dys
0 0

1
:/ G(t,s)y(q‘ls)dqs. O
0

According to the property of being non-increasing of (£ — s) s) on s, we may easily obtain
Lemma 4 and Lemma 5 as follows.

Lemma 4 The functions g(t,s) and H(n, s) satisfy the following properties:
(i) g(t,5) = 0,g(t,s) <gls,5),0<t,s<1.
(ii) H(n,5)=0,0<s=<1.

Lemma 5 The function G(t,s) satisfies the following properties:
(i) G isa continuous function and G(t,s) > 0,(¢,s) € [0,1] x [0,1].
(i) There exists a positive function p € C((0,1), (0, +00)) such that
maxo<;<1 G(,5) < g(s,8) + 5:H(n,s) =: p(s),s € (0,1).

Lemma 6 (Krasnoselskii) LetE be a Banach space, and let P C E be a cone. Assume Q1,2
are open subsets of E with 6 € Q2 C Q1 CQy,andlet T: PN (2 \ Q) — Pbea completely
continuous operator such that

I Tull = ull, uePNdQ, and ||Tul <|ul, uePNIQ,.
Then T has at least one fixed point in PN (2, \ Q1).
Let X = C[0,1] be a Banach space endowed with norm | u||x = maxo<;< |#(¢)|. Define

thecone PC {ue X :u(t)>0,0<t<1}.
Define the operator 7' : P — X as follows:

1 ~
(Tu)(t) :/0 G(t, s)f(q_ls,u(q_ls))dqs. (6.13)
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It follows from the non-negativeness and continuity of G and f that the operator T :

P — X satisfies T(P) C P and is completely continuous.

Theorem 12 Let f(t, u) be a nonnegative continuous function on [0,1] x R*. In addition,

we assume that:

(Hy) There exists a positive constant ry such that
ft,u) >«r, for(t,u)en, ] x[0,n],

where 11 = ¢, 1y = g™ with m3,my € No,m3 >my > 0, and

K> q‘/ <gs,s+ Hn,s) s> .
an M !

(Hp) There exists a positive constant ry with ry > ry such that

ft,u) <Lry, for(t,u)e[0,1] x [0,r,],

where

(DT ~\
e () (o))

Then the boundary value problem (6.1), (6.2) has at least one positive solution u, satisfying

0<r <llugllx <.

Proof By Lemma 4, we obtain maxo<;<1 g(¢,s) = g(s,s). Let ; = {u € X : ||u||x < r1}. For
any u € X N 32y, according to (H;), we have

1
” TM”X = 5252(1(/ g(t, S)f’(q’ls’u(qfls)) dqs
== 0

1 a-1 -
+/o Mj\/[ H(n,s)f(q‘ls,u(q‘ls)) dqs)

1 -1 -
Zfo [g(s,s)+ﬂ(j&[ H(n,s)}/(q‘ls,u(q_ls))dqs

2k+1 )ot—l

_ (1 _ qz) Zqzk |:g(q2k“,q2k+l) + MTH(nqukH):I/(QZk;M(qZk))
k=0

1 a-1
=/(; [g(qS:qS)+M(s;3 H(n,qs)]j(s,u(s))dqzs

wgs)*™!

15}
> K}"1/ |:g(qs, qs) + TH(n,qs):| dps
7

L qTy [LSa_l
=q Krlf |:g(s,s) + v, H(n,s)i| dps
q

ol

= r1 = |lullx.
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Let Q5 = {u € X : |lul|x < r2}. For any u € X N 9€2,, by (H,), we have

1
| Tue||x = gnax/o G(t,s)f(q’ls,u(q_ls)) dys

<t<1

1
<Lry / p(s)dys
0

< llullx =r2.
Now, an application of Lemma 6 concludes the proof. d

It is hoped that our work will provide motivation for further results for fractional g-
symmetric quantum calculus.
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