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Abstract
In this paper, the Darboux transformation method has been successfully applied to a
general mixed nonlinear Schrödinger equation and some rogue wave solutions are
proposed. First of all, the determinant representation of an n-fold DT is given explicitly.
Then starting with a periodic seed solution, we obtain some rogue wave solutions of
the general mixed nonlinear Schrödinger equation through iteration of a generalized
DT. Second, the three-dimensional images and density profiles of the rogue waves are
plotted to show the structures of these rogue wave solutions. Finally, we give
evidence for the connection between the occurrence of rogue wave solutions and
the modulation instability.
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1 Introduction
In the past decades, there are extensive advancements in the field of nonlinear integrable
systems. How to get the exact soliton solutions of these integrable systems has become
one of the important research topics in theory and practical applications. Quite a few ap-
proaches for finding exact solutions of such nonlinear systems are well established, such as
the inverse scattering method [], the Darboux transformation method [, ], the Bäcklund
transformation [–], the Riemann-Hilbert formulation [–], the Hirota bilinear method
[, ], Lie group analysis [], the similarity transformation method [–], and the ho-
motopy analysis method [–], F-expansion method [] and so on [, ]. Among
these approaches, the DT is well known to be a powerful method for finding exact solu-
tions of integrable systems [].

In recent years, more researchers have begun to pay attention to rouge waves (RWs),
which has been introduced and become an interesting objective in some fields, such as
optics [–], super fluids [], Bose-Einstein condensates [–], and so on. RW is
one terrible reason to generate large marine catastrophes, which is a presence that may
always show up with special giant waves in a very short time, and there is no sign before
it appears. For example, the giant waves of several tens of meters will suddenly appear in
a relatively calm sea. In optics, the wave will appear as a very bright spot, which mathe-
matical physicists call rogue waves []. But now, the study of the rogue waves is still only
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in its infancy. Mechanisms and the probability of its occurrence are not clear. Because ob-
serving of rogue waves on the ocean is very difficult and dangerous, unreliable and few
records and observations are available, which led to a lack of research on the rogue wave
scientific community recognizing the factual basis.

One of the models to describe the rogue waves is the nonlinear Schrödinger (NLS) equa-
tion,

iqt +



qxx + |q|q = , ()

which is an important integrable nonlinear wave equation. Recently, much work was done
to study various NLS equations [–].

By DT [], one can get its first-order and high-order rogue wave solutions []. Re-
cently, more general rogue waves of the higher-order NLS equation have been calculated
[, ] and the spatial-temporal structures have also been discovered and analyzed.

It is well known that there is an integrable mixed NLS equation [],

qt – iqxx + a
(
q∗q)

x + ibq∗q = , ()

where q represents a complex field envelop and the asterisk denotes complex conjugation,
a and b are two nonnegative constants. The mixed NLS equation is used to model the
propagations of the Alfvén waves in plasmas and the ultrashort light pulse in optics.

Motivated by the work of [], we will consider the following general mixed NLS equa-
tion:

iqt + qxx + iβ
(|q|q

)
x + iαqx + |q|q + rq = , ()

–ipt + pxx – iβ
(|q|p

)
x – iαpx + |q|p + rp = , ()

where α, β , and r are real constants. Under the condition q∗ = p, this equation can be
simplified as

iqt + qxx + iβ
(|q|q

)
x + iαqx + |q|q + rq = . ()

This equation can be taken as one version of the Wadati-Konno-Ichikawa (WKI) system
[], and the corresponding Lax pair is given based on the WKI spectral problem

�x = U� =
(
iβIλ + Qλ + Q

)
� , (a)

�t = V� =
(
–iβIλ + Vλ

 + Vλ
 + Vλ + V

)
� , (b)

with U and V being  ×  matrices, and

I =

(
 
 –

)

, Q =

( √
 ( αβ+

√
ωβ

+αβ
– β)q

(–β –
√

ωβ

 )p –
√



)

,

Q =

(
– 

 iα
√


 iq

(
√


 i +

√


 iαβ)p 
 iα

)

, V =

(
–

√
β

(β–
√

βω)
+αβ

q
(β +

√
βω)p 

√
β

)

,
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V =

(
–iβqp + i β

+αβ
mq

β

 mp iβqp – i

)

, V =

(
–
√

βpq 
(+αβ) (mqx + mq)


 (mpx + mp)

√
βpq

)

,

V =

(

 iα + 

 iαβqp + 
 ir + 

 ipq
√


 qx – mq

(
√


 +

√


 αβ)px – mp – 
 iα – 

 iαβqp – 
 ir – 

 iqp

)

,

where

m = –
√

i –
√

iαβ – iω, m = 
√

i +
√

iαβ – iω,

m = iβ – 
√

iβω, m = iβ + 
√

iβω,

m =  + αβ – qpβ + 
√

βωqp +
√

αβω,

m = βqp + 
√

ωqp – αβ +
√

ωαβ – , m =
√




iβqp +
√




iα,

m =
√




iαβqp +
√




iαβ +
√




iα +
√




iβqp, ω =
√

–αβ.

Here the complex number λ is the associated spectral parameter, and � is the eigenfunc-
tion associated with λ of the system. Equations () and () can be obtained by the zero-
curvature equation Ut – Vx + [U , V ] =  of (a) and (b). It is well known that some exact
solutions of the mixed NLS equation () with α =  have been constructed via DT [–]
and the Hirota method [, ].

The main aim of this paper is to construct the DT to derive the rogue wave solutions of
mixed NLS equation () by using the generalized Darboux transformation, then analyze
the rogue wave through their figures. In the end, we investigate modulation instability
of the mixed NLS equation and point out the connection between RW and modulation
instability.

2 Darboux transformation
Based on procedure of Darboux transformation for AKNS system in [], we can con-
struct a Darboux matrix T to satisfy � [] = T� , and to present the determinant represen-
tation of the n-fold transformation.

Assume the Darboux matrix T is the form of

T = T|λ=λ =

(
a 
 d

)

λ +

(
a b

c d

)

, ()

where a, d, a, b, c, d are undetermined functions of (x, t), which will be parameter-
ized by the eigenfunction associated with λ and the seed solution (q, p) for equations ()
and ().

We consider n eigenfunctions �j as

�j =

(
φj

ϕj

)

,

where j = , , . . . , φj = φj(x, t,λj), ϕj = ϕj(x, t,λj), which is the eigenfunction of the Lax pair
equations (a)-(b) with seed solution (q, p) and spectral parameters λj. Then we can get
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the Darboux matrix through a series of calculation, and the detailed process to construct
the Darboux matrix can be found consulting [].

In fact, the DT is a special gauge transformation, we can start from a trivial solution and
get the nontrivial exact solutions by this method eventually. The basic ideas of DT is to use
the seed solutions and the Lax pair, we get the DT with the aid of the gauge transformation
in combination with the spectral problem. To be specific, the gauge transformation is

� [] = T� , ()

where the matrix T can transform the Lax pair (a)-(b) into a new one, possessing the
same form

� []
x = U []� , �

[]
t = V []� , ()

where U [] and V [] have the same form as U and V but replacing q, p with q, p. And
U [], V [] satisfy the two equations

Tx + TU = U []T, Tt + TV = V []T. ()

From equation (), we can construct a basic DT matrix, and it is possible to find the
relationship between the new potential function q and the initial potential q. Referring to
the method to get Darboux matrix T of literature [], using equation () and comparing
the coefficients of λj, we can get the expression of a, d in equation () as

q =
aq
d

–
iβb

d(–β + (αβ+
√

ω)β
+αβ

)
, p =

dp
a

+
icβ

a(–β –
√

ωβ

 )
,

a =
–i(

√
 + 

√
–αβ –

√
αβ)a

β( +
√

ω)
, d =

–i(–
√

 + 
√

–αβ +
√

αβ)a

β(– +
√

ω)
,

moreover, b, c are satisfied with

bx =
ib

β( +
√

ω)(– +
√

ω)
, bt = –

ibr
(– +

√
ω)( +

√
ω)

, ()

cx =
ic

β( +
√

ω)(– +
√

ω)
, ct =

ric

(– +
√

ω)( +
√

ω)
. ()

Solving equations () and (), we have

b = Cem , c = Cem ,

where

C = λ –
i(

√
 + ω –

√
αβ)

β( +
√

ω)
,

C = λ –
i(–

√
 + ω +

√
αβ)

β(– +
√

ω)
,
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m =
–i(–rtβ +

√
rωβt + xαβ + 

√
ωx – x)

(αβ + 
√

ω – )( + αβ)(– +
√

ω)β
,

m =
–i(rtβ +

√
rωβt – xαβ + 

√
ωx + x)

(–αβ + 
√

ω + )( + αβ)( +
√

ω)β
.

Now, we have gotten four parameters a, b, c, d, and the next work is to calculate the
remaining two variables a, d. Then from the equation � [] = T� , there must be one
λ = λ satisfying T|λ=λ� =  [], we get

(aλ + a)φ + bϕ = , cφ + (dλ + d)ϕ = ,

then a = – ϕ
φ

em , d = – φ
ϕ

em , now the Darboux matrix T and the potential functions q,
p can be obtained explicitly,

q =
ϕ


φ


e(m–m)q + i

C

(–β + (αβ+
√


√

–αβ)β
+αβ

)
,

p =
φ


ϕ


e(m–m)p – i

C

(–β +
√


√

–αββ

 )
.

Now, we assume a λ̃, and in order to get a unified λ̃, we assume

C

(–β + (αβ+
√


√

–αβ)β
+αβ

)
–

C

(–β +
√


√

–αββ

 )
= ,

and we get

α = , –
(– 

√


 – iλβ +
√

––i
√

λβ–λβ

 )

β
, –

(– 
√


 – iλβ –

√
––i

√
λβ–λβ

 )

β
.

In this section, we reduce the number of parameters and want one relatively simple T ,
without loss of generalization we can assume α = , and finally we can get

T|λ=λ =

⎛

⎝– ϕ
φ

e
(i( 

β
x– 

β t))(λ – i
√


β

) (– i
√


β

+ λ)e(i( 
β

x– 
β t))

(– i
√


β

+ λ)e(–i( 
β

x– 
β t)) – φ

ϕ
(λ – i

√


β
)e(–i( 

β
x– 

β t))

⎞

⎠ ,

and the relationships between the potential functions are as follows:

q = q
(

ϕ

φ

)

e
(i( 

β
x– 

β t)) – i
ϕ

φ

(
–

i
√


β

+ λ

)
e

(i( 
β

x– 
β t)), (a)

p = p
(

φ

ϕ

)

e
(–i( 

β
x– 

β t)) + i
φ

ϕ

(
–

i
√


β

+ λ

)
e

(–i( 
β

x– 
β t)), (b)

under the reduction conditions of q∗ = p and λ∗
 = –λ, substituting this relation into (a)-

(b), we have

q∗
 = q∗

(
φ

ϕ

)

e
(–i( 

β
x– 

β t)) + i
(

φ

ϕ

)(
–

i
√


β

+ λ

)
e

(–i( 
β

x– 
β t)) = p,
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and the corresponding new eigenfunction

�
[]
j =

⎛

⎜⎜
⎜⎜
⎝


φ

∣
∣∣∣
∣
–(λj – i

√


β
)φj ϕj

–(λ – i
√


β

)φ ϕ

∣
∣∣∣
∣
e

(i( 
β

x– 
β t))


ϕ

∣∣
∣∣∣
–(λj – i

√


β
)ϕj φj

–(λj – i
√


β

)ϕ φ

∣∣
∣∣∣
e

(–i( 
β

x– 
β t))

⎞

⎟⎟
⎟⎟
⎠

.

It is straightforward to verify that when j = , the �
[]
j = T|λ=λ�j = , this fact implies

that λ may not be used more than once when considering the iterations for the DT. But
Matveev and Salle [] have pointed out that a generalized DT does exist, we can use the
method to solve the rational solution of equation ().

In order to get the DT of more than two orders, we translate the spectral parameter
λ̃ = – i

√


β
+ λ and λ̃j = – i

√


β
+ λj. We assume

n = , T = P̃λ + P =

(
a̃λ b

c d̃λ

)

,

n = , T = P̃λ
 + P̃λ + P =

(
a 
 d

)

λ̃ +

(
 b

c 

)

λ̃ +

(
a 
 d

)

,

. . . ,

similarly Tn =
∑n

l= Pl̃λ
l , where

Pn =

(
an 
 dn

)

∈
{(

a 
 d

)}

,

Pn– =

(
 bn

cn 

)

∈
{(

 b
c 

)}

,

a, b, c, d are complex functions of (x, t). P is a constant matrix when n is even and P is
a matrix that is known. Similar to one-fold DT, we can construct the Tn and it is given in
Appendix .

Based on the n-fold Darboux transformation in [], we just consider the condition of
n being even, through the n-fold DT Tn, we get

q[n] =
	

n
	

n
q – i

	n	n

	
n

, p[n] =
	

n
	

n
p + i

	n	n

	
n

, ()

here, for n = k,

	n =

∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

λ̃n–
 ϕ λ̃n–

 φ · · · λ̃ϕ φ

λ̃n–
 ϕ λ̃n–

 φ · · · λ̃ϕ φ
...

...
...

...
...

λ̃n–
n–ϕn– λ̃n–

n–φn– · · · λ̃n–ϕn– φn–

λ̃n–
n ϕn λ̃n–

n φn · · · λ̃nϕn φn

∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

,
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	n =

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

λ̃n
 φ λ̃n–

 φ · · · λ̃ϕ φ

λ̃n
φ λ̃n–

 φ · · · λ̃ϕ φ
...

...
...

...
...

λ̃n
n–φn– λ̃n–

n–φn– · · · λ̃n–ϕn– φn–

λ̃n
nφn λ̃n–

n φn · · · λ̃nϕn φn

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

,

	n =

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣

λ̃n–
 φ λ̃n–

 ϕ · · · λ̃φ ϕ

λ̃n–
 φ λ̃n–

 ϕ · · · λ̃φ ϕ
...

...
...

...
...

λ̃n–
n–φn– λ̃n–

n–ϕn– · · · λ̃n–φn– ϕn–

λ̃n–
n φn λ̃n–

n ϕn · · · λ̃nφn ϕn

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣

,

	n =

∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣

λ̃n
 ϕ λ̃n–

 ϕ · · · λ̃φ ϕ

λ̃n
ϕ λ̃n–

 ϕ · · · λ̃φ ϕ
...

...
...

...
...

λ̃n
n–ϕn– λ̃n–

n–ϕn– · · · λ̃n–φn– ϕn–

λ̃n
nφn λ̃n–

n ϕn · · · λ̃nφn ϕn

∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣

,

under this condition of λ = –λ∗
 ,� =

( –ϕ∗


φ∗


)
, the two-fold form is

q[] =
	


	


q – i

		

	


, ()

at the same time � can also satisfy equations (a)-(b). Substituting �, � into (), we
get

	 = λ̃ϕφ – λ̃φϕ = –̃λϕϕ
∗
 + λ̃∗

φφ
∗
 ,

	 =
(
λ̃

 – λ̃

)
φφ = –

(
λ̃

 – λ̃∗


)
φϕ

∗
 ,

	 = λ̃φϕ – λ̃ϕφ = λ̃φφ
∗
 – λ̃∗

ϕϕ
∗
 ,

then equation () can be written as

q[] =
(–̃λ|ϕ| + λ̃∗

 |φ|)

(̃λ|φ| – λ̃∗
 |ϕ|)

q – i
–(̃λ

 – λ̃∗
 )(–̃λ|ϕ| + λ̃∗

 |φ|)φϕ
∗


(̃λ|φ| – λ̃∗
 |ϕ|)

. ()

Equations () and () give us the new solutions after a Darboux transformation, and we
can use the results of () and () to get two-order and three-order rogue wave solutions.
In the next section, we will consider the condition of the degeneration case of the Darboux
matrix Tk to get the exact rogue wave solutions of equation (). In the case of degenera-
tion, the q[k] can be expressed as an infinite expression which is of the form of 

 , then we
can make a Taylor expansion at λ̃ = λ̃ and get the smooth solutions of equation ().

3 Solutions of rogue wave
In order to get the rational solution, we can apply the generalized Darboux transformation.
We start with the seed solution of equation (),

q = cei(ax–(αa–a
 +c

 –ac
 β+r)t). ()
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Substituting () into the spectral equations (a)-(b), we have the corresponding solution
for the spectral problem,

�(f ) =

(
(Ce–A + CeA)e i

 (ax–(αa–a+c–βca+r)t)

–( + αβ)( Ce–A(– i
 A+M)

M
+ CeA( i

 A+M)
M

)e– i
 (ax–(αa–a+c–βca+r)t)

)

,

where

A =
A(x + it

 (
√

λ + ic
β + ia + iα + iλβ))


√

λ + ic
β + ia + iα + iλβ

,

A = 
((

λc
β + λa + λα

)
(
√

i – λβ) – 
√

iλβ – λαβ – λ + λβ

+ a
 + c

 + α + aα + c
αβ

) 

(
–a – c

β – λβ + 
√

iλ – α
)
,

M =



(

√

ωβλ + 
√

ωβc
 + 

√
ωλaβ

+ 
√

ωλαβ + 
√

iα + 
√

ia + 
√

ic
αβ

– iλωβ + 
√

iλβ + 
√

iaαβ + 
√

iλαβ + 
√

ic
β

+
√

iαβ + λ – λc
β

 – βλ + aλβ – aβλ
)
c,

M =
√




λβc
 + 

√
λβ +

i


c
λ

β + iλβ –
i


c
 aβ –

i


c
αβ

–
i


aα –
i


α –




ia
 – iλ.

Next we will simplify the result; we assume r = , a = , c = , β = , α = , while q = eit ,
and λ = 

 + i
 +

√
i

 is only one zero point of the A, f limit to , and assuming λ = 
 + ih,

now

A =

√

iλ
(

λ – λ –


λ +




)√
 +  + λ – λ + λ + λ,

A =
A(x + i(

√
λ + iλ + i)t)


√

λ + iλ + i
,

C = –
h +

√
h

 – 
√

h
 – 

, C =
h –

√
h

 – 
√

h
 – 

,

h =



+
√




+ f , h = 
√

λ + iλ + i.

We Taylor expand the vector function �(f ) at f = ,

�(f ) = �
[]
 + �

[]
 f  + �

[]
 f  + · · · + �

[N]
 f N + · · · ,

where

�
[]
 =

(
( 

 – 
 i)

√
– – ieit

( 
 + 

 i)
√

– – ie–it

)

,
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�
[]
 =

(
(– 

 + 
 i)

√
 – i(–x + t + it)eit

(– 
 – 

 i)
√

 – i(t – x –  – i + it + ix)e–it

)

.

Substituting β = , � []
 into (a)-(b), we get q = ie(–i(–x+t)) and p = –ie(i(–x+t)), while

q and p are not rogue wave solutions that we prefer, so we consider two-fold DT to get
the new solution q[].

Assume a = ∂ϕ(λ+f )
∂f |f =, b = ∂φ(λ+f )

∂f |f = by a Taylor expansion, we plug �
[]
 into equa-

tion (),

q[]
rw =

(–̃λ|a| + λ̃∗
|b|)

(̃λ|b| – λ̃∗
|a|)

q – i
–(̃λ

 – λ̃∗
 )(–̃λ|a| + λ̃∗

|b|)φϕ
∗


(̃λ|b| – λ̃∗
|a|)

, ()

then we obtain the first-order rational solution q[]
rational, which means the one-order rogue

wave solution is

q[]
rw =

GG

H eit ,

with

G = –
(
–t +  + i + x + ix – ixt + ix + it – it

)
,

G =
(
it – it –  – i – ixt + ix + ix + t + x

)
,

H =
(
t –  + i – x + ix – ixt + ix + it – it

)
.

The plot of this solution is shown in Figures  and . Figure  is the three-dimensional plot
of |q[]

rw| with r = , a = , c = , β = , α = , and Figure  is the corresponding density
plot. It is shown that the first-order rogue wave solution is localized in both space and
time.

Next we calculate the q[]
rw , through the above procedure,

q[]
rw =

(–̃λ|a[]
 | + λ̃∗

|b[]
 |)

(̃λ|b[]
 | – λ̃∗

|a[]
 |)

q[]

– i
(̃λ

 – λ̃∗
 )(–̃λ|a[]

 | + λ̃∗
|b[]

 |)b[]
 (a[]

 )∗

(̃λ|b[]
 | – λ̃∗

|a[]
 |)

, ()

Figure 1 The three-dimensional plot of the
first-order wave solution |q[1]

rw| with parameters
r = 1, a1 = 0, c1 = 1, β = 1, α = 0.
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Figure 2 The corresponding density plot of
|q[1]

rw|.

Figure 3 The three-dimensional plot of the
two-order wave solution |q[2]

rw| with parameters
r = 1, a1 = 0, c1 = 1, β = 1, α = 0.

with

b[]
 =

∣∣∣
∣∣
∣∣

∂

∂f  ((̃λ + if )φ(λ + f )) ∂

∂f  ((̃λ + if )ϕ(λ + f )) ∂

∂f  φ(λ + f )
λ̃

b λ̃a b

–(̃λ
a)∗ –(̃λb)∗ –a∗



∣∣∣
∣∣
∣∣

∣∣∣
∣∣

λ̃b a

(̃λa)∗ b∗


∣∣∣
∣∣

,

a[]
 =

∣
∣∣
∣∣
∣∣

∂

∂f  ((̃λ + if )ϕ(λ + f )) ∂

∂f  ((̃λ + if )φ(λ + f )) ∂

∂f  ϕ(λ + f )
λ̃

a λ̃b a

(̃λ
b)∗ (̃λa)∗ b∗



∣
∣∣
∣∣
∣∣

∣
∣∣
∣∣

λ̃a b

–(̃λb)∗ –a∗


∣
∣∣
∣∣

.

Substituting a[]
 , b[]

 into equation (), we get the two-order rogue wave solution

q[]
rw =

–GGG

HH


eit ,

G, G, H are given in Appendix . The plot of this solution is shown in Figures  and .
Figure  is the three-dimensional plot of |q[]

rw| with r = , a = , c = , β = , α = , and
Figure  is the corresponding density plot.
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Figure 4 The corresponding density plot of
|q[2]

rw|.

In the same way, the three-order solution can be given as

q[]
rw =

(–̃λ|a[]
 | + λ̃∗

|b[]
 |)

(̃λ|b[]
 | – λ̃∗

|a[]
 |)

q[] – i
(̃λ

 – λ̃∗
 )(–̃λ|a[]

 | + λ̃∗
|b[]

 |)b[]
 (a[]

 )∗

(̃λ|b[]
 | – λ̃∗

|a[]
 |)

. ()

Through the Darboux transformation, the eigenfunction ψ
[n]
j = Tnψj can be given. We can

give the ψ
[]
j as follows:

ψ
[]
j =

RM
	
RM
	

,

where

RM =

∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

λ̃
j φj λ̃

j ϕj λ̃
j φj λ̃jϕj φj

λ̃
 φ λ̃

ϕ λ̃
φ λ̃ϕ φ

λ̃
φ λ̃

ϕ λ̃
φ λ̃ϕ φ

λ̃
φ λ̃

ϕ λ̃
φ λ̃ϕ φ

λ̃
φ λ̃

ϕ λ̃
φ λ̃ϕ φ

∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

,

RM =

∣
∣∣
∣∣
∣∣∣
∣∣
∣∣

λ̃
j ϕj λ̃

j φj λ̃
j ϕj λ̃jφj ϕj

λ̃
 ϕ λ̃

φ λ̃
ϕ λ̃φ ϕ

λ̃
ϕ λ̃

φ λ̃
ϕ λ̃φ ϕ

λ̃
ϕ λ̃

φ λ̃
ϕ λ̃φ ϕ

λ̃
ϕ λ̃

φ λ̃
ϕ λ̃φ ϕ

∣
∣∣
∣∣
∣∣∣
∣∣
∣∣

,

and a[]
 , b[]

 are given as follows:

b[]
 =

∣∣∣
∣∣
∣∣
∣∣
∣∣∣

rm
 rm

 rm
 rm

 rm


rm
 rm

 rm
 rm

 rm


–rm∗
 –rm∗

 –rm∗
 –rm∗

 –rm∗


rm
 rm

 rm
 rm

 rm


–rm∗
 –rm∗

 –rm∗
 –rm∗

 –rm∗


∣∣∣
∣∣
∣∣
∣∣
∣∣∣

∣
∣∣∣
∣∣
∣∣
∣

rm
 rm

 rm
 rm



–rm∗
 –rm∗

 –rm∗
 –rm∗



rm
 rm

 rm
 rm



–rm∗
 –rm∗

 –rm∗
 –rm∗



∣
∣∣∣
∣∣
∣∣
∣

,
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Figure 5 The three-dimensional plot of the
two-order wave solution |q[3]

rw| with r = 1, a1 = 0,
c1 = 1, β = 1, α = 0.

Figure 6 The corresponding density plot of
|q[3]

rw|.

a[]
 =

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

rm
 rmm

 rm
 rm

 rm


rm
 rm

 rm
 rm

 rm


–rm∗
 –rm∗

 –rm∗
 –rm∗

 –rm∗


rm
 rm

 rm
 rm

 rm


–rm∗
 –rm∗

 –rm∗
 –rm∗

 –rm∗


∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

∣∣
∣∣∣
∣∣
∣∣

rm
 rm

 rm
 rm



–rm∗
 –rm∗

 –rm∗
 –rm∗



rm
 rm

 rm
 rm



–rm∗
 –rm∗

 –rm∗
 –rm∗



∣∣
∣∣∣
∣∣
∣∣

,

where λ̃ = –̃λ∗
 , λ̃ = –̃λ∗

, and the corresponding solution of the Lax pair is (–ϕ∗
 φ∗

 )T , and

rml
j =

∂ l

∂f l

((
λ̃ + if )j

φ
(
λ + if )), rml

j =
∂ l

∂f l

((
λ̃ + if )j

ϕ
(
λ + if )).

Similarly, the figures of three-order rogue wave solution can be given. Figure  is the three-
dimensional plot of |q[]

rw| with r = , a = , c = , β = , α = , and Figure  is the corre-
sponding density plot.

4 Modulation instability
In order to discuss the modulation instability [] of the mixed NLS equation (), we first
consider the steady state solution qm = aeiωt , where ω = a + r. Then putting a small per-
turbation U onto the steady state solution, we have qm = (a + U)eiωt .
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Figure 7 Gain spectra of modulation instability
for the parameter value β = 1, and for the
different power levels a = 1, a = 0.8, a = 0.5.

After the simple substitution and linearizing the equation, we have

iUt + Uxx + iβa(Ux + Ũx) + iαUx + a(U + Ū) = .

Immediately following this we set

U = μ cos(ςx + τ t) + iν sin(ςx + τ t),

where ς is the frequency and τ is the wave number of the perturbation. Substituting the
assumed solution into the linearized equation, we have a split of real and imaginary parts,
namely

μ
(
–ς + a) + ν

(
–τ – aβς – ας

)
= ,

μ
(
–τ – aβς – ας

)
+ ν

(
–ς) = .

According to the initial condition we have the following determinant:

(
τ + aβς

)(
τ + aβς + ας

)
– ς(ς – a) = .

Solving the determinant we obtain the following dispersion relation:

τ = –a – α ± ς
√

ς + aβ – a.

Depending on the relation above, we know that if ς + aβ – a >  the frequency ς

is real at any value of the wave number τ , whereas ς becomes complex. That is to say, in
the case of ς + aβ – a <  the instability region of the disturbance will grow with time
exponentially. Then we consider the gain spectrum of MI. According to the above result,
we have

g(ς ) =  Im(τ ) = 
√(

ς + aβ – a
)
ς,

where g(ς ) represents the gain of the frequency ς . Figure  shows the gain at three different
power levels.

5 Conclusions
In conclusion, we have constructed the one-, two-, and three-order rogue wave solutions
for the general mixed NLS equation () by using the generalized DT. The n-fold DT is
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given by a gauge transformation, then a generalized DT is proposed through the Taylor
expansion and a limit procedure. Moreover, some exact rogue wave solutions are derived
explicitly. What is more, it is found from the plots of the rogue waves that the rogue waves
appear suddenly and disappear quickly in the space-time framework. Finally, we give ev-
idence for the connection between the occurrence of the rogue wave solution and the
modulation instability.

Appendix 1
In this paper, we use the Tn when n is even []; Tn|n=k (k = , , , . . .) can be expressed
as follows:

Tn =

(
T
�

T
�

T
�

T
�

)

,

where

T =

∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

λ̃n  · · · λ̃  
λ̃n

 φ λ̃n–
 ϕ · · · λ̃

φ λ̃ϕ φ

λ̃n
φ λ̃n–

 ϕ · · · λ̃
φ λ̃ϕ φ

...
...

...
...

...
...

λ̃n
n–φn– λ̃n–

n–ϕn– · · · λ̃
n–φn– λ̃n–ϕn– φn–

λ̃n
nφn λ̃n–

n ϕn · · · λ̃
nφn λ̃nϕn φn

∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣

,

T =

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣

 λ̃n– · · ·  λ̃ 
λ̃n

 φ λ̃n–
 ϕ · · · λ̃

φ λ̃ϕ φ

λ̃n
φ λ̃n–

 ϕ · · · λ̃
φ λ̃ϕ φ

...
...

...
...

...
...

λ̃n
n–φn– λ̃n–

n–ϕn– · · · λ̃
n–φn– λ̃n–ϕn– φn–

λ̃n
nφn λ̃n–

n ϕn · · · λ̃
nφn λ̃nϕn φn

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣∣
∣∣

,

T =

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

 λ̃n– · · ·  λ̃ 
λ̃n

 ϕ λ̃n–
 φ · · · λ̃

ϕ λ̃φ ϕ

λ̃n
ϕ λ̃n–

 φ · · · λ̃
ϕ λ̃φ ϕ

...
...

...
...

...
...

λ̃n
n–ϕn– λ̃n–

n–φn– · · · λ̃
n–ϕn– λ̃n–φn– ϕn–

λ̃n
nϕn λ̃n–

n φn · · · λ̃
nϕn λ̃nφn ϕn

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

,

T =

∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣

λ̃n  · · · λ̃  
λ̃n

 ϕ λ̃n–
 φ · · · λ̃

ϕ λ̃φ ϕ

λ̃n
ϕ λ̃n–

 φ · · · λ̃
ϕ λ̃φ ϕ

...
...

...
...

...
...

λ̃n
n–ϕn– λ̃n–

n–φn– · · · λ̃
n–ϕn– λ̃n–φn– ϕn–

λ̃n
nϕn λ̃n–

n φn · · · λ̃
nϕn λ̃nφn ϕn

∣
∣∣
∣∣
∣∣
∣∣∣
∣∣
∣∣
∣

,
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� =

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

λ̃n–
 φ λ̃n–

 ϕ · · · λ̃φ ϕ

λ̃n–
 φ λ̃n–

 ϕ · · · λ̃φ ϕ
...

...
...

...
...

λ̃n–
n–φn– λ̃n–

n–ϕn– · · · λ̃n–φn– ϕn–

λ̃n–
n φn λ̃n–

n ϕn · · · λ̃nφn ϕn

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

,

� =

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

λ̃n–
 ϕ λ̃n–

 φ · · · λ̃ϕ φ

λ̃n–
 ϕ λ̃n–

 φ · · · λ̃ϕ φ
...

...
...

...
...

λ̃n–
n–ϕ λ̃n–

n–φn– · · · λ̃n–ϕ φn–

λ̃n–
n ϕ λ̃n–

n φn · · · λ̃nϕ φn

∣∣
∣∣
∣∣∣
∣∣
∣∣
∣∣

.

Appendix 2
The rational solution of a two-order rogue wave is

G = –t + x – it – tx + x + t + ,tx – tx + x

– t + x + ,t – ,tx + ,tx – tx + x – ,t

– xt + ,tx – ,tx + ,tx + xt + ,tx – ,tx

+ ,tx – ,tx + ,tx – xt + xt – ,tx – xt

+ x + ,t – t + x + ix + ix + it + ix – ,it + ix

+ ix + ,it + ix – ,it + ix + ,it – ,it + ix + i

+  + it – itx + ,itx – itx + ,itx – ,itx – itx

– ,itx + ,itx + itx – ,ixt – itx – ixt + ixt

– ,itx + ,itx – ,itx – it + ixt + ,itx

– ,itx + ,itx + ,ixt – ixt + ixt

– ixt – ixt – ,itx + ,itx – ,itx,

G = –t – ,itx – ,itx + i + ,itx – xt + x + ,t

– ,ixt + ,tx, +x – ,t + x + ,t – ,tx

+ ,tx – ,tx + x – ,t – xt + ,tx – ,tx

+ ,tx – ,xt – ,tx + ,tx + ,tx – ,tx

+ xt – ,xt – ,tx – ,tx + ,xt + ,xt

– ,tx + ,tx – xt + xt – ,tx + xt + ,t

– ,t – x – x + x + ,t + ,t – x – ,t – x

– ixt + ,itx – ,itx – ix + itx + ixt + ,itx

– ,tx + ,tx – ,tx + ,tx – ,tx + ,tx

– tx + tx + ,tx + ,tx + ixt + ,itx

– ,tx + ,tx – ,tx + ,tx –  – tx – tx
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+ tx + ,itx – ,itx + ,ixt – ,itx – it – it

+ ,itx – ,itx + ,itx – ixt + ,ixt – ,ixt

– ixt + ixt + ,itx – ,itx + ,itx – ,itx

+ ,itx – ,itx + ,itx + ,itx – ,itx – itx

+ itx – ,itx + ,it – ix – ix – ,it – ,tx

– ix + ,it – ix – ,it + ,it + ix

+ ix – ,it + ,it + ix + ,tx,

H = t – x – it + xt – x – t – ,tx + tx – x + t

– x – ,t + ,xt –  – ,xt + xt – x + ,t

+ xt – ,xt + ,xt – ,xt – xt – ,xt + ,xt

– ,xt + xt + ,xt – ,xt + xt – xt + ,xt

+ xt – x – ,t + t + i – x + ix + ix + it + ix

– ,it + ix + ix + ,it + ix – ,it + ix + ,ix

– ,it + ix + it – ixt + ,ixt – ixt + ,ixt

– ,ixt – ixt – ,ixt + ,ixt + ixt – ixt

– ixt + ixt – ,itx + ,ixt – ,itx – ,ixt

– ixt + ixt + ,ixt – ,ixt + ,ixt + ,ixt

– ixt + ixt – ixt – ,itx + ,ixt – ,ixt.
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