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1 Introduction
In this paper, we consider the following system of nonlinear fractional differential equa-

tions with different fractional derivatives:

—DFP1 (g, (~D*1y))(t) = M (u1(£), D" 1y (£), DV up (1)), 0 <t<1,
—DP2(g,, (~D*2u,))(t) = fo(t, u(t)),

D%u;(0) = D%u;(1) = 0,

D"u;(0) = 0, DYy (1) = E1°1(DYiu; (),  i=1,2,

11)

where D%, DFPi, DVi (i =1,2) are the standard Riemannn-Liouville fractional derivatives,
It is the Riemannn-Liouville fractional integral, ¢,, is the p-Laplacian operator defined
by ¢,,(s) = Is[Pis,p; > 2 (i = 1,2), and the nonlinearity f; (x, y, z) may be singularat x = 0,y =
0,z=0.

Throughout this paper, we always suppose that:

(SO) 0< Vi< 1 < <ﬂi < 2!“1 -N >17a2 —V2> 1,(1)[ > O!Ei > 0»77;' € [0!1] (l: 1!2)
(s1) D= yi+w)>&n "™ (i=1,2).
(s2) Let g; satisfies the relation ql + p%‘ =1, where p; is given by (1.1), then 1 < ¢g; < 2.
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Fractional calculus provides an excellent tool for describing the hereditary properties
of various materials and processes. Concerning the development of theory, method and
application of fractional calculus, we refer the reader to the recent papers [1-8].

On the other hand, the study of coupled systems involving fractional differential equa-
tions is also important as such systems occur in various problems of applied nature. So
considerable work has been done to study the existence result for them nowadays [9-12].
The authors got the existence solutions by the method of the fixed point theorem, the
coincidence degree theorem, or Schauder’s fixed point theorem.

The theory of upper and lower solutions is well known to be an effective method to deal
with the existence of solutions for the boundary value problems of the fractional differen-
tial equations. In [13] the authors used the method of upper and lower solutions and in-
vestigated the existence of solutions for initial value problems. By the same method some
people got the solutions of boundary value problems for fractional differential equations,
such as [14, 15]. To the best of our knowledge, only few papers considered the existence of
solutions by using the method of upper and lower solutions for boundary value problems
with fractional coupled systems.

The aim of this paper is to deal with the eigenvalue problem for a coupled system of
fractional differential equations involving differential-integral conditions. The novelty of
this paper is that the nonlinear terms f, f, in the system (1.1) involve different unknown
functions u; (), u,(t) and their Riemann-Liouville fractional derivatives with different or-
ders, and fi («, 7, z) may be singular at x = 0,y = 0,z = 0. We establish an eigenvalue interval
for the existence of positive solutions by Schauder’s fixed point theorem and the upper
and lower solutions method.

2 Preliminaries and lemmas
Lemma 2.1 ([16]) Let h; € L(0,1), then the problem

—DPiv(t) = hy(t), O0<t<l1,
vi(0) = v,(1) = 0,

has the unique solution v;(t) = fol G(B;, t,8)h;(s)ds (i =1,2), where

e L= 914, =
G(ﬂlrt’ S) { %ﬁl){[t(l _ S)]ﬁi—l _ (t _ s)ﬂi—l}’ s< t.

Lemma 2.2 ((17]) Let h; € L'(0,1), then the fractional integral boundary value problem

DYy (£) = hi(t), O<t<l,
v(0) =0, DU ly(1) = g1 vi(ny),  i=1,2,

has a unique solution v;(t) = fol H;(t,s)h;(s) ds, where

aj=yjtw;-1

[T (eri=yi+0i) =i (mi=) Vi~ ei Vi~ [ (@i=yi+0r)-Em; J(e=s)i7vi7t

A » S=ts=n;
[ (o =y;+eo)—E; (n=s) Vit @i L pi=vi~1 :
i—Vitwi t'hA. ) tSSSni,
Hi(t,s) = iy o—y;-1 A e YR T |
D(aj—yi+o)) [t —(t=5) "7V |+, (t—s)%i7Yi
Y ) ni=s=t
i )%Vl
Lo it s> 5> 1

i

and A; = T(a; — y)[T(; — yi + @) — &m0,

1
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Lemma 2.3 ([17,18]) The functions G(B;,t,s) and H;(t,s) have the following properties:
(1) G(Bi,t,s) >0, Hi(t,s) >0, fort,s € (0,1).
(2) Firl(1 - £)s(1 — s)Pi

tPi (1 - £)s(1 — s)Pi™
< Glpit,5) <2
r'(By)

t,s) < F(ﬁj Pl 1-¢), fort,se[0,1].

3)
et 1= (1 -9 < Hi(t,s) <dit®™" ™, fort,s €[0,1],

where d; = 2-[T (e = i + ;) + Em "], & = T (o - ).

Proof From [18], we can see that G(8;,£,5) > 0 and (2) hold.
In the following, we will prove (3).
Fors <t,s <m;

1 1T iy
Hi(t,s) = X{[F(Oli—%' + ;) = &y — s) Vet gt

i

— [F(o{i -Vi+ wz’) _ %—in?i*}/ﬁwrl](t _ S)%"Vi—l}

v

[[(ei = i + @) = 7 [ — (£ - 5)77i7]

A%
gywm~m~

[F( - Vi+ a)l) gl A=Yt 0= 1] [tai_yi_l _ (t _ ts)ai_yi_l]

[Pl -y + @) = Em 7 e 1 - (1 - s)777]

— yy)eivitt [1 -(1- S)vti—yi—l]

eitoli—yi—l [1 -(1- S)ai—)’i—l],

1 o
Hi(t’s) = X[F(az Vit a)i) — Ei(ni _ S)O‘t Yitw; 1]ta, y;i—-1
L
- [F(Oli —yi+w)—Em; T ](t —g)ivitl
1
=< Z[F(ai — Y+ )ty g plivire 1( 3 S)Otr)/rl]
L
1 ai—yi+oi-17 a;—y;—1
= K[F(ai—%’+wi)+$mi’ i ]t i~Vi
L
= dl.t“i—yi—l

Fort <s<mn;

1 o ror T i
Hi(t,s) = X[F(Olz Vi+ @) = & — s) e gt
L
1 o wi— PRy
_[F(az Yit+w) =&m;' e ]tal vt
A;
1 i . e
X[F(al v+ ) =Em T g 1 (- )]

= P(ai =y 1 - (1= 5771
— eit“"’y"’l [1 -(1- S)aryrl],
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1‘ i o
Hi(t, S) = A [F(al - ]/i + (,()l') — Ei(ni — S)Ol, Yitw; 1]ta’ ;-1
i
1 i—Vi i— .
< A, [F(Oli - Vi+ wi)toti*%'fl + gir)?l Yitw; lt‘)‘:*yfl]
i
! ai—Yitoi=17 ;a;-y;-1
= A.[F(ai—y,'+a)l-)+gmi Jein
i
= dit“f_yi‘l'

Forn; <s <t,

1 PN L o
Hi(t,s) = ~ {F(O{i —-vYi+ a)i)[tai—)/i—l —(t- S)a,'—yi—l] . gi’??l Yitw; l(t _S)UL—VI—I}
L
1 ai—Yi+w;i=17 ja;—y;-1
= K{[F(ai—yﬁwi)—&m I
l
[T = yi+ @) = &7 (2 = 9777
1 )i o e
= Z[F(ai -y +w;) - Siﬂ?' Vit 1][ta, viel _ (g — g)eivi 1]
L
> (o — yp)t“i77! [1 -(1- S)%‘—Vi—l]
= eitotryrl [1 _ (1 _ S)O‘i*l’ifl]’
1 o B
Hi(t,s) = A {F(ai Vit wi)[tai_yi_l —(t- s)“i‘)’i—l] + Eiﬂ?l Yito; l(t _S)al—y,—l}
L
1 PRy L
=< Z[F(al -y + a)l,)tﬂtifyifl + Sin;’lz Yitw; l(t _ S)aif)/ifl]
L
1 o
< —[T(ai—yi+ ;) + &Em 1],5%71/,-—1
A,
= dl.t“t—)’i—l'

Fors>t,s>n;,

1
Hi(t)s) = ZF(C{Z -yt a)l.)tai_Vi—l
i
1 b @i— o o
= Z[F(Oli— Vi +w;) _gin?‘l Yitw; l]taz Vi 1[1_ (1 —s)%Vi 1]
i

= eitozi—)’i—l [1 _ (1 _ S)ai—yi—l]’

1
Hi(t’S) = F(Oll' - Y+ wl.)t"‘i_yi—l

A
1 aj—yi—1 oj—yi+w;—1 a;—y;i-1
SZ[F(%—Vﬁw,’)tl 1 &, (Vi ]
i
1 ai—yi+wi—-1 a—y;-1
= E[F(ai_yi"'wi)"'fim Jei
= dit"‘i"’i‘l,

From the above, the proof of (3) is completed. Clearly H;(t,s) > 0 for (¢,s) € (0,1), since (3)
holds. -
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Lemma 2.4 ([17]) Let iy € L}(0,1), if (s0)-(s2) hold, then the fractional boundary value
problem

~DP1 (¢, (=D*171y)))(2) = Iy (2),
D*17"y(0) = D1 "y (1) = 0, (2.1)
11(0) =0, Dty (1) = 517 (vi(m))s

has the unique positive solution

1 1 q1-1
w0= [ s ( [ G@som@ar) as 22)
0 0
Now let us consider the following modified problem of the BVP (1.1):

—DP1 (¢, (=D*17))(2) = AL (I w1 (2), v (2), va(2)),
—DP2(g,, (~D*2772v,))(£) = fo(t, "1 (8)),
Dei77iy,(0) = D*iy(1) = 0,

v;(0) =0, DAYty (1) = E191 (vi(my)),  i=1,2.

(2.3)

Lemma 2.5 Let u;(t) = I"ivi(t), vi(t) € C[0,1] (i =1,2). Then (1.1) can be transformed into
(2.3). Moveover, if (v1(2), v2(2)) € C[0,1] x C[0,1] is a positive solution of the problem (2.3),
then (I"v1(2), 172v,(t)) is a positive solution of the problem (1.1).

Proof Let u,(t) = Iivi(t), vi(t) € C[0,1], by the definition of the Riemannn-Liouville frac-
tional derivatives and integrals, we obtain

D%uy(t) = D% iyy(t), D u(t) = D7V yi(t), D*luy(t) = DUV yi(e). (2.4)

Thus by applying (2.4), the BVP (1.1) reduces to the modified boundary value problem
(2.3).

Consequently, if (v1(¢), v2(¢)) € C[0,1] x C[0, 1] is a positive solution of the problem (2.3),
then (I"vy(2), I"?v,(¢)) is a positive solution of the problem (1.1).

It is well know that (v1,v;) € C[0,1] x C[0,1] is a solution of system (2.3), if and only
if (v1,v2) € C[0,1]x € C[0,1] is a solution of the following nonlinear integral equation

system:

vi(e) = 2070 [0 Hi (& 9)(fy G(Br, s, AT (1), (1), v () dr)B 7 ds,
vy (t) = fol Hz(t,s)(fo1 G(B2r s, T)fo (T, 1 (7)) dT) 27 ds.

Now define an operator

q2-1

1 1
(Avl)(t)zfO Hz(t,s)</0 G(,Bz,s,t)fg(r,l”lvl(r))dr> ds.

Then the integral system (2.5) is equivalent to the following nonlinear integral-differential
equation:

—DP1 (¢, (=D*17y)))(2) = AT (2), v (2), Ani (2)),
DA=71y,(0) = DUy, (1) = 0, (2.6)
v1(0) =0, D1ty (1) = £1°0 (v (m)),
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i.e. the operator equation

1 1 q1-1
n(f) = 20! / Hl(t,s)( / G(B1, 5, A (1" (2), (D), (An)(0)) dr) ds. O
0 0

Definition 2.1 A continuous function W(¢) is called a lower solution of the problem (2.6)
if it is satisfies

—DPi (g, (=D W))(2) < MAUW(2), W(2), AW(2)),
D=1y (0) > 0, D1 My(1) >0,
v(0) =0, DA (1) > £ (W (m)),

where

1 1 g2-1
(A\D)(t):/ Hz(t,s)</ G(ﬂz,s,r)ﬁ(r,l”llll(r))dr> ds.
0 0

Definition 2.2 A continuous function ®(t) is called an upper solution of the problem
(2.6) if it is satisfies

—DF1 (g, (-D 1 ®))(£) = MU D(t), D(2), AD(2)),
DU NG0) <0, DI ND(1) <0,
®(0) <0, DT (1) < £ 174D (m)),
where
1 1 q2-1
(AD)(¢) = / H,(t,5) (/ G(B,s,T) 2(1,1”¢(t)) dr) ds.
0 0
Lemma 2.6 (Maximal principle) Ifv; € C([0,1], R) satisfies
1(0) =0, D77y (1) = &1 (vi(m))
and —D*' "y, (t) > 0 for any t € [0,1], then v,(t) > 0,t € [0,1]

Proof By Lemma 2.3, the conclusion is obvious, we omit the proof. O

3 Main results
To establish the existence of a solution to the boundary value problem (1.1), we need to
make the following assumptions.

(Hy) fi(x,9,2) : (0,+00)> — [0,+00] is continuous and non-increasing in x,y,z > 0, re-
spectively, and for all r € (0,1), there exists a constant ¢ > 0, such that, for any
(x,9,2) € (0, +00)3, we have

filrx,ry, rz) <r*filx, 9, 2).

(H2) fa(t, %) : [0,1] x [0,+00) — [0, +00] is continuous and non-decreasing in x > 0, and

there exists a constant 0 < o < ﬁ, such that, forany » € (0,1), (¢,%) € [0,1] x [0, +00),
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we have
Lot rx) = 7 fo(t, x).

Remark Forr>1, and x,y,z > 0, we have

filra, vy, r2) > r*fi(x, 9, 2), (3.1)

Lot rx) <17 f(8%). (3.2)

Theorem 3.1 Suppose (H;) and (Hy) hold, and the following condition is satisfied:

(Hs) A1(1,1,1) #0, and

1
0< f ﬁ F(al - yl) tal_l, tal—yl—l,btaz—yz—l dt < +00,
0 (o)

where

1
b=e, / [1 -1- S)az—yz—l]s(ﬂz—l)(qz—l)(l _ S)qz—l ds
0

L (T 1) )‘”‘1
X(F(ﬁz)/o’(l ") fz(“ ray . )Y)

er =Ty — o).

Then there exists a constant 1* > 0 such that for any L € (A*,+00), the BVP (1.1) has at
least one positive solution (u1(¢), uy(t)), and, moreover, there exist two constants 0 < <1

and L > 1 such that

lr(al - Vl)tal_l <) < LF(Oll - Vl)tal_l

') I'(a1)

’

pl°@-1 oy - VZ)tozz—l <uy(t) < L”(qz‘l)ar(az -¥2) faa-1
F(“Z) F(O{z)

’

where

B Br—-1 (! Dl =91) 40 @l
“ _d2<r(ﬁ2) 0 fz(f, I (er) ‘ )dt> '

1
=,

ap—y2+wp—1

ds [F(Olz — Y2+ wa) + &1y ]’

az—yzﬂuz—l]

Ay =T (a2 = y2)[[ (2 — y2 + @) — &215

Proof Let E = C[0,1], and define a subset P of E as follows: P = {v,(¢) € E : there exists a
constant 0 < [ < 1such that 217171 < yy(¢) < [11717L ¢ € [0,1]}. Clearly, P is a non-

empty set, since 17171 € P, Also

t
M-t o 1 / (t—synlsman-lygg = 41"(0{1 -n) et
I'(n) Jo (o)
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Now define the operator T} in E

q1-1

1 1
(T =20 [ #ie ( [ 665 (@, An (o) dr) ds, (33)
0 0
where
1 1 q2-1
Avq(t) = / H,(t,s) (/ G(,Bz,s,t)fz(f,l”lvl(r)) dt) ds.
0 0
We assert that T is well defined and T, (P) C P. In fact, for any v;(¢) € P, there exists

a positive number 0 < /,; <1 such that [, 71 < v (¢) < [['t*r71 ¢ € [0,1]. It follows
from Lemma 2.3 and (H,) that

1 1 q2-1
AVl(t)=/ Hz(ﬁS)(/ G(ﬂz,s,r)z(r,P’lvl(r))dr) ds,
0 0
1
/G(ﬁz,s,t)fz(r,ﬂlvl(r))dr
0
! - F(al )/1) - -1
5/ G(ﬂ2r5;7)2<f,l ﬁ )dt

o B2 — ,32 1 Dl —91) 40
<l " F,B) (l—s)fz( o) —7 )dt

_(,,32 o= 1)
_”Fﬁ) f'"( R

and
1
/ G(B2 5, T)fa (.11 (7)) d
0

1
Z/ G(ﬁz,s,r)f2<r’lﬁ1‘(o¢1 Y1) Lo- 1) Jr
0

(o)
o [ I'(o1-n) o 1)
> lv1/(; G(IBZ!Srr) 2(7:7 F( 1) dt
. P (1-s) (! fr1 Tl =91) o0
zlvlTle) A T(l-1) fZ(T’Wf )df-
Then,
Avi(t) / H,(t,5) ( f2< 4)/1) “ 1) dt)qz_l ds
" F(ﬁz) I (er)
ag—ya-17-0(q2-1) ﬂZ yl) T~ -1 o
< dyter 2ol (F(,Bz) fz( F(al) )dT>
_ al;la(qz—l)taz—yz—l, (3.4)
where

B2 — I'(a1—n) al—l) >q2_1
‘d(r(m fz( ray © )&
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and
! s -s) [t (e - ) w
Avy(t) > Ho(t,s 137/ (1 -17)f21 <r,7t"11> dr) ds
@ /0 o )( ey b TP T
1
zeztaz—yz—llgl(qz—l)/ S(ﬁz—l)(qz—l)(l_S)qz—l[l_(I_S)az—yz—l] ds
0
Tl C(a1 — 1) @l
_ 7\B-1 v A a1
- (/0 gy Y fz(“ Fa) )d’)
= plola2-D 2-y-1 (3.5)
V1 ’ .
where

1
b—ezf [1 (1- )azfyzfl] (B2-1)(q2-1) (1- )qulds

e Tl —n) - 1)) >q2—1
( ,32)/ 2 (’ (o) ar ’

Since 0 < o < = 1, and by Lemma 2.3 and (H;), (Hs), we also have

q1-1

1 1
(T)\Vl)(t) = )\ql_I/ Hl(t’s)</ G(IBhS: T)ﬁ(lylvl(r),vl(f)rAvl(r)) dT) dS
0 0

1 1
S )“ql_l/ Hl(txs) </ G(ﬁl:S; T)
0 0

r q1-1
N ) P

1
S)\ql_lfo Hl(trs)</0 G(,Bl,S,‘L')

Car-71) o oy a-t
xﬁ(wlll 17t pl, v dr ds

a-ycan [ PA-L
<ol Hi(t,s) Tﬂ)s 1711 -5)
0 0 1

r _ q1-1
xf1<7(?l(al))/l)T“11,r“1”11,191:"’21’21) dr) ds

1
< A9 11 (@1-1) g pa-n- 1(/ sBD@-D(q _ gyn-1 ds>
0

-1
. (,31—1 1f1(I‘( Vl)ral L pen- bfaz—VZ‘l) dr)ql

'(B1) I'(a1)
< 0 11 (q1-1)
'Bl_ F( yl) a;-1 _oj—-y1-1 [ 1) )@1—1 a1—-y1-1
X dy (F(,Bl) ﬁ(iF(al) 7T ,bt dr L

< +00. (3.6)
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On the other hand, as 0 <o < =L

- from Lemma 2.3 and (3.1), we have

1 1 q1-1
(T =20 H1<t,s>( / G(ﬁl,s,r)ﬁ(mvmvl<r>,Avl(r))dr) s

1 1
> kql_l/ Hi(t,s) </ G(B1,s,T)
0 0

rlr(al—yl) R l—a(qul) ®-rn-1) g ql—ld
><f1 Vlwf ,Vlr ,aVI T T S

1 1
Z Aql_l/ Hl(t)s)</ G(IBhS; T)
0 0
0= %) 0t el el ot
Xﬁ<lV11WT 1 l,lvllf 1=11 l,tllvllf 2-72-1 dt ds

1 Bi-1(1 _ 1
> le—llil(ql—l) / Hi(t,s) (# T(1- t)ﬂl—l
0 1 0

]
I (on)

1
> )\qulil(qu)eltarn*l / [1 -1- S)aryrl]s(ﬁrl)(qu)(1 _ S)qu ds
0

1 ' I'(e1 - 1) ai-1
x t(1-7)i! (—r"“l, t“”’ll,at“ﬂ@l) d‘C)
(F(ﬂl) /o N Fa
176(q1-1) 1 1 ! Bi-1
= kan-l @ geon- ( f (1)
' LB Jo

(o — q1-1
xﬁ(i(lofl(al)yl) T"‘l"l,r“l_’”‘_l,ut"’z‘”‘l> dr) ) (3.7)

where

1
k= / [1 -(1- S)arrrl]s(ﬂrl)(qu)(1 _ S)qu ds.
0

Choose

~ |1 el — Br—1 [ (Tla-n) ,
I, = —, {ra-ly elq1-1) g / a-l
1 mm{z{ A ey M TR T

q1-1y-1
.Ealmljbrazyzl>d.[) } ,

1 1 I - y1)
k)\ql—lls(fh—])< /rl— p1-1 ( Tal—l’
ey J T @)

q1-1
-l ar“2‘72‘1> d‘L’) } (3.8)

Then it follows from (3.4)-(3.8) that

~ ~_1
LM < Ton(e) <1, e
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This implies that 7; is well defined and 75 (P) C P. Furthermore, comparing (3.3) and (2.2),
the right hand side of (3.3) is exactly the same as the right hand of (2.2), if /11(¢) in (2.1)
is taken as Afj(I"v;(t), v1(2), Av1(£)). Hence as the left hand side of (2.2), i.e. v(¢) satisfies
equation (2.1) according to Lemma 2.4, the left hand side of (3.3), i.e. T, v1(t) must also
satisfy equation (2.1) with /;(¢) replace by Af; (1" v1(£), v1(¢), Av1(2)), namely

=DP\(g,, (=D (Tyw1))(8) = M1 (8), vi(2), Avi (2)),

D ="(Tv1)(0) = D7 (T;v)(1) = 0, (3.9)

(T)v)(0) =0, DN (T ) (1) = 6N (Tovn) (),

where

1 1 q2-1
(An)(2) = / Hy(t,s) </ G(B2 s, T)fo (T, 11 (7)) dr) ds.
0 0

Next, we shall find the upper and lower solutions of (1.1). First of all, let

1 1 _ q2-1
e(t) =/ Hi(t,s) </ G(,Bbs,‘f)fl(Mfal_l,‘L'al_”_l,A‘L'al_”_l) d‘r) ’ ds,
0 0 I'(a1)

where

1 1 2-1

Similar to (3.4) and (3.5), the following inequalities are also valid:
Araan-l > brr2r2-1
and
Araan-l < at2 21

By Lemma 2.3, (H;), and (3.7), we also have

1 1 21
e(t) > / Hl(t,s)( / G(ﬂl,s,r)ﬁ(wrml,falnl,maml) df>q ds
0 0 ai)

e 1 ! (Tl =n) , _
a;-y1-1 _ \pi-1 oa1-1
= <r(ﬁl>/o’(1 R ﬁ( Ca) ©

q1-1
T“l—Vl—]’aTWZ—VZ—1> d.[) ,

and consequently there exists a constant A; > 1 such that

A Te(t) = (1 vee [0,1]. (3.10)
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On the other hand by (H;) and (H;), we know that A is increasing and T is decreasing,
and thus for A > A1, from (3.6) we have

1 1 q1-1
/Hl(t,s)</ G(ﬂl,s,r)ﬁ(l”kql_le(t),)qu_le(r),A)qu_le(r))dr) ds
q1-1
/ Hi(t, s)< / G(Br,s, O)fi (1AL e(2), A e(x), A Aqlle(t))d1> ds

q1-1
/ Hi(e, s)< / G(uys, D) (I T, o ggmn )m) ds

q1-1
5/ Hl(t,s)(/ G(,Bl,s,r)fl< @ l)yl)r“l‘l,r"”"’l‘l,br"‘z‘n‘l> dr) ds

B Tl =%) o1 o panyaet ot
—d(nm) ﬁ( fa) 0 )d’) s

< +00. (3.11)

Applying (3.2)and 0 <o < — q 1, forany £ € [0,1], we have

1 1 421
AQ)"ele) = f Hz(t,s)( / G(ﬂz,s,r)fz(r,(A*)‘“‘lme(r))df> ds
0 0
1 1 o1
E(}\’*)U(ql—l)(qZ—l)/\ Hz(t,s)(/ G(ﬂZ’S’T)ﬁ(T’IVIe(t))dT)q s
0 0
1 1 2-1
< (A*)(ql_l)/ Hz(t,s)(/ G(ﬁz,s,t)ﬁ(r,l’“e(t))dt)q ds
0 0

= (k*)(ql_l)Ae(t). (3.12)
Let

C1 = max e(t), C, = max Ae(t), C = max{2, Cy, C,},

0<t<1 0<t<1

then we have

G

IMe(t) < <G <C, Ae(t) < C, <C, et)<C <C. (3.13)

Now, take

N {k [ Ct }(ql e e(ql—n}
> .
LA L DK fy T - 1A delat

Then by (3.12), (3.13), and (H;), we have

()\*)m—l(fl(lyl (A*)ql_le(t), (k*)ql_le(r),A(A*)ql_le(t)))ql_l
(A*)qu(fl(()»*)qulme(r), (A*)que(t), ()»*)quAe(t)))qu
() ) (e, e, )

v

v
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(A*)(m—l)[l—s(qu)] (fl(C; C, C))ql—l

()L*)(QI -1[1-¢(q1-1)] C—Effh—l (1’ 1’ 1) (314)

v

v

Consequently, (3.7) and (3.14) yield
[t ! 1
()" / Hl(t,s)( / G(BuLs A (M) el2),
0 0
q1-1
(A*)ql_le(r),A(A*)ql_le(t)dt)) ds
it 1 ! ! ot
= () Ve e, 1,) / Hl(t,s)( / G(ﬂl,s,ﬂdr) ds
0 0

> ()@ coepnl(q g p)ggen-t [%ﬁl) /0 Cr1- dr]qll
>l (3.15)
Let
o (1) = (1) e(t),
v =y [ 1H1(t,s)< / (B A () (o),
(1) e(x), A(A) M e(r)) dr)qll ds,
then
D(t) = Tpx (e, W(t) = Tyr (D(2)). (3.16)

It follows from the monotonicity of A, fi, and (3.10), (3.15), that for any ¢ € [0,1]

1 1 _
(1) = (7)1 /0 Hl(t,s)< fo G(ﬂl,s,wﬁ(”li‘tim)”)farl,

q1-1
r"‘l‘”‘l,Ar"‘l‘”‘l) dt) ds

> Me(t) > 1N,

o (! 1 . (3.17)
v =) [Cinies( [ Gs (o) et
0 0
1-1
()»*)ql_le(T),A()»*)ql_le(t))dr)q ds
>
Moveover, by (3.9) and (3.16), we know
DUNP0) = DU B(1) =0, B0)=0,  DIND() = &I (),
(3.18)

DYMW(0) =DM MW(1) =0,  W(0)=0,  DUTNTIW(1) = EIW(x,).
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Proceeding as in (3.6)-(3.8), we get that ®(¢), ¥(¢) € P. By (3.16) and (3.17), we have
<) = (T d)E), < @), Veelo1], (3.19)
which implies

W(t) = (To+D)(¢
1

)
1 1
— )\* qan- H, : ( G .S, ]Vl )\* q1-1 )
(*") /0 1('55)/0 (Bus DA (M) e(r)

1-1
()»*)qlile(r),A()»*)que(r)) dr)q ds

1 1 Q-1
< ()\*)qu/ Hl(t,s)(/ G(IBLS,‘E)ﬁ(]Vl-EarVI—l,_L_oq—}/l—l’Atoq—}/l—l) dr) ds
0 0

= o). (3.20)
Thus, by (3.9), (3.16), (3.17), and (3.20)

D (i (=D 1)) (0) + 25 (I W (0), W (D), AW (1)
= D (g, (~D 7 (T3 @)) ) () + A AW (2), W (1), AW (2)
> —MH(IM D), D(1), AD(D)) + Mf (1M D(2), D(2), AD(2) = 0, (3.21)
DP (g, (=D ®))(8) + A*f (I D(2), D(2), AD(2))
= D (g, (-D (T (£17717))) + AA (17 @ (2), D(2), D(2))
< A (et gl ggemencly
+ A (gt gt gt < o, (3.22)

It follows from (3.18) and (3.21)-(3.22) that W(¢), ®(¢) are upper and lower solutions of
BVP (2.6), and that W(z), ®(¢) € P. Now let us define a function

[ (@), W (), AV (), vi<W(D),
F(v1) = { A" vi(8),v1(8), Avi (), W(8) < v < D(2),
AU D), D(2),AD(E), v > D(2).

Clearly, F: [0, +o0] — [0, +00] is continuous.

We now show that the fractional boundary value problem
~DP\(gp, (=D v))(8) = A*F(n1),
DUy, (0) = DUy (1) = 0, (3.23)
11(0) =0, Dy (1) = £ (m),

has a positive solution. Define the operator D, by

1 1 a-1
D;«vi () = (A*)ql_lf H(t,s) </ G(,Bl,s,t)F(Vl(r)dt)) ds.
0 0
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Then D, : C[0,1] — C[0,1], and a fixed point of the operator D;+ is a solution of
the BVP (3.23). On the other hand, from the definition of F and the fact that the
function fi(x,7,z) is non-increasing in x,y,z respectively, and A is non-decreasing, we
obtain fi(I"®(t), (¢), AP(t)) < F(ni(2)) < AU W(t), V(2),A¥(t)), provided that W(t) <
vi(t) < ®(2), F(vi(t)) = AU (E), W (E), AV (t)), provided that vi(¢) < W(¢), and F(»1(¢)) =
[N D(t), D(t), AD(2)), provided that v;(£) > ®(¢). So we have

A @), D(2),AD(1)) < F(ni(2)) < AIMW(0), ¥(2),A¥(2)), Vni(t) €E.
Furthermore, since W(¢) > t“2~"1-1 we have

A D), d(t),AD(H) < F(vi(0))
< ﬁ(l”t"l‘”‘l, t“l‘Vl‘l,At‘)‘l‘Vl‘l), Vvi(t) € E. (3.24)

It follows from (3.11), for any v,(¢) € E

q1-1

ot 1
Dx*vl(t):(k*)ql /oHl(t,s)(/O G(ﬁl,s,t)F(vl(r)dr)> ds

1 1
< (A*)q171A’ Hl(tts)<f0 G(ﬂlrsrr) l(pflrﬂll—]/l—I’

q1-1
tanl g i) dr) ds

- -1 (' (T(-n) ot
< ()" 'd ('Bl ( r“l"l,ral_”_l,bt"‘z‘”‘1> dr) ds
=" T ) A e

< 400, (3.25)

namely, the operator D, is uniformly bounded.

On the other hand, let 2 C E be bounded. As the function Hi(¢,s), G(B1,t, s) is uniformly
continuous on [0,1] x [0,1], D;=(£2) is equicontinuous. By the Arzela-Ascoli theorem, we
have D;x : E — E is completely continuous. Thus by using the Schauder fixed point theo-
rem, D;+ has at least one fixed point x such the x = D;+x.

Now we prove
W) <x(t) < ®(t), te[0,1].
Since  is a fixed point of D;x, by (3.18) and (3.23), we have

D¥ ™ x(0) = D" ™"x(1) = 0, x(0) =0, D ly(1) = g (x(nl)), (3.26)
3.2
DATG(0) = DUD1) =0, B(0)=0, DD = £ (D).

From (3.9), (3.16), (3.24), and noting that x is a fixed point of D;x, we also have

D (=D @))(t) = D™ (0, (-D" 7)) (1)

= WS (g el A1y L F(x(e) < 0.
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Let z(£) = @p, (=DM ®)(t) — ¢, (-D*17"x)(¢), then

Dﬁlz(t) = DA ((Pp1 (_DOll—Vl <I>(t))) _ph (‘Pm (—D"‘l"”x(t))) <0,
z(0) = ¢p, (—D"‘l‘ylfb(O)) o (—Dal_”lx(O)) =0,

2(1) = @y, (-D D (1)) - @, (D" %(1)) = 0.
In view of Lemmas 2.1 and 2.3, we obtain

2(t) = 0,
ie.

Om (—Do‘l"”d>(t)) - Op (—D"‘l_”x(t)) >0,
Noticing that ¢,, is monotone increasing, we have

=D N P(t) > —-DM M «(2),

—D*17(D(2) - x(t)) = 0.

It follows from Lemma 2.6 and (3.26)
D(t) —x(t) > 0.

Then we have x(£) < ®(¢) on [0, 1]. In the same way we also have x(f) > W(¢) on [0,1]. So
W(t) < x(f) < O(t). (3.27)

Consequently, F(x(t)) = fi(I"x(t), x(¢), Ax(t)), t € [0,1]. Hence x(¢) is a positive solution of
the problem (2.6). Finally, by (3.27) and ®, ¥ € P, we have

Lyt ™7 < W(t) <x(t) < D) < Igen ™,
Then by Lemmas 2.5

uy (t) = 1" x(t),
uy(t) = IMwy(t),

where vy (¢) = fol H,(t, s)(fo1 G(By,s, T)fo (1, I"x(1)) dr)927! ds is the unique positive solution
of system (1.1).
Since the process is similar to (3.4) and (3.5) we obtain

1 1 2-1
vz(t)=/0 Hg(t,s)</0 G(/Sz,s,r)2(1,1”1x(r))dr>q ds

! ! Tl =y) 4 @l
1 a1—1
< A H2(L~Q<\/(; G(ﬂsz’ 7:) 2(7:11.:[) F(al) T )df) dS

< al;’ (q2-1) te2-ra-1
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and

1 1 2-1
Vo(t) = / H,(t,s) (/ G(Bs,s,T) Z(T,I”x(r)) dr)q ds
0 0

1 1 _ g2-1
> /0 Hz(t»S)( /0 G(ﬁz»&f)ﬁ(f,lw%tal‘l)dr) ds

> bl;(qz—l) t(xz—yz—l’
ie.

(e — ot Tl -
pr@ 2=V oo ) < are@d FO2 =72 o, (3.28)
F(Olg) F(O‘Z)

Example Consider the following boundary value problem:

~DR (gs(-DI))(®) = 2 (0 + D5 ()] + DT (O] %),
D% (pa(-D?wy))(2) = (£ + D] (2), (3.29)
D3u;(0) = D3uy(1) = 0, D5 141(0) = 0, D5 14y (1) = 216 (Do 4y (1)),
D3uy(0) = D3 uy(1) = 0, D7 15(0) = 0, D3 (1) = 517 (D (1))

4 3 5 1 1 1 5 7

Letar=35,00=5,p1=3,b=3,n=5r=pp=3p=4bw=w=788=26=
1 1

5M=3,M2=3.

First, we have
_ _ 1

F(O{l—y1+a)1):]—'(2):1>%-1n<111 y1+wy 1:2< >’

wa—yp - 1\

Doy — yo + @y) = T'(3) =2 > &y 72 1_ 5(_) ,

and q; = %,qz = %, then (sg), (s1), and (sy) hold.
Second, let

1
8

1 1
fi(x,9,2) —x b +y’% +278,  flta)=( +1)x%,

and for all r € (0,1), (x,7,2) € (0, +00)3, (£,x) € (0,1) x (0, +c0),

2 2 1
filrx,ry,rz) =r 9x79 + 1 2y~

NI=

1 1 1
+r 8278 <r ifi(x,y,2),

falt,rx) = (t2 + l)r%x% > r%fg(t,x),

which implies that (H;), (Hy) hold. On the other hand, by direct calculation, we have
ﬁ(ly 1; 1) =3 #0, and then

1
b= 62/ [1 -1- S)az—yz—l]s(ﬂz—l)(qz—l)(l —5)2l s
0

L T ) >q
X<r<ﬁ2>/o’(1 % ﬁ(” ray )"
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1 , rd)1 o\
x(T%)/(; r(l—r)4(12+1)[r(§):| r21dr> > 0.

Thus

1
[i(Fgteier)a
0 (241

! F(Z) 1 7% 1.-1 14-1
LT o

1 775
:/‘ ”:F(Z)} gt’%+t’ﬁ +]9§t31_2}dt<+00.
o LLT(3)

Hence, (Hs) holds. Then by Theorem 3.1 there exists a constant A* > 0 such that for any
A € (A%, +00), the BVP (1.1) has at least one positive solution (u;(£), 1, (£)).
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