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Abstract
In this paper, we investigate synchronization of drive-response neural networks with
time-varying delays via impulsive control. Based on impulsive stability theory, we
design proper impulsive controllers and derive some sufficient conditions for
achieving synchronization. Noticeably, we adopt adaptive strategy to design unified
controllers for different neural networks and relax the restrictions on the impulsive
interval. All the obtained results are verified by several numerical examples.
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1 Introduction
Neural networks, including Hopfield neural networks and cellular neural networks, have
been widely investigated in past decades [–]. Synchronization, as a typical collective
dynamical behavior of neural networks, has attracted more and more attention in various
fields. For achieving the synchronization of neural networks, especially of chaotic neu-
ral networks, many control methods and techniques have been adopted to design proper
and effective controllers, such as feedback control, intermittent control, adaptive control,
impulsive control, and so on.

In real world, because of switching phenomenon or sudden noise, many real systems
have been found to be subject to instantaneous perturbations and abrupt changes at cer-
tain instants. That is, these systems cannot be controlled by continuous control and endure
continuous disturbance. Therefore, impulsive control, as a typical discontinuous control
scheme, has been widely adopted to design proper controllers for achieving synchroniza-
tion or stability [–]. Based on the Lyapunov function method, the Razumikhin tech-
nique, or the comparison principle, many valuable results have been obtained, and syn-
chronization criteria have been derived. For a given neural network, we can estimate the
largest impulsive interval from the derived criteria by fixing impulsive gains and calculat-
ing some system constants, for example, Lipschitz or Lipschitz-like constants with respect
to neuron activation functions, and vice versa. As we know, different neural networks usu-
ally have totally different system parameters and activation functions, which means that
the impulsive controllers with fixed impulsive gains and intervals are not unified. In other
words, the system parameters have more restrictions on the choice of impulsive gains and
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intervals. For relaxing the restrictions, adaptive strategy is introduced to design adaptive
impulsive controllers. The Lipschitz (or Lipschitz-like) and other constants with respect
to system parameters and activation functions need not be known beforehand and can be
calculated according to the proposed adaptive strategy [–].

On the other hand, due to the transmission speed of signals or information between
neurons is finite, neural networks with coupling delay should be considered. Motivated by
the above discussions, in this paper, we investigate the impulsive synchronization of drive-
response chaotic delayed neural networks. Firstly, we give some sufficient conditions for
achieving synchronization, from which we can easily estimate the largest impulsive inter-
vals for given neural networks and impulsive gains. Secondly, we adopt adaptive strategy
to design adaptive impulsive controllers for relaxing the restrictions. Noticeably, the de-
signed controllers are universal for different neural networks. Finally, we perform some
numerical examples to verify the obtained results.

The rest of this paper is organized as follows. In Section , we introduce the model
and some preliminaries. In Section , we study the impulsive synchronization of drive-
response chaotic delayed neural networks. In Section , we provide several numerical
simulations to verify the effectiveness of the theoretical results. Section  concludes this
paper.

2 Model and preliminaries
Consider the following chaotic neural network with time-varying delays:

ẋi(t) = –cixi(t) +
n∑

j=

aijfj
(
xj(t)

)
+

n∑

j=

bijgj
(
xj

(
t – τ (t)

))
+ Ji, t > ,

xi(t) = φi(t), t ∈ [–τ, ],

()

or, in the compact form,

ẋ(t) = –Cx(t) + Af
(
x(t)

)
+ Bg

(
x
(
t – τ (t)

))
+ J , t > ,

x(t) = φ(t), t ∈ [–τ, ],
()

where i = , , . . . , n, x(t) = (x(t), x(t), . . . , xn(t))T ∈ Rn is the neuron state vector, n is
the number of neurons, f (x(t)) = (f(x(t)), f(x(t)), . . . , fn(xn(t)))T and g(x(t)) = (g(x(t)),
g(x(t)), . . . , gn(xn(t)))T denote the neuron activation functions, C = diag{c, c, . . . , cn} is a
positive diagonal matrix, A = (aij)n×n and B = (bij)n×n are the coupling weight matrices,
τ (t) is the time-varying delay satisfying  < τ (t) ≤ τ, φ(t) is bounded and continuous on
[–τ, ] and denotes the initial condition, and J = (J, J, . . . , Jn)T ∈ Rn is an external input
vector.

We regard neural network () as the drive network and consider the following neural
network as the response network:

ẏ(t) = –Cy(t) + Af
(
y(t)

)
+ Bg

(
y
(
t – τ (t)

))
+ J , t > ,

y(t) = ϕ(t), t ∈ [–τ, ],
()

where y(t) = (y(t), y(t), . . . , yn(t))T ∈ Rn is the neuron state vector, and ϕ(t) is bounded
and continuous on [–τ, ] and denotes the initial condition.
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The drive-response networks () and () are said to achieve synchronization if
limt→∞ ‖y(t) – x(t)‖ = .

For achieving the synchronization, the controlled network with impulsive controllers
are described by

ẏ(t) = –Cy(t) + Af
(
y(t)

)
+ Bg

(
y
(
t – τ (t)

))
+ J , t > , t �= tk ,

y
(
t+
k
)

= y
(
t–
k
)

+ b(tk)
(
y
(
t–
k
)

– x
(
t–
k
))

, t = tk , ()

y(t) = ϕ(t), t ∈ [–τ, ],

where k = , , , . . . , the impulsive time instants tk satisfy  = t < t < t < · · · < tk < · · · ,
tk → ∞ as k → ∞, y(t+

k ) = limt→t+
k

y(t), y(t–
k ) = limt→t–

k
y(t) and y(t–

k ) = y(tk); b(tk) ∈
(–, –) ∪ (–, ) is the impulsive gain at t = tk , b(tk) = b(t+

k ) = b(t–
k ) and b(t) =  for t �= tk .

Letting e(t) = y(t) – x(t) be the synchronization error, we can obtain the following error
system:

ė(t) = –Ce(t) + A
(
f
(
y(t)

)
– f

(
x(t)

))

+ B
(
g
(
y
(
t – τ (t)

))
– g

(
x
(
t – τ (t)

)))
, t > , t �= tk ,

e
(
t+
k
)

= e
(
t–
k
)

+ b(tk)e
(
t–
k
)
, t = tk ,

e(t) = ϕ(t) – φ(t), t ∈ [–τ, ],

()

Assumption  The neuron activation functions fi(·) and gi(·) are nondecreasing, bounded,
and globally Lipschitz, that is, there exist two positive constants Lf and Lg such that

∣∣fi(y) – fi(x)
∣∣ ≤ Lf |y – x| and

∣∣gi(y) – gi(x)
∣∣ ≤ Lg |y – x|

for any x, y ∈ R, i = , , . . . , n.

Assumption  The time-varying delay τ (t) is differentiable and satisfies τ̇ (t) ≤ μ < .

Lemma  [] For any vectors x, y ∈ Rn and positive-definite matrix Q ∈ Rn×n, the follow-
ing matrix inequality holds:

xT y ≤ xT Qx + yT Q–y.

3 Main result
In what follows, let dk = tk – tk–, λ be the largest eigenvalue of matrix –C + ( – μ)–In +
AAT + L

f In + L
g BBT , β(tk) = ( + b(tk)), and β(t) =  for t �= tk .

Theorem  Suppose that Assumptions  and  hold. If there exists a constant α >  such
that

lnβ(tk) + α + Ldk < , k = , , . . . , ()

where L =  max{λ, }, then the drive-response delayed neural networks () and () can
achieve synchronization.
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Proof Consider the following Lyapunov functional candidate:

V
(
e(t)

)
=




eT (t)e(t) +
β(t)
 – μ

∫ t

t–τ (t)
eT (θ )e(θ ) dθ .

When t ∈ (tk–, tk), the function V (e(t)) can be written as

V
(
e(t)

)
=




eT (t)e(t) +


 – μ

∫ t

t–τ (t)
eT (θ )e(θ ) dθ ,

and the derivative of V (t) along the trajectory () is

V̇
(
e(t)

)
= eT (t)ė(t) +


 – μ

eT (t)e(t) –
 – τ̇ (t)
 – μ

eT(
t – τ (t)

)
e
(
t – τ (t)

)

= –eT (t)Ce(t) + eT (t)A
(
f
(
y(t)

)
– f

(
x(t)

))

+ eT (t)B
(
g
(
y
(
t – τ (t)

))
– g

(
x
(
t – τ (t)

)))

+


 – μ
eT (t)e(t) –

 – τ̇ (t)
 – μ

eT(
t – τ (t)

)
e
(
t – τ (t)

)
.

According to Assumptions  and  and Lemma , we have

V̇
(
e(t)

) ≤ eT (t)
(
–C + ( – μ)–In + AAT + L

g BBT)
e(t)

+
(
f
(
y(t)

)
– f

(
x(t)

))T(
f
(
y(t)

)
– f

(
x(t)

))

+ L–
g

(
g
(
y
(
t – τ (t)

))
– g

(
x
(
t – τ (t)

)))T

× (
g
(
y
(
t – τ (t)

))
– g

(
x
(
t – τ (t)

)))

–
 – τ̇ (t)
 – μ

eT(
t – τ (t)

)
e
(
t – τ (t)

)

≤ eT (t)
(
–C + ( – μ)–In + AAT + L

f In + L
g BBT)

e(t)

+
τ̇ (t) – μ

 – μ
eT(

t – τ (t)
)
e
(
t – τ (t)

)

≤ L


eT (t)e(t).

Since L =  max{λ, } ≥  and 
–μ

∫ t
t–τ (t) eT (θ )e(θ ) dθ ≥ , we have

L


eT (t)e(t) ≤ L
(




eT (t)e(t) +


 – μ

∫ t

t–τ (t)
eT (θ )e(θ ) dθ

)
= LV

(
e(t)

)

and

V̇
(
e(t)

) ≤ LV
(
e(t)

)
,

which gives

V
(
e(t)

) ≤ V
(
e
(
t+
k–

))
eL(t–tk–). ()
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When t = tk , we have

V
(
e
(
t+
k
))

=



eT(
t+
k
)
e
(
t+
k
)

+
β(t+

k )
 – μ

∫ t+
k

t+
k –τ (t)

eT (θ )e(θ ) dθ

=
( + b(tk))


eT(

t–
k
)
e
(
t–
k
)

+
β(tk)
 – μ

∫ t–
k

t–
k –τ (t)

eT (θ )e(θ ) dθ

= β(tk)V
(
e
(
t–
k
))

. ()

By mathematical induction we have

V
(
e
(
t+
k
)) ≤ V

(
e
(
t+

)) k∏

σ=

β(tσ )eLdσ , k = , , . . . .

From conditions () we have

β(tσ )eLdσ < e–α , σ = , , . . . ,

and

V
(
e
(
t+
k
)) ≤ V

(
e
(
t+

))

e–kα ,

which shows that limk→∞ V (t+
k ) = . Then, for t ∈ (tk , tk+), we have

V
(
e(t)

) ≤ eL(t–tk )V
(
e
(
t+
k
)) →  as t → ∞,

which shows that limt→∞ ‖ei(t)‖ = , that is, the synchronization of drive-response de-
layed neural networks () and () is achieved, and the proof is completed. �

Remark  For any given neural network (), the positive constants Lf and Lg in Assump-
tion  and the largest eigenvalue λ can be estimated by simple calculations. Thus, if the
constant α and the impulsive gain b(tk) are fixed, then from conditions () the impulsive
intervals dk can be estimated. However, the neuron activation functions and coefficient
matrices are usually nonidentical for different neural networks, that is, the proposed im-
pulsive controllers with fixed impulsive intervals are not universal. In the following, adap-
tive strategy is adopted to design universal impulsive controllers.

Theorem  Suppose that Assumptions  and  hold. If there exists a constant α >  such
that

lnβ(tk) + α + L̂(tk)dk < , k = , , . . . , ()

where L̂(t) is the time-varying estimation of L satisfying ˙̂L(t) = δeT (t)e(t) with L̂() > ,
and δ >  is the adaptive gain, then the synchronization of drive-response delayed neural
networks () and () is achieved.

Proof Consider the following Lyapunov functional candidate:

V
(
e(t)

)
=




eT (t)e(t) +
β(t)
δ

(
L̂(t) – L

) +
β(t)
 – μ

∫ t

t–τ (t)
eT (θ )e(θ ) dθ .
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When t ∈ (tk–, tk), the function V (e(t)) can be written as

V
(
e(t)

)
=




eT (t)e(t) +


δ

(
L̂(t) – L

) +


 – μ

∫ t

t–τ (t)
eT (θ )e(θ ) dθ ,

and the derivative of V (t) along the trajectory () is

V̇
(
e(t)

)
= eT (t)ė(t) +


δ

(
L̂(t) – L

) ˙̂L(t) +


 – μ
eT (t)e(t)

–
 – τ̇ (t)
 – μ

eT(
t – τ (t)

)
e
(
t – τ (t)

)

≤ L


eT (t)e(t) +


(
L̂(t) – L

)
eT (t)e(t)

≤ L̂(t)V
(
e(t)

)
.

Since L̂(t) is an increasing function, we have  < L̂(t) ≤ L̂(tk) for t ∈ (tk–, tk) and

V̇
(
e(t)

) ≤ L̂(tk)V
(
e(t)

)
,

which gives

V
(
e(t)

) ≤ V
(
e
(
t+
k–

))
eL̂(tk )(t–tk–). ()

When t = tk , we have

V
(
e
(
t+
k
))

=



eT(
t+
k
)
e
(
t+
k
)

+
β(t+

k )
δ

(
L̂
(
t+
k
)

– L
)

+
β(t+

k )
 – μ

∫ t+
k

t+
k –τ (t)

eT (θ )e(θ ) dθ

=
( + b(tk))


eT(

t–
k
)
e
(
t–
k
)

+
β(tk)

δ

(
L̂(tk) – L

)

+
β(tk)
 – μ

∫ t–
k

t–
k –τ (t)

eT (θ )e(θ ) dθ

= β(tk)V
(
e
(
t–
k
))

. ()

Then, similarly to the proof of Theorem , the proof can be completed. �

Remark  From conditions () in Theorem  it is clear that some constants with respect
to the neuron activation functions and coefficient matrices need not be known before-
hand. For any given neural network, the constants can be estimated by L̂(t) with proper
adaptive gain δ. When impulsive instants or intervals are fixed, we can give the updating
law of impulsive gain with time from conditions (). When impulsive gains are fixed, we
can give a method for estimating the impulsive instants as well. Detailed methods are pro-
vided in the following remarks. That is, the proposed adaptive impulsive control scheme
is universal for those neural networks, provided that their activation functions satisfy As-
sumption .
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Remark  For any given impulsive intervals dk and positive constant α, we can choose

–e– α+L̂(tk )dk
 –  + ε ≤ b(tk) ≤ e– α+L̂(tk )dk

 –  – ε,

so that conditions () in Theorem  hold, where ε is a small positive constant.

Remark  By conditions (), for any given b(tk) and α, we can estimate the control instants
tk through finding the maximum value of tk subject to tk < tk– – (lnβ(tk) + α)L̂–(tk) with
t = , k = , , . . . .

4 Numerical simulations
Example  Consider the chaotic delayed Hopfield neural network with time-varying de-
lays as the drive system described by

ẋi(t) = –cixi(t) +
∑

j=

aijfj
(
xj(t)

)
+

∑

j=

bijgj
(
xj

(
t – τ (t)

))
, i = , ,

where ci = , fi(xi) = gi(xi) = tanh(xi), τ (t) = . – . sin t, and

A =

[
. –.

–. .

]
, B =

[
–. –.
–. –.

]
.

Clearly, we can choose Lf = Lg =  and μ = . such that Assumptions  and  hold. In
numerical simulations, choose b(tk) = –., dk = ., and α = .. By simple calculations
we have β(tk) = ., λ = ., L = ., and ln . + . + .×. =
–. < , that is, conditions () in Theorem  are satisfied. Therefore, the synchroniza-
tion can be achieved when dk = .. Choose the initial values of x(t) and y(t) randomly.
Figure  shows the orbits of state variables xi(t) and yi(t), i = , .

Example  Consider the synchronization of the same neural network via the adaptive im-
pulsive control scheme proposed in Theorem . In numerical simulations, choose δ = ,

Figure 1 The orbits of state variables xi(t) and yi(t), i = 1, 2.
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Figure 2 The orbits of state variables xi(t) and yi(t) and impulsive gain.

Figure 3 The orbits of state variables xi(t) and yi(t) and impulsive intervals.

the initial value of L̂(t) as L̂() = , and the other parameters as in the previous exam-
ple.

Firstly, fix the impulsive interval dk = . and choose b(tk) = e– α+L̂(tk )dk
 –  – ε with

ε = . according to Remark . That is, the impulsive gain adjusts itself to proper value
according to the adaptive law. Figure  shows the orbits of state variables xi(t) and yi(t)
and impulsive gain.

Secondly, fix the impulsive gain b(tk) = –. and estimate the control instants tk or
impulsive interval dk according to Remark . That is, the impulsive intervals adjust them-
selves to proper values according to the adaptive law. Figure  shows the orbits of state
variables xi(t) and yi(t) and impulsive intervals. Clearly, the needed value of dk is much
larger than the estimated value from conditions (). That is, the adaptive pinning impul-
sive control scheme can make the impulsive interval as large as possible and reduce the
control cost.

Example  Consider the synchronization of the following cellular neural network via the
adaptive impulsive control, which is described by []:

ẋi(t) = –cixi(t) +
∑

j=

aijfj
(
xj(t)

)
+

∑

j=

bijgj
(
xj

(
t – τ (t)

))
, i = , ,
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Figure 4 The orbits of state variables xi(t) and yi(t) and impulsive gain.

Figure 5 The orbits of state variables xi(t) and yi(t) and impulsive intervals.

where ci = , fi(xi) = gi(xi) = (|xi + | – |xi – |)/, τ (t) = , and

A =

[
 + π/ 

.  + π/

]
,

B =

[
–

√
π/ .

. –
√

π/

]
.

Firstly, fix the impulsive interval dk = . and choose b(tk) = e– α+L̂(tk )dk
 –  –ε with α = .

and ε = .. In numerical simulations, choose δ = ., the initial value of L̂(t) as L̂() = ,
and the initial values of x(t) and y(t) randomly. Figure  shows the orbits of state variables
xi(t) and yi(t) and impulsive gain.

Secondly, fix the impulsive gain b(tk) = –. and estimate the control instants tk or im-
pulsive interval according to Remark . In numerical simulations, choose α = ., δ = .,
the initial value of L̂(t) as L̂() = ., and the initial values of x(t) and y(t) randomly. Fig-
ure  shows the orbits of state variables xi(t) and yi(t) and impulsive intervals.
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5 Conclusions
In this paper, the synchronization problem of drive-response chaotic delayed neural net-
works has been investigated via impulsive control scheme. Firstly, some sufficient condi-
tions for achieving synchronization were provided according to the Lyapunov function
method and impulsive stability theory. For given neural networks, the largest impulsive
interval can be estimated by fixing impulsive gains, and vice versa. Secondly, an adap-
tive strategy, combined with impulsive control scheme, was used to design universal con-
trollers for different neural networks and relax the restrictions on impulsive intervals and
gains. Finally, some numerical examples were performed to verify the correctness and ef-
fectiveness of the obtained results.
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