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Abstract
Considering the fact that the memory in economic series changes with dynamic
economic environment, this paper is devoted to the proposal of a variable-order
fractional van der Pol model (VOFVDPM), where the order of the derivative is replaced
by a time-dependent function. A numeric scheme for this model is designed by the
Adams-Bashforth-Moulton method. The dynamic behaviors of the VOFVDPM with
linear and periodic variable-order functions are investigated through numerical
experiment. Some dynamic characteristics of the VOFVDPM that do not exist in a
fractional order van der Pol model are discovered in the numerical simulation, such as
existing limit point when the linear order functions have the same ranges and
opposite slopes.
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1 Introduction
As a classical nonlinear dynamic model, the van der Pol model has attracted scholars’
attention from many fields since it was proposed by the Dutch electrical engineer and
physicist Balthasar van der Pol. It is extensively applied in neurology, physics, sociology,
and economics. Based on Kaldor’s model of business cycles, the van der Pol model of
nonlinear business cycles is proposed by postulating symmetric shapes of the investment
and savings functions []. Assuming that the investment outlay is periodic and continuous
function of time, the forced van der Pol model of nonlinear economic cycles is presented
in [], which is the generalization of Goodwin’s nonlinear accelerator-multiplier model.
When the investment outlay is neglected, the forced van der Pol model of nonlinear eco-
nomic cycles is the van der Pol model of nonlinear business cycles. In addition to Kaldor’s
model and Goodwin’s nonlinear accelerator-multiplier model, the van der Pol model has
been applied in other relevant economical problems; see [] for more details.

The dynamic of the van der Pol model of nonlinear economic cycles is extensively stud-
ied by researchers. The bifurcation diagrams of the forced van der Pol model on varying
the driver’s frequency and amplitude are analyzed in []. It points out the coexistence of
asymmetric attractors ascribed to the system symmetry of the van der Pol oscillator, and
it finds that periodic, quasiperiodic, and chaotic attractors coexist. In [], the dynamic be-
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haviors are investigated by considering the change of control parameters, especially the
pattern of bifurcation with damping parameter changing. The number of coexisting at-
tractors in overlaps of mode-locking subzones is an important dynamic behavior, and it is
analyzed in []. For the dynamics structure of the forced van der Pol model of nonlinear
economic cycles it is found that the chaotic attractor is composed of chaotic saddles and
unstable periodic orbits located in the gap regions of chaotic saddles for the model []. For
existing chaos in the forced van der Pol model with certain parameters, the chaos control
of chaotic unstable limit cycles is discussed in [].

Inspired by the development of fractional calculus, the fractional order derivatives are
applied in the forced van der Pol model of nonlinear economic cycles, for which frac-
tional order derivatives can depict a ‘memory principle’ in economic dynamic. Chaos in
a fractional order modified van der Pol system is studied by [], where chaos exists in the
fractional order system with the order both less than and higher than the number of the
states of the integer order generalized van der Pol system. And chaos is also discovered in
non-autonomous and autonomous generalized van der Pol systems excited by a sinusoidal
time function with fractional orders []. In [], one presents a periodically excited van
der Pol system with fractional damping, and one finds that the response of the system is
very sensitive to changes in the order of fractional damping. Several other papers dealing
with van der Pol oscillators could be found in the literature (see [–] and the references
therein).

Compared to the usual forced van der Pol model of nonlinear economic cycles, the con-
tribution of the fractional forced van der Pol model of nonlinear economic cycles is that it
can describe memory in economic dynamics. However, the characteristic of this memory
in economic time series will change with time, for which it is affected by the macroeco-
nomic environment and government policy at different times. Therefore, this paper will
propose a variable-order fractional forced van der Pol model of nonlinear economic cycles,
which can describe the fact that memory in economic series is varying with time. The or-
ders in the fractional forced van der Pol model of nonlinear economic cycles are replaced
by positive bounded continuous functions. In order to obtain an effective and applica-
ble numerical technique for solving the variable-order fractional van der Pol model, the
Adams-Bashforth-Moulton method is adopted. Then we employ the technique to obtain
the numerical results for the dynamics characteristics of the variable-order fractional van
der Pol model with different parameters.

The remainder of this article is organized as follows: In Section , we review the math-
ematical preliminaries as regards the variable-order fractional derivative. In Section , we
propose a variable-order fractional forced van der Pol model of nonlinear economic cycles.
In Section , we present the numerical technique for solving the variable-order fractional
forced van der Pol model by the Adams-Bashforth-Moulton method. In Section , numer-
ical experiments are performed to analyze the dynamic characteristics. The conclusions
are drawn in Section .

2 Variable-order fractional derivative
In this section, we introduce some preliminaries of variable-order fractional derivative.
The variable-order fractional derivative is defined by replacing the order of the fractional
derivatives with a continuous bounded function in the counterparts [, ].There ex-
ist three most frequently used definitions for the general fractional differ-integral, which
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are the Grünwald-Letnikov (GL) definition, the Riemann-Liouville (RL), and the Caputo
definitions. According to these definitions, their corresponding variable-order fractional
derivative can be defined as follows.

Definition  ([]) Let α(t) be a positive continuous bounded in [, T], f ∈ Cm[, T], and
m = [max≤t≤T α(t)] + . Then

Dα(t)
GL f (t) = lim

h→


hα(t)

N∑

i=

(–)i
(

α(t)
i

)
f (t – ih), ()

with h = t/N being called the GL variable-order fractional derivative of f (t).

Definition  ([, ]) The Riemann-Liouville variable-order fractional derivative of f (t)
for a continuously differentiable function f : [a, +∞) →R is defined as

Dα(t)
RL f (t) =


�(m – α(t))

dm

dtm

∫ t

a
(t – s)m–α(s)–f (s) ds, ()

where m –  ≤ α(t) < m m = [max≤t≤T α(t)] + .

Definition  ([, ]) The Caputo variable-order fractional derivative of f (t) for a con-
tinuously differentiable function f : [, +∞) →R is defined as

Dα(t)
C f (t) =


�(m – α(t))

∫ t

a
(t – s)m–α(t)–f (m)(s) ds, ()

where m –  ≤ α(t) < m, m = [max≤t≤T α(t)] + .

Remark  For the above definitions of variable-order fractional derivative, when α(t) =
q > , (), (), () describe the fractional derivative. If α(t) = m – , (), (), () describe the
classical (m – )th order derivative. If α(t) = , Dα(t)

GL,RL,Cf (t) = f (t).

The main advantage of the Caputo derivative is that the initial conditions for the frac-
tional differential equations are of the same form as that of the integer order differential
equations []. Therefore, we study the VOFVDPM with the Caputo derivative in this pa-
per.

3 Variable-order fractional van der Pol model of nonlinear business cycles
The forced van der Pol model of nonlinear business cycles can be described as follows:

dx
dt + μ

(
x – 

)dx
dt

+ x = a sin(ωt), ()

where x is economic variable, such as national income; μ (> ) is the coefficient on non-
linear damping term and determines the speed of adjustment; a is the amplitude of the
exogenous force, and ω is the frequency of the exogenous force; a sin(ωt) is called the force
function, and it can be explained as the amount of autonomous investment outlays at t [].
When a = , () is the unforced van der Pol model of nonlinear business cycles.
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Based on (), we present the variable-order forced van der Pol model (VOFVDPM) of
nonlinear business cycles as follows:

Dα(t)
t Dβ(t)

t x + μ
(
x – 

)
Dβ(t)

t x + x = a sin(ωt), ()

where α(t), β(t) are positive continuous bounded functions at [, T].

Remark  If α(t) = α, β(t) = β , () is a forced variable-order fractional van der Pol model
of nonlinear business cycles. If α(t) = , and β(t) = , the system () is a forced van der Pol
model of nonlinear business cycles.

Remark  If a = , () is an unforced variable-order fractional van der Pol model of non-
linear business cycles.

Let y = Dβ(t)
t x, q(t) = β(t), q(t) = α(t) then () can be rewritten as a two dimensional

variable-order fractional system,

Dq(t)
t x = y,

Dq(t)
t y = μ

(
 – x)y – x + a sin(ωt). ()

For the VOFVDPM, x is the macroeconomic variable of a certain economy, such as na-
tional income, GDP, and so on. a sin(ωt) is for the periodical investment outlays, which is
a controllable variable and has impacts on the macroeconomic variable x. The variable-
order fractional derivative of VOFVDPM reflects the varying memory in the macroeco-
nomic series x. So the order functions q(t), q(t) depict the evolution path of the mem-
ory in the macroeconomic series x. Therefore, VOFVDPM with a certain variable-order
fractional derivative not only depicts the complex dynamics of national income, but also
reflects the varying memory in the economical series of the national income. The appli-
cation of a variable-order fractional derivative in the van der Pol model can be extended
to other dynamic economic models.

4 Numerical scheme
The Adams-Bashforth-Moulton method is a type of predictor-corrector methods and a
relatively new approach to provide a numerical approximation to solve the fractional order
differential equations. It is studied and discussed thoroughly in [, ]. In this paper, we
adapt the Adams-Bashforth-Moulton method to solve the variable-order fractional van
der Pol model (VOFVDPM).

Consider () with  < qi(t) ≤ , t ≥ , i = , , and the initial condition (x(), y()) =
(x, y). We select the following uniform grid:

h =
T
N

, tn = nh, ()

where n = , , , . . . , N , and t = , tN = T . Then model () can be discretized as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xn+ = x + hq(tn+)

�(q(tn+)+) xp
n+ +

∑n
j=

hq(tn+)γ,j,n+
�(q(tn+)+) xj,

yn+ = y + hq(tn+)

�(q(tn+)+) (μ(xp
n+

 – )yp
n+ – xp

n+ + a sin(ω(tn + )))

+
∑n

j=
hq(tn+)γ,j,n+
�(q(tn+)+) (μ(xj

 – )yj – xj + a sin(ω(tj))),

()
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where

{
xp

n+ = x +
∑n

j=
θ,j,n+

�(q(tn+)) xj,
yp

n+ = y +
∑n

j=
θ,j,n+

�(q(tn+)) (μ(xj
 – )yj – xj + a sin(ω(tj))),

()

and the coefficients are calculated by

γi,j,n+ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nq(tn+)+ – (n – qi(tn+))(n + )qi(tn+), j = ,
(n – j – )qi(tn+)+ + (n – j)qi(tn+)+

– (n – j + )qi(tn+)+,  ≤ j ≤ n,
, j = n + ,

()

and

θi,j,n+ =
hqi(tn+)

qi(tn+)
(
(n – j + )qi(tn+) – (n – j)qi(tn+)), ()

and i = ,  for () and ().

5 Numerical results
In this section, we will analyze the dynamic behaviors of VOFVDPM by the above numer-
ical scheme. The cases where the orders of the derivatives in VOFVDPM are varying with
different linear and periodical functions of time are investigated. The experiments under
a =  are performed. Figures - are numerical results of VOFVDPM () for the cases
where the variable-order functions q, q are linear and periodic. We select the following
uniform grid: T =  (t ∈ [, ]), h = ., N = ,, tn = .n, t = , tN = .

Figures (a), (b) exhibit the phase plots for linear variable-order functions q(t) = q(t),
which are linear decreasing and increasing in the same range [., ] with the same speed,
/,, respectively. It shows that the responses of the VOFVDPM with linear decreasing
order function approach a limit cycle faster than with a linear increasing order function.
The shapes of the limit cycles with linear decreasing and increasing variable-order func-
tions are different in spite of the same range and speed. Figure  shows the phase plots

(a) q(t) = q(t) =  – t/, (b) q(t) = q(t) = . + t/,

Figure 1 Phase plots for the VOFVDPM with q1(t) = q2(t) = 1 – 1t/3,000 and q1(t) = q2(t) = 0.9 + 1t/
3,000 (the other common parameters are a = 0, μ = 2.5) [blue line: (x(0), y(0)) = (0.2, 0.3); red line:
(x(0), y(0)) = (0, 4)].
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Figure 2 Phase plot for the VOFVDPM with
different linear variable-order functions, a = 0, μ
= 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 3 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 1 – 4t/3,000, q2(t) = 0.6 + 4t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 4 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.9 – 4t/3,000, q2(t) = 0.5 + 4t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

for linear variable-order functions with different intercepts. From it, we can find that the
scale of the limit cycles becomes smaller with smaller intercepts in the linear variable-
order functions.

In order to investigate the dynamic characteristics of the VOFVDPM with q not be-
ing equal to q, Figures - exhibit the phase plots and trajectories for the case: q(t) =
 – t/,, q(t) = . + t/,, the case: q(t) = . – t/,, q(t) = . + t/,,
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(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 5 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 1 – 4t/3,000, q2(t) = 0.6 + 4t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) q = q = . + . sin(t/) (b) q = q = . + . sin(t/)

(c) q = q = . + . sin(t/) (d) q = q = . + . sin(t/)

Figure 6 Phase plot for the VOFVDPM with different periodical functions, a = 0, μ = 2.5, and
(x(0), y(0)) = (1.3, 1.2).

and the case: q(t) = . + t/,, q(t) =  – t/,. For Figure , q, q have the same
range [., ], but decrease and increase with opposite slopes, respectively. It shows that
the responses of the VOFVDPM have convergence to the limit point (, ). Figure  for
linear q, q with the same ranges [., .] and opposite slopes, also has the same dynamic
behaviors and faster reaches the limit point (, ) than the case in Figure . However, the
trajectories are divergent when q, q increase and decrease in the same range with oppo-
site slopes, respectively (Figure ).
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(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 7 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.4 + 0.1 sin(t/50), q2(t) = 0.3 + 2t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 8 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.5 + 0.1 sin(t/50), q2(t) = 0.4 + 2t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 9 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.6 + 0.1 sin(t/50), q2(t) = 0.5 + 2t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

Figure  shows the phase plots for the VOFVDPM with the orders of derivative being
different periodic order functions. From it, we find that the responses of them reach a
limit cycle. Comparing Figures (a) to (b), the scale of the limit cycle with wider ampli-
tude of the order functions are larger. Figure (b) and (d) have a periodic variable-order
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(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 10 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.7 + 0.1 sin(t/50), q2(t) = 0.6 + 2t/3,000, a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

(a) y(t) vs. x(t) (b) trajectories of x and y

Figure 11 Phase plot and trajectories (blue line: x(t), black line: y(t)) for the VOFVDPM with
q1(t) = 0.6 + 2t/3,000, q2(t) = 0.7 + 0.1 sin(t/50), a = 0, μ = 2.5, and (x(0), y(0)) = (1.3, 1.2).

function with different periods, but it seems that significant differences are not discovered
yet. Figures (a) and (c) exhibit different shapes of the limit cycle when the ranges of pe-
riodical variable-order functions are different. From Figure , the periodic variable-order
functions have little effect on the responses of the VOFVDPM.

Figures - present the phase plots and trajectories of the VOFVDPM with q, q be-
ing linear and periodic functions. The order functions q, q are periodic and linear, re-
spectively, in the same range for Figures -, where the ranges are [., .], [., .],
[., .], [., .]. We can find that the responses of the model approach the point (, )
in Figures - with smaller orders, and they are in convergence to a limit cycle in Fig-
ures - with larger orders. However, Figure  shows that the trajectories are divergent,
where the order functions q, q are linear and periodic, respectively, in the same range,
[., .].

The above numerical experiments investigate the dynamic behaviors of the VOFVDPM
with different linear and periodical functions in the case a = . It shows that some novel
dynamic characteristics of the model have been found in the numerical results, such as the
existence of a limit point (, ) when linear q, q are in the same ranges and have opposite
slopes. These novel dynamic characteristics indicate that the limit cycle is not the only
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characteristic of the FVDP model when the order of the derivative is a time-dependent
function.

6 Conclusion
In this paper, we successfully extend the forced van der Pol model with nonlinear eco-
nomic cycle to the VOFVDPM, which considers the memory in an economic series vary-
ing with time. The numeric scheme based on the Adams-Bashforth-Moulton method for
the VOFVDPM has been designed. By the scheme, the dynamic behaviors of the model
with linear or periodic variable-order function have been analyzed. The results of the anal-
ysis suggest that the VOFVDPM presents some novel dynamic characteristics, which can-
not be found in an integral and constant fractional van der Pol model.
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