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Abstract
We consider the semiclassical states of the Schrödinger-Poisson system:
–ε2�u + V(x)u + φ(x)u = f (u), –�φ = u2 in R

3. By the variational method, we
construct a multi-peak solution (uε ,φε) around several given isolated positive local
minimum components of V as ε → 0. The nonlinearity f is of critical growth.
Moreover, themonotonicity of f (s)/s3 and the so-called Ambrosetti-Rabinowitz
condition are not required.
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1 Introduction and main result
We are concerned with the nonlinear Schrödinger-Poisson system

{
–ε�v + V (x)v + λφ(x)v = f (v) in R

,
–�φ = v, lim|x|→∞ φ(x) =  in R

,
(.)

where λ >  and ε > . The system arose in the interaction of a charged particle with the
electrostatic field and the term λφv concerns the interaction with the electric field. For
more background, we refer to [–]. One of the most interesting classes of solutions to
(.) is the class of solutions with the finite energy for ε >  small. In the view of quantum
mechanics, these solutions are called bound states; they are referred to as semiclassical
states.

In this paper, we are concerned with the existence and concentration of bound states of
(.) as ε → . If λ = , system (.) reduces to the Schrödinger equation

–ε�v + V (x)v = f (v), v ∈ H(
R

). (.)

In the past decades, there has been considerable attention to solutions of (.). Based a
Lyapunov-Schmidt reduction argument, around any given non-degenerate critical point
of V , Floer and Weinstein [] constructed a single-peak solutions of (.) for N =  and
f (s) = s. By using a similar argument, Oh [] extended the result in [] to the higher di-
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mension case. Initiated by Rabinowitz [], the variational approaches have become an im-
portant tool to deal with more general classes of the nonlinearity f . By using the mountain
pass argument, Wang [] obtained spike solutions of (.) around the global minimum
points of V for ε small. Later, del Pino and Felmer [] gave a development of the varia-
tional approach in [, ] and constructed a single-peak solution around the local minimum
points of V . But in [–], there are more restrictions on f involved, such as (H): f (s)/s is
nondecreasing in (,∞) and (AR): the Ambrosetti-Rabinowitz condition. To remove or
eliminate (H) or (AR), Byeon and Jeanjean [] developed the penalized argument in []
to explore what the essential features are to guarantee the existence of spike solutions to
(.). In [] the authors showed that the Berestycki-Lions conditions are almost optimal
if f is of subcritical growth.

If λ �= , the Schrödinger-Poisson system (.) is nonlocal. For V (x) ≡ constant and
f (v) = |v|p–v, p ∈ (, 

 ), D’Aprile and Wei [] constructed positive solutions of (.) which
concentrate around a sphere in R

 as ε → . For f (v) = vp, p ∈ (, ), Ruiz and Vaira []
constructed multi-bump solutions around the local minimum of the potential V . Here,
we also would like to cite [–]. In [] He and Zou considered ground state solutions
of Schrödinger-Poisson system (.) in the critical case. By the Nehari manifold method,
the authors obtained the existence of ground solutions concentrating around the global
minimal points of V . But in the work above, the nonlinearity f usually satisfies the mono-
tonicity condition: f (s)/s is nondecreasing in (,∞), (AR) or other restrictions. Recently,
Seok [] considered the spike solutions of (.) for a more general nonlinear term. With
a penalization argument introduced in [], the author constructed multi-peak solutions
of (.) for any several given isolated local minimum components of V . Precisely, assume
that V satisfies:

(V) V ∈ C(R,R) and  < V = infx∈R V (x).
(V) There are bounded disjoint open sets Oi ⊂R

, i = , , . . . , k such that for any
i ∈ {, , . . . , k},

 < mi ≡ inf
x∈Oi

V (x) < min
x∈∂Oi

V (x),

and f satisfies the Berestycki-Lions conditions:

(f) f ∈ C(R,R) such that f (t) =  for t ≤  and limt→ f (t)/t = ;
(f) there exists p ∈ (, ) such that lim supt→∞ f (t)/tp < ∞;
(f) there exists T >  such that m

 T < F(T) :≡ ∫ T
 f (t) dt.

For any k >  and any i ∈ {, , . . . , k}, let

Mi ≡ {
x ∈ Oi : V (x) = mi

}
.

Theorem A (see []) Assume that (V)-(V) and (f)-(f), then for sufficiently small ε > ,
(.) admits a positive solution (vε ,φε) ∈ H(R) × D,(R), which satisfies:

(i) there exist k local maximum points xi
ε ∈ Oiof vε such that

lim
ε→

max
≤i≤k

dist
(
xi

ε ,Mi) = ,
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and wε(x) ≡ vε(εx + xi
ε) converges (up to a subsequence) locally uniformly to a least

energy solution of

–�u + miu = f (u), u > , u ∈ H(
R

); (.)

(ii) vε(x) ≤ C exp(– c
ε

min≤i≤k |x – xi
ε|) for some c, C > .

By (f) the problem in [] is of subcritical growth. More recently, Zhang [] considered
the single-peak solutions of (.) in the critical case. Assume that f satisfies:

(F) limt→
f (t)

t = .
(F) limt→∞ f (t)

t = κ > .
(F) There exist C >  and p <  such that f (t) ≥ κt + Ctp– for t ≥ .

By using a similar argument to [], in [] the author obtained a single-spike solution of
(.) around the local minimal point of V . Motivated by the work above, we are interested
in the multi-peak solutions of (.) with a general nonlinear term in the critical case. Now,
we state our main result of the present paper as follows.

Theorem . Let p >  and suppose that (V)-(V) and (F)-(F). Then for any λ >  and
sufficiently small ε > , (.) admits a positive solution (vε ,φε) ∈ H(R) × D,(R), which
satisfies:

(i) there exist k local maximum points xi
ε ∈ Oi of vε such that

lim
ε→

max
≤i≤k

dist
(
xi

ε ,Mi) = ,

and wε(x) ≡ vε(εx + xi
ε) converges (up to a subsequence) locally uniformly to a least

energy solution of

–�u + miu = f (u), u > , u ∈ H(
R

); (.)

(ii) vε(x) ≤ C exp(– c
ε

min≤i≤k |x – xi
ε|) for some c, C > .

Remark . Without loss of generality, in the present paper we can assume that V = κ =
λ = .

Notations
• ‖u‖p := (

∫
R |u|p dx)/p for p ∈ [,∞).

• ‖u‖ := (‖u‖
 + ‖∇u‖

)/ for u ∈ H(R).
• C, c are positive constants, which may change from line to line.

2 Proof of Theorem 1.1
First, we introduce some results about the solutions of the limit problem (.). For each
 ≤ i ≤ k, as we can see in [], with the same assumptions in Theorem ., (.) admits a
least energy solution U for any mi >  and U satisfies Pohozaev’s identity

∫
R

|∇U| dx = 
∫
R

(
F(U) –

a


U
)

dx,



Zhang Advances in Difference Equations  (2016) 2016:189 Page 4 of 8

and so
∫
R |∇U| dx = Ei. Moreover, the least energy Ei is corresponding to a moun-

tain path value. Let Si be the set of least energy solutions U of (.) satisfying U() =
maxx∈R U(x). For each i ∈ {, , . . . , k}, we have the following proposition.

Proposition . (see Proposition . in [])
() Si is compact in H(R).
()  < inf{‖U‖∞ : U ∈ Si} ≤ sup{‖U‖∞ : U ∈ Sa} := κi < ∞.
() There exist C, c >  (independent of U ∈ Si) such that |DαU(x)| ≤ C exp(–c|x|),

x ∈ R
 for |α| = , .

By the Lax-Milgram theorem, for any v ∈ H(R), there exists a unique φv ∈ D,(R)
such that –�φv = v with

φv(x) =
∫
R

v(y)
π |x – y| dy. (.)

Then the system (.) is equivalent to

–ε�v + V (x)v + φv(x)v = f (v), v ∈ H(
R

). (.)

Let u(x) = v(εx) and Vε(x) = V (εx), then

–�u + Vε(x)u + εφu(x)u = f (u), u ∈ H(
R

). (.)

In the following, we consider (.) instead of (.). Let Hε be the completion of C∞
 (R)

with respect to the norm

‖u‖ε =
(∫

R

[|∇u| + Vεu]dx
) 


.

For u ∈ H(R), let T(u) = 

∫
R φuu dx. Now, we summarize some properties of φu.

Proposition . ([, ]) For any u ∈ H(R), we have
() φu : H(R) �→ D,(R) is continuous, and maps bounded sets into bounded sets.
() φu ≥ , ‖∇φu‖ ≤ c‖u‖, and T(u) ≤ c‖u‖ for some c > .

In the following, we use the truncation argument to prove Theorem .. A similar ar-
gument can be found in []. Since we are concerned with the positive solutions of (.),
from now on, we assume that f (s) =  for all s ≤ . By the maximum principle, any non-
trivial solution of (.) is positive. Let κ = max≤i≤k{κi}, define

fj(t) = min
{

f (t), j
}

, t ∈R

for any fixed j > maxt∈[,κ] f (t). Consider the following truncated problem:

–�u + Vε(x)u + εφu(x)u = fj(u), u ∈ Hε . (.)
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In the following, we prove that (.) has a solution uε satisfying ‖uε‖∞ ≤ κ for ε small. So
we can show that uε is the solution of the original problem (.).

Now, for each  ≤ i ≤ k, we consider the limit equation of (.),

–�u + miu = fj(u), u ∈ H(
R

). (.)

Lemma . Assume that (F)-(F), then (.) admits a positive ground state solution.

Proof By [], it suffices to verify that fj satisfies the Berestycki-Lions conditions: (f)-(f).
(f) and (f) are obvious. For any U ∈ Si, as we can see in [],


∫
R

(
F(U) –

mi


U

)
dx =

∫
R

|∇U| dx,

which implies that

F
(
U(x)

)
>

m


U(x)

for some x ∈ R
. Let T = U(x) > , Fj(T) = F(T) > m

 T, where Fj(t) =
∫ t

 fj(s) ds. The
proof is completed. �

For each i ∈ {, , . . . , k}, let Sj
i be the set of positive ground state solutions U of (.)

satisfying U() = maxx∈R U(x). Then by [] we know Sj
i is compact in H(R). Denote

by Ej
i the least energy of (.), then Ej

i ≤ Ei due to Si ⊂ Sj
i. Since fj(t) ≤ f (t) for any t ≥ ,

Ej
i ≥ Ei. Thus, Ej

i = Ei.

Lemma . For j > maxt∈[,κ] f (t) and each i ∈ {, , . . . , k}, we have

Sj
i = Si.

Proof The proof is similar to [, ]. For completeness, we give the details here. Obvi-
ously, Si ⊂ Sj

i. In the following, we prove Sj
i ⊂ Si. Take any uj ∈ Sj

i and consider the con-
straint minimization problem

Mj := inf
{

W (u) : ϒj(u) = , u ∈ H(
R

)}, (.)

where

W (u) =



∫
R

|∇u| dx, ϒj(u) =
∫
R

Gj(u) dx, Gj(s) = Fj(s) –
mi


s.

By Lemma  in [], uj is a minimizer of W (v) on {v ∈ H(R) : ϒj(v) = λj}, where λj =
(Mj/) 

 . By Pohozaev’s identity, we get ‖∇uj‖
 = Ej

i . Let vj = uj(λ/
j ·), we have ‖∇vj‖

 =
W (vj) = Mj. So by the scaling, we have

Ej
i =  · –/M



j .
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Similarly, we consider the problem

M := inf
{

W (u) : ϒ(u) = , u ∈ H(
R

)}, (.)

where

ϒ(u) =
∫
R

G(u) dx, G(s) = F(s) –
mi


s.

Then we can get

Ei =  · –/M

 .

Then Mj = M since Ej
i = Ei.

Obviously, ϒj(vj) = , so ϒ(vj) ≥ . Now, we claim that ϒ(vj) = . If not, by a scaling, we
have

W (vj) ≥ M
(
ϒ(vj)

)/ > M = Mj,

which is in contradiction with W (vj) = Mj. Thus, ϒ(vj) =  and vj is a minimizer of (.).
By Lemma  in[] again, we get uj ∈ Sm. The proof is completed. �

Completion of the proof for Theorem .:

Proof For some fixed j > maxt∈[,κ] f (t), we adopt some ideas in [] to construct the multi-
bump solutions of the truncation problem (.).

For any set B ⊂R
 and ε > , set Bε ≡ {x ∈R

 : εx ∈ B} and Bδ ≡ {x ∈R
 : dist(x, B) ≤ δ}.

Let M =
⋃k

i= Mi and O =
⋃k

i= Oi. Fixing an arbitrary μ > , we define

χε(x) =

{
, if x ∈ Oε ,
ε–μ, if x ∈R

 \ Oε ,
Qε(u) =

(∫
R

χεu dx – 
)

+
.

Now, we construct a set of approximate solutions of (.). Let

δ =



min

{
dist

(
M, Oc), min

i�=j
dist

(
Oi, Oj)}.

We fix a β ∈ (, δ) and a cut-off ϕ ∈ C∞
 (R) such that  ≤ ϕ ≤ , ϕ(x) =  for |x| ≤ β

and ϕ(x) =  for |x| ≥ β . Let ϕε(y) = ϕ(εy), y ∈ R
. For each i ∈ {, , . . . , k} and some

xi ∈ (Mi)β ,  ≤ i ≤ k, and Ui ∈ Si, we define

Ux,x,...,xk
ε (y) =

k∑
i=

ϕε

(
y –

xi

ε

)
Ui

(
y –

xi

ε

)
.

Here, we recall that Sj
i = Si ( ≤ i ≤ k) by Lemma .. As in [], we will find a solution of

(.) in a small neighborhood of

Xε =
{

Ux,x,...,xk
ε | xi ∈ (

Mi)β , Ui ∈ Si, i = , , . . . , k
}
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for sufficiently small ε > . Let �
j
ε(u) = Pj

ε(u) + Qε(u) for any u ∈ Hε , where

Pj
ε(u) =




∫
R

(|∇u| + Vεu)dx –
∫
R

Fj(u) dx.

By Proposition ., it is easy to see that �
j
ε ∈ C(Hε). The set Xd

ε is bounded in H(R) for
any d > . By Proposition . εT(u) = O(ε) uniformly for u ∈ Xd

ε . Then, as we can see
in [, ], for some small d > , there exists ε >  such that for ε ∈ (, ε), �

j
ε admits a

critical point uε ∈ Xd
ε with the following properties:

(i) there exist {yi
ε}k

i= ⊂R
, xi ∈Mi, Ui ∈ Si such that for any  ≤ i ≤ k,

lim
ε→

∣∣εyi
ε – xi∣∣ =  and lim

ε→

∥∥∥∥∥uε –
k∑

i=

Ui
(· – yi

ε

)∥∥∥∥∥
ε

= ;

(ii) there exist C, c >  (independent of ε, i), such that

 < c ≤ uε(y) ≤ C exp

(
–




min
≤i≤k

∣∣y – yi
ε

∣∣) for y ∈R
, ε ∈ (, ε). (.)

It follows from the decay (.) that Qε(uε) =  for small ε > , i.e., uε is a solution of (.).
Let wi

ε(·) = uε(· + yi
ε), by the elliptic estimates, wi

ε ∈ C,α(R) for some α ∈ (, ) and each
 ≤ i ≤ k. By (.) there exists zi

ε ∈ R
 such that

∥∥wi
ε

∥∥∞ = wi
ε

(
zi
ε

)
= uε

(
zi
ε + yi

ε

)
.

Moreover, {zi
ε}k

i= ⊂ R
 is uniformly bounded for ε. Assume that zi

ε → zi as ε → , let
uε(·) = vε(ε·) and xi

ε = εyi
ε + εzi

ε , then maxx∈R vε(x) = vε(xi
ε), limε→ dist(xi

ε ,Mi) =  and
‖vε(ε · +xi

ε) – Ui(· + zi)‖ε →  as ε →  for each  ≤ i ≤ k.
In the following, we prove that ‖uε‖∞ ≤ κ uniformly holds for sufficiently small ε > ,

which implies that vε is a solution of the original problem (.). For each  ≤ i ≤ k, let
w̃i

ε(·) = uε(· + xi
ε/ε), then ‖w̃i

ε‖∞ = w̃i
ε() and

–�w̃i
ε + V

(
εx + xi

ε

)
w̃i

ε + εφw̃i
ε
w̃i

ε = fj
(
w̃i

ε

)
, w̃i

ε ∈ Hε .

Since that fj(t) ≤ j for all t ∈ R, it follows from the elliptic estimate (see []) that w̃i
ε →

Ui(· + zi) uniformly in B(). So we have w̃i
ε() ≤ κ uniformly holds for sufficiently small

ε > . The proof is completed. �
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