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Abstract
In this paper, we use a successive approximation method to prove the existence and
uniqueness theorems of solutions to non-Lipschitz stochastic differential equations
(SDEs) driven by fractional Brownian motion (fBm) with the Hurst parameter H ∈ ( 12 , 1).
The non-Lipschitz condition which is motivated by a wider range of applications is
much weaker than the Lipschitz one. Due to the fact that the stochastic integral with
respect to fBm is no longer a martingale, we definitely lost good inequalities such as
the Burkholder-Davis-Gundy inequality which is crucial for SDEs driven by Brownian
motion. This point motivates us to carry out the present study.
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1 Introduction
Stochastic differential equations (SDEs) have been greatly developed and are well known
to model diverse phenomena, including but not limited to fluctuating stock prices, phys-
ical systems subject to thermal fluctuations, forecasting the growth of a population, from
various points of view [–]. There is no doubt that the mathematical models under a
random disturbance of ‘Gaussian white noise’ have seen rapid development. However, it
is not appropriate to model some real situations where stochastic fluctuations with long-
range dependence might exist. Due to the long-range dependence of the fBm which was
introduced by Hurst [], Kolmogorov [], Mandelbrot [] originally, SDEs driven by fBm
have been used as the models of a number of practical problems in various fields, such as
queueing theory, telecommunications, and economics [–].

On most occasions, the coefficients of SDEs driven by fBm are assumed to satisfy the
Lipschitz condition. The existence and uniqueness of solutions of SDEs driven by fBm with
Lipschitz condition have been studied by many scholars [–]. However, this Lipschitz
condition seemed to be considerably strong when one discusses variable applications in
real world. For example, the hybrid square root process and the one-dimensional semi-
linear SDEs with Markov switching. Such models appear widely in many branches of sci-
ence, engineering, industry and finance [–]. Therefore, it is important to obtain some
weaker condition than the Lipschitz one under which the SDEs still have unique solutions.
Fortunately, many researchers have investigated the SDEs under non-Lipschitz condition
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and they presented many meaningful results [–]. But, to the best of our knowledge,
the existence and uniqueness of solutions of SDEs driven by fBm with a non-Lipschitz
condition have not been considered. Since fBm is neither a semi-martingale nor a Markov
process, we definitely lost good inequalities such as the Burkholder-Davis-Gundy inequal-
ity, which is crucial for SDEs driven by Brownian motion. Then it seems not to be very easy
to obtain the existence and uniqueness of solutions to non-Lipschitz SDEs with fBm. This
point motivates us to carry out the present study.

We in the present paper discuss the SDEs with fBm under the non-Lipschitz condition.
Using the successive approximation method, the existence and uniqueness theorems of
solutions to the following non-Lipschitz SDEs driven by fBm are proved:

X(t) = X() +
∫ t


b
(
s, X(s)

)
ds +

∫ t


σ
(
s, X(s)

)
dBH (s), t ∈ [, T], (.)

where the initial data X() = ξ is a random variable,  < T < ∞, the process BH (t) repre-
sents the fBm with Hurst index H ∈ ( 

 , ) defined in a complete probability space (�,F ,P),
and b(t, X(t)) : [, T] × R → R and σ (t, X(t)) : [, T] × R → R are all measurable functions;∫ t

 ·dBH(s) stands for the stochastic integral with respect to fBm.

2 Preliminaries
Let (�,F ,P) be a complete probability space. SDEs with respect to fBm have been in-
terpreted via various stochastic integrals, such as the Wick integral, the Wiener integral,
the Skorohod integral, and path-wise integrals [, –]. In this paper, we consider the
path-wise integrals [] with respect to fBm.

Let ϕ : R+ × R+ → R+ be defined by

ϕ(t, s) = H(H – )|t – s|H–, t, s ∈ R+,

where H is a constant with 
 < H < .

Let g : R+ → R be Borel measurable.
Define

L
ϕ(R+) =

{
g : ‖g‖

ϕ =
∫

R+

∫
R+

g(t)g(s)ϕ(t, s) ds dt < ∞
}

.

If we equip L
ϕ(R+) with the inner product

〈g, g〉ϕ =
∫

R+

∫
R+

g(t)g(s)ϕ(t, s) ds dt, g, g ∈ L
ϕ(R+),

then L
ϕ(R+) becomes a separable Hilbert space.

Let S be the set of smooth and cylindrical random variables of the form

F(ω) = f
(∫ T


ψ(t) dBH

t , . . . ,
∫ T


ψn(t) dBH

t

)
,

where n ≥ , f ∈ C∞
b (Rn) (i.e. f and all its partial derivatives are bounded), and ψi ∈ H,

i = , , . . . , n. H is the completion of the measurable functions such that ‖ψ‖
ϕ < ∞ and

{ψn} is a sequence in H such that 〈ψi,ψj〉ϕ = δij.
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The Malliavin derivative DH
t of a smooth and cylindrical random variable F ∈ S is de-

fined as the H-valued random variable:

DH
t F =

n∑
i=

∂f
∂xi

(∫ T


ψ(t) dBH

t , . . . ,
∫ T


ψn(t) dBH

t

)
ψi(t).

Then, for any p ≥ , the derivative operator DH
t is a closable operator from Lp(�) into

Lp(�;H). Next, we introduce the ϕ-derivative of F :

Dϕ
t F =

∫
R+

ϕ(t, v)DH
v F dv.

The elements of H may not be functions but distributions of negative order. Thanks to
this, it is convenient to introduce the space |H| of the measurable function h on [, T]
satisfying

‖h‖
|H| =

∫ T



∫ T



∣∣h(t)
∣∣∣∣h(s)

∣∣ϕ(t, s) ds dt < ∞.

It is not difficult to show that |H| is a Banach space with the norm ‖·‖
|H|.

In addition, we denote by DH,k
t the iteration of the derivative operator for any integer

k ≥ . The Sobolev space D
k,p is the closure of S with respect to the norm, for any p ≥ 

(
⊗

denotes the tensor product),

‖F‖p
k,p = E|F|p + E

k∑
j=

∥∥DH,j
t F

∥∥p
H

⊗
j .

Similarly, for a Hilbert space U , we denote by Dk,p(U) the corresponding Sobolev space of
U-valued random variables. For any p >  we denote by D

,p(|H|) the subspace of D,p(H)
formed by the elements h such that h ∈ |H|.

Biagini et al. [], Alos, Mazet and Nualart [], Hu and Øksendal [] have given more
details as regards the fBm.

Lemma  Let u(t) be a stochastic process in the space D,(|H|), satisfying

∫ T



∫ T



∣∣DH
s u(t)

∣∣|t – s|H– ds dt < ∞,

then the symmetric integral coincides with the forward and backward integrals (P,[]).

Definition  The space Lϕ[, T] of integrands is defined as the family of stochastic pro-
cesses u(t) on [, T], such that E‖u(t)‖

ϕ < ∞, u(t) is ϕ-differentiable, the trace of Dϕ
s u(t)

exists,  ≤ s ≤ T ,  ≤ t ≤ T , and

E

∫ T



∫ T



[
Dϕ

t u(s)
] ds dt < ∞,
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and for each sequence of partitions (πn, n ∈ N) such that |πn| →  as n → ∞,

n–∑
i=

E

[∫ t(n)
i+

t(n)
i

∫ t(n)
j+

t(n)
j

∣∣Dϕ
s uπ

(
t(n)
i

)
Dϕ

t uπ
(
t(n)
j

)
– Dϕ

s u(t)Dϕ
t u(s)

∣∣ds dt
]

and

E
[∥∥uπ – u

∥∥
ϕ

]

tend to  as n → ∞, where πn = t(n)
 < t(n)

 < · · · < t(n)
n– < t(n)

n = T .

Lemma  Let BH (t) be a fBm with 
 < H < , and u(t) be a stochastic process in D

,(|H|)∩
Lϕ[, T], then for every T < ∞,

E

[∫ T


u(s) d◦BH(s)

]

≤ HTH–
E

[∫ T



∣∣u(s)
∣∣ ds

]
+ TE

∫ T



[
Dϕ

s u(s)
] ds.

The detailed proof of Lemma  can be found in the authors’ previous work [–].

In this paper, we always assume the following non-Lipschitz condition, which was pro-
posed by Yamada and Watanabe [], is satisfied.

Hypothesis 
() There exists a function κ(q) > , q > , κ() =  such that κ(q) is a continuous

non-decreasing, concave function and
∫

+
dq

κ(q) = +∞,
() b(t, ), σ (t, ) are locally integral with respect to t,
() Furthermore, ∀t ∈ [, T], b(t, ·),σ (t, ·) ∈Lϕ[, T] ∩D

,(|H|), we have

E
∣∣b(t, X) – b(t, Y )

∣∣ + E
∣∣σ (t, X) – σ (t, Y )

∣∣

+ E
∣∣Dϕ

t
(
σ (t, X) – σ (t, Y )

)∣∣ ≤ κ
(
E|X – Y |). (.)

The above-mentioned Hypothesis  is the so-called non-Lipschitz condition. The non-
Lipschitz condition has a variety of forms [–]. Here, we consider one kind of them.
In particular, we see clearly that if we let κ(q) = K ′q, then the non-Lipschitz condition
reduces to the Lipschitz condition. In other words, the non-Lipschitz condition is weaker
than the Lipschitz condition.

Now, we give some concrete examples of the function κ . Let K ′ >  and let μ ∈ ], [ be
sufficiently small. Define

κ(x) = K ′x, x ≥ ,

κ(x) =

⎧⎨
⎩

x log(x–),  ≤ x ≤ μ,

μ log(μ–) + κ ′
(μ–)(x – μ), x > μ,

κ(x) =

⎧⎨
⎩

x log(x–) log log(x–),  ≤ x ≤ μ,

μ log(μ–) log log(μ–) + κ ′
(μ–)(x – μ), x > μ,
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where κ ′ denotes the derivative of the function κ . They are all concave and non-decreasing
functions satisfying

∫
+


κi(x) dx = ∞ (i = , , ).

3 The main theorems
In this section, using an iteration of the Picard type, we will discuss the solutions
for non-Lipschitz SDEs with fBm. Let X(t) ≡ ξ be a random variable with E|ξ | <
+∞, and construct an approximate sequence of stochastic process {Xk(t)}k≥ as fol-
lows:

Xk(t) = ξ +
∫ t


b
(
s, Xk–(s)

)
ds +

∫ t


σ
(
s, Xk–(s)

)
d◦BH (s), k = , , . . . . (.)

Hereafter, we assume that  ≤ T < +∞ without losing generality.
First, we given the following four key lemmas. The proofs for Lemma  and Lemma 

will be presented in the Appendix.

Lemma  There exists a positive number K , ∀b(t, ·),σ (t, ·) ∈ Lϕ[, T] ∩ D
,(|H|), t ∈

[, T], and we have

E
∣∣b(t, X)

∣∣ + E
∣∣σ (t, X)

∣∣ + E
∣∣Dϕ

t σ (t, X)
∣∣ ≤ K

(
 + E|X|).

Lemma  Under the conclusion of Lemma , one can get

E
∣∣Xk(t)

∣∣ ≤ C, k = , , . . . , t ∈ [, T], (.)

where C = ( + E|ξ |) exp(KT).

Lemma  If b(t, X) and σ (t, X) satisfy the Hypothesis , then for t ∈ [, T], n ≥ , k ≥ , we
have

E
∣∣Xn+k(s) – Xn(s)

∣∣ ≤ C

∫ t


κ
(
E

∣∣Xn+k–(s) – Xn–(s)
∣∣)ds (.)

and

sup
≤s≤t

E
∣∣Xn+k(s) – Xn(s)

∣∣ ≤ Ct,

where C = T and C is a constant.

Proof For  ≤ s ≤ t, we show that

E
∣∣Xn+k(s) – Xn(s)

∣∣

≤ E
∣∣∣∣
∫ s



(
b
(
s, Xn+k–(s)

)
– b

(
s, Xn–(s)

))
ds

∣∣∣∣


+ E
∣∣∣∣
∫ s



(
σ
(
s, Xn+k–(s)

)
– σ

(
s, Xn–(s)

))
d◦BH (s)

∣∣∣∣


≤ TE

∫ t



[∣∣b(
s, Xn+k–(s)

)
– b(s, Xn–(s)

∣∣
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+
∣∣σ (

s, Xn+k–(s)
)

– σ (s, Xn–(s)
∣∣

+
∣∣Dϕ

s

(
σ
(
s, Xn+k–(s)

)
– σ

(
s, Xn–(s)

))∣∣]ds

≤ C

∫ t


κ
(
E

∣∣Xn+k–(s) – Xn–(s)
∣∣)ds.

Then it is easy to verify

sup
≤s≤t

E
∣∣Xn+k(s) – Xn(s)

∣∣ ≤ C

∫ t


κ
(
E

∣∣Xn+k–(s) – Xn–(s)
∣∣)ds

≤ C

∫ t


κ(C) ds ≤ Ct.

This completes the proof of Lemma . �

Now, choose  < T ≤ T , such that t ∈ [, T], for κ(Ct) ≤ C, κ(q) = Cκ(q) holds.
We should note that in the following part, we first of all prove the following main theo-
rem, Theorem , in the time interval [, T], then we extend the result in the whole in-
terval [, T]. Fix k ≥  arbitrarily and define two sequences of functions {φn(t)}n=,,... and
{φ̃n,k(t)}n=,,..., where

φ(t) = Ct,

φn+(t) =
∫ t


κ

(
φn(s)

)
ds,

φ̃n,k(t) = sup
≤s≤t

E
∣∣Xn+k(s) – Xn(s)

∣∣, n = , , . . . .

Lemma  Under the Hypothesis ,

 ≤ φ̃n,k(t) ≤ φn(t) ≤ φn–(t) ≤ · · · ≤ φ(t), t ∈ [, T], (.)

for all positive integer n.

Proof By Lemma , we have

φ̃,k(t) = sup
≤s≤t

E
∣∣X+k(s) – X(s)

∣∣ ≤ Ct = φ(t), t ∈ [, T].

Then, since κ(q) = Cκ(q), κ(q) is a concave function and

E
∣∣Xk+(s) – X(s)

∣∣ ≤ sup
≤s≤t

E
∣∣Xk+(s) – X(s)

∣∣ = φ̃,k(t),  ≤ s ≤ t,

it is easy to verify

φ̃,k(t) = sup
≤s≤t

E
∣∣X+k(s) – X(s)

∣∣

≤ C

∫ t


κ
(
E

∣∣Xk+(s) – X(s)
∣∣)ds
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≤
∫ t


κ

(
φ̃,k(s)

)
ds ≤

∫ t


κ

(
φ(s)

)
ds

= φ(t) =
∫ t


κ(Cs) ds

≤ Ct = φ(t), t ∈ [, T].

That is to say, for n = , we have

φ̃,k(t) ≤ φ(t) ≤ φ(t), t ∈ [, T].

Next, assume (.) for n ≥  and by the assumption for n

E
∣∣Xn+k(s) – Xn(s)

∣∣ ≤ sup
≤s≤t

E
∣∣Xn+k(s) – Xn(s)

∣∣ = φ̃n,k(t) ≤ φn(t),

it is easy to verify for n + 

φ̃n+,k(t) = sup
≤s≤t

E
∣∣Xn+k+(s) – Xn+(s)

∣∣

≤
∫ t


κ

(
E

∣∣Xn+k(s) – Xn(s)
∣∣)ds

≤
∫ t


κ

(
φ̃n,k(s)

)
ds

≤
∫ t


κ

(
φn(s)

)
ds = φn+(t)

≤
∫ t


κ

(
φn–(s)

)
ds = φn(t), t ∈ [, T].

This completes the proof of Lemma . �

Theorem  Under the Hypothesis , then

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

By Theorem , we say that {Xk(· )}k≥ is a Cauchy sequence and define its limit as X(· ).
Then letting k → ∞ in (.), we finally see that the solutions to (.) exist.

Proof Step : In this step we shall show

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

By Lemma , we know φn(t) decreases monotonically when n → ∞ and φn(t) is non-
negative function on t ∈ [, T]. Therefore, we can define the limit function φ(t) by φn(t) ↓
φ(t). It is easy to verify that φ() =  and φ(t) is a continuous function on t ∈ [, T] [].
According to the definition of φn(t) and φ(t), we obtain

φ(t) = lim
n→∞φn+(t) = lim

n→∞

∫ t


κ

(
φn(s)

)
ds =

∫ t


κ

(
φ(s)

)
ds, t ∈ [, T]. (.)
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Since φ() =  and

∫
+

dq
κ(q)

=


C

∫
+

dq
κ(q)

= +∞,

(.) implies φ(t) ≡ , t ∈ [, T].
Therefore we obtain

 ≤ lim
k,n→∞

sup
≤t≤T

E
∣∣Xn+k(t) – Xn(t)

∣∣ = lim
k,n→∞

φ̃n,k(T) ≤ lim
n→∞φn(T) = ,

namely,

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

Step : Define

T = sup
{

T̃ : T̃ ∈ [, T] and lim
n,i→∞ sup

≤t≤T̃
E

∣∣Xn(t) – Xi(t)
∣∣ = 

}
.

Immediately, we can observe  < T ≤ T ≤ T . Now, we shall show

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

Let ε >  be an arbitrary positive number. Choose S so that  < S < min(T, ). And

CS <
ε


, (.)

where C = K( + K( + E|ξ |))S.
From the definition of T, we have

lim
n,i→∞ sup

≤t≤T–S
E

∣∣Xn(t) – Xi(t)
∣∣ = .

Then, for large enough N , we observe

sup
≤t≤T–S

E
∣∣Xn(t) – Xi(t)

∣∣ <
ε


, n, i ≥ N . (.)

On the other hand, one can get

sup
T–S≤t≤T

E
∣∣Xn(t) – Xi(t)

∣∣ ≤  sup
T–S≤t≤T

E
∣∣Xn(t) – Xn(T – S)

∣∣

+ E
∣∣Xn(T – S) – Xi(T – S)

∣∣

+  sup
T–S≤t≤T

E
∣∣Xi(T – S) – Xi(t)

∣∣

= I + I + I. (.)
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Now, using Lemma , we obtain

I = sup
T–S≤t≤T

E
∣∣Xn(t) – Xn(T – S)

∣∣

≤ SE

∫ T

T–S

∣∣b(
s, Xn–(s)

)∣∣ ds

+ HS
H–

E

∫ T

T–S

∣∣σ (
s, Xn–(s)

)∣∣ ds

+ SE

∫ T

T–S

∣∣Dϕ
sσ

(
s, Xn–(s)

)∣∣ ds

≤ S

∫ T

T–S

K
(
 + K

(
 + E|ξ |))ds

≤ S
K

(
 + K

(
 + E|ξ |)).

Therefore by (.) we have

I ≤ ε


(.)

and

I ≤ ε


. (.)

Meanwhile, (.) implies

I = E
∣∣Xn(T – S) – Xi(T – S)

∣∣ <
ε


, n, i ≥ N . (.)

Now putting (.)-(.) together, we have

sup
≤t≤T

E
∣∣Xn(t) – Xi(t)

∣∣ ≤ sup
≤t≤T–S

E
∣∣Xn(t) – Xi(t)

∣∣

+ sup
T–S≤t≤T

E
∣∣Xn(t) – Xi(t)

∣∣

≤ ε


+ I + I + I < ε.

That is to say,

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

Step : Using the method of reduction to absurdity, we shall show T = T . Assume
T < T , we can choose a sequence of numbers {ai}i=,,... so that ai ↓  (i → +∞) and for
n > i ≥ ,

sup
≤t≤T

E
∣∣Xn(t) – Xi(t)

∣∣ ≤ ai. (.)

We shall divide the step into several sub-steps.
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First, for n > i ≥ , we shall show

sup
T≤s≤T+t

E
∣∣Xn(s) – Xi(s)

∣∣ ≤ ai + Ct, T + t ≤ T , (.)

where C = TK( + K( + E|ξ |)).
To show this, set

J (i)
 = E

∣∣Xn(T) – Xi(T)
∣∣,

J (i)
 (t) = sup

T≤s≤T+t
E

∣∣∣∣
∫ s

T

(
b
(
s, Xn–(s)

)
– b

(
s, Xi–(s)

))
ds

∣∣∣∣


,

J (i)
 (t) = sup

T≤s≤T+t
E

∣∣∣∣
∫ s

T

(
σ
(
s, Xn–(s)

)
– σ

(
s, Xi–(s)

))
d◦BH (s)

∣∣∣∣


.

Then (.) implies J (i)
 ≤ ai and

J i
(t) + J i

(t) ≤ TE

∫ T+t

T

[∣∣b(
s, Xn–(s)

)
– b

(
s, Xi–(s)

)∣∣

+
∣∣σ (

s, Xn–(s)
)

– σ
(
s, Xi–(s)

)∣∣

+
∣∣Dϕ

s

(
σ
(
s, Xn–(s)

)
– σ

(
s, Xi–(s)

))∣∣]ds

≤ TK
(
 + K

(
 + E|ξ |))t.

Therefore

sup
T≤s≤T+t

E
∣∣Xn(s) – Xi(s)

∣∣ ≤ J (i)
 + J (i)

 (t) + J (i)
 (t)

≤ ai + Ct, T + t ≤ T .

Next, we shall show an assertion which is analogous to Lemma . To state the assertion,
we need to introduce several notations.

Choose a positive number  < η ≤ T – T and a positive integer j ≥ , so that

Cκ(aj + Ct) ≤ C, t ∈ [,η],κ(q) = Cκ(q), (.)

where C = T .
Introduce the sequence of functions {ψk(t)}k=,,..., t ∈ [,η], defined by

ψ(t) = aj + Ct,

ψk+(t) = aj+k +
∫ t


κ

(
ψk(s)

)
ds,

ψ̃k,n(t) = sup
T≤s≤T+t

E
∣∣Xn+k(s) – Xj+k(s)

∣∣.

Now, the assertion to be proved is the following:

ψ̃k,n(t) ≤ ψk(t) ≤ ψk–(t) ≤ · · · ≤ ψ(t), t ∈ [,η], (.)

for all positive integer k.
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Noticing that κ(q) is a non-decreasing, concave function, and (.) holds, from this for
k = , we work out

ψ̃,n(t) = sup
T≤s≤T+t

E
∣∣Xn+(s) – Xj+(s)

∣∣

≤ aj+ + CE

∫ T+t

T

[∣∣b(
s, Xn(s)

)
– b

(
s, Xj(s)

)∣∣

+
∣∣σ (

s, Xn(s)
)

– σ
(
s, Xj(s)

)∣∣

+
∣∣Dϕ

s

(
σ
(
s, Xn(s)

)
– σ

(
s, Xj(s)

))∣∣]ds

≤ aj+ +
∫ T+t

T

κ
(
E

∣∣Xn(s) – Xj(s)
∣∣)ds

≤ aj +
∫ T+t

T

κ(aj + Cs) ds ≤ ψ(t), t ∈ [,η].

On the other hand, using (.) we arrive at

ψ̃,n(t) ≤ sup
T≤s≤T+t

E
∣∣Xn+(s) – Xj+(s)

∣∣

≤ aj+ + C

∫ T+t

T

κ
(
E

∣∣Xn+(s) – Xj+(s)
∣∣)ds

≤ aj+ +
∫ T+t

T

κ
(
ψ̃,n(t)

)
ds

≤ aj+ +
∫ T+t

T

κ
(
ψ(t)

)
ds = ψ(t)

≤ aj + Ct = ψ(t), t ∈ [,η].

Then we have proved

ψ̃,n(t) ≤ ψ(t) ≤ ψ(t).

Now assume that the assertion holds for k ≥ . Then, by an analogous argument, one
can obtain

ψ̃k+,n(t) ≤ aj+k+ +
∫ T+t

T

κ
(
E

∣∣Xn+k(s) – Xj+k(s)
∣∣)ds

≤ aj+k+ +
∫ T+t

T

κ
(
ψ̃k,n(s)

)
ds

≤ aj+k +
∫ T+t

T

κ
(
ψk(s)

)
ds = ψk+(t)

≤ aj+k– +
∫ T+t

T

κ
(
ψk–(s)

)
ds

= ψk(t), t ∈ [,η].
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Therefore, we obtain (.) for all k. In terms of (.), we can define the function ψ(t) by
ψk(t) ↓ ψ(t) (k → ∞). We observe that

ψ() = lim
k→∞

ψk+()

= lim
k→∞

aj+k = .

It is easy to verify that ψ(t) is a continuous function on [,η]. Now by the definition of
ψk+(t) and ψ(t), we have

ψ(t) = lim
k→∞

ψk+(t)

= lim
k→∞

[
aj+k +

∫ t


κ

(
ψk(s)

)
ds

]

=
∫ t


κ

(
ψ(s)

)
ds. (.)

Since ψ() =  and

∫
+

dq
κ(q)

=


C

∫
+

dq
κ(q)

= +∞,

(.) implies ψ(t) = , t ∈ [,η].
Therefore, we obtain

lim
k→∞

ψ̃k,n(t) = lim
k→∞

sup
≤s≤T+t

E
∣∣Xn+k(s) – Xj+k(s)

∣∣

≤ lim
k→∞

sup
≤s≤T

E
∣∣Xn+k(s) – Xj+k(s)

∣∣

+ lim
k→∞

sup
T≤s≤T+η

E
∣∣Xn+k(s) – Xj+k(s)

∣∣

≤ lim
k→∞

ψk(η) = ψ(η) = ,

namely

lim
n,i→∞ sup

≤t≤T+η

E
∣∣Xn(t) – Xi(t)

∣∣ = .

But this conclusion is contradictory to the definition of T. In other words, we have already
shown that

lim
n,i→∞ sup

≤t≤T
E

∣∣Xn(t) – Xi(t)
∣∣ = .

The proof of the existence of solutions of SDEs (.) is complete. �

Theorem  Under the Hypothesis , the path-wise uniqueness holds for (.), t ∈ [, T].
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Proof Let X(t) and X̃(t) be two solutions of (.) on the same probability space and X() =
X̃(). We observe

E
∣∣X(t) – X̃(t)

∣∣

= E

∣∣∣∣
∫ t



(
b
(
s, X(s)

)
– b

(
s, X̃(s)

))
ds +

∫ t



(
σ
(
s, X(s)

)
– σ

(
s, X̃(s)

))
d◦BH (s)

∣∣∣∣


≤ E
∣∣∣∣
∫ t



(
b
(
s, X(s)

)
– b

(
s, X̃(s)

))
ds

∣∣∣∣


+ E
∣∣∣∣
∫ t



(
σ
(
s, X(s)

)
– σ

(
s, X̃(s)

))
d◦BH (s)

∣∣∣∣


≤ TE

∫ t



(∣∣b(
s, X(s)

)
– b

(
s, X̃(s)

)∣∣ +
∣∣σ (

s, X(s)
)

– σ
(
s, X̃(s)

)∣∣

+
∣∣Dϕ

s
(
σ
(
s, X(s)

)
– σ

(
s, X̃(s)

))∣∣)ds.

Combining the above inequalities and the Hypothesis , one has

E
∣∣X(t) – X̃(t)

∣∣ ≤ T
∫ t


κ
(
E

∣∣X(s) – X̃(s)
∣∣)ds. (.)

Then, noticing that
∫

+
dq

κ(q) = +∞, the above inequality (.) implies

E
∣∣X(t) – X̃(t)

∣∣ = , t ∈ [, T].

Since T is an arbitrary positive number, we obtain from this X(t) ≡ X̃(t), for all  ≤ t ≤ T .
Thus the path-wise uniqueness holds for (.). �

Appendix

Proof of Lemma  Since κ(q) is a concave and non-negative function, we can choose two
positive constants a >  and b > , so that

κ(q) ≤ a + bq, q ≥ ,

then, by (.), we get

E
∣∣σ (t, X)

∣∣ + E
∣∣b(t, X)

∣∣ + E
∣∣Dϕ

t σ (t, X)
∣∣

≤ E
(∣∣σ (t, )

∣∣ +
∣∣b(t, )

∣∣ +
∣∣Dϕ

t σ (t, )
∣∣) + E

∣∣σ (t, X) – σ (t, )
∣∣

+ E
∣∣b(t, X) – b(t, )

∣∣ + E
∣∣Dϕ

t (σ (t, X) – σ (t, ))
∣∣

≤  sup
≤t≤T

E
(∣∣σ (t, )

∣∣ +
∣∣b(t, )

∣∣ +
∣∣Dϕ

t σ (t, )
∣∣) + κ

(
E|X|)

≤ K
(
 + E|X|),

where K = max[ sup≤t≤T E(|σ (t, )| + |b(t, )| + |Dϕ
t σ (t, )|) + a, b] < +∞. �
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Proof of Lemma  Using mathematical induction, we first assume that

E
∣∣Xk(t)

∣∣ ≤ E|ξ |
k∑

l=

(KT)l

l!
tl +

k∑
l=

(KT)l

l!
tl (A.)

holds, t ∈ [, T], k = , , . . . .
Clearly, by Lemma  and Lemma , we arrive at

E
∣∣X(t)

∣∣ ≤ E|ξ | + E
∣∣∣∣
∫ t


b
(
s, X(s)

)
ds

∣∣∣∣


+ E
∣∣∣∣
∫ t


σ
(
s, X(s)

)
d◦BH (s)

∣∣∣∣


≤ E|ξ | + TE

∫ t



(∣∣b(
s, X(s)

)∣∣ +
∣∣σ (

s, X(s)
)∣∣ +

∣∣Dϕ
s σ

(
s, X(s)

)∣∣)ds

≤ E|ξ | + KTt
(
 + E|ξ |). (A.)

Now, assume that (A.) holds for k, then we have, for k + ,

E
∣∣Xk+(t)

∣∣ ≤ E|ξ | + E
∣∣∣∣
∫ t


b
(
s, Xk(s)

)
ds

∣∣∣∣


+ E
∣∣∣∣
∫ t


σ
(
s, Xk(s)

)
d◦BH (s)

∣∣∣∣


≤ E|ξ | + TE

∫ t



(∣∣b(
s, Xk(s)

)∣∣ +
∣∣σ (

s, Xk(s)
)∣∣ +

∣∣Dϕ
s σ

(
s, Xk(s)

)∣∣)ds

≤ E|ξ | + KT
∫ t



(
 + E

∣∣Xk(s)
∣∣)ds

≤ E|ξ | + KT
∫ t



(
 + E|ξ |

k∑
l=

(KT)l

l!
sl +

k∑
l=

(KT)l

l!
sl

)
ds

= E|ξ | + KTt + E|ξ |
k+∑
l=

(KT)l

l!
tl +

k+∑
l=

(KT)l

l!
tl

= E|ξ |
k+∑
l=

(KT)l

l!
tl +

k+∑
l=

(KT)l

l!
tl.

Therefore, by induction, (A.) holds for all k.
Now, we obtain the form C = ( + E|ξ |) exp(KT), then (A.) implies (.). �
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