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Abstract
In this paper, a nonautonomous almost periodic prey-predator system with impulsive
effects and multiple delays is considered. By the mean-value theorem of multiple
variables, integral inequalities, differential inequalities, and other mathematical
analysis skills, sufficient conditions which guarantee the permanence of the system
are obtained. Furthermore, by constructing a series of Lyapunov functionals, we
derive that there exists a unique almost periodic solution of the system which is
uniformly asymptotically stable. Finally, a numerical example and some simulations
are presented to support our theoretical results.
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1 Introduction
It is widely known that predation is a very common ecological phenomenon in the natural
world, and research on the dynamics of the prey-predator system is extremely meaningful
and important in many fields, such as protecting varieties of the biological species, main-
taining ecological balance, agricultural pests control and management, etc. As research of
the prey-predator system is concerned, the earliest work dates back to the great contri-
bution of Lotka () and Volterra (). However, based on the classic Lotka-Volterra
model, many ecologists found that the predation rate was not just simply proportional to
the product of the density of the predator and prey. It was always different for different sys-
tems. Then the conception of the functional response was proposed. Functional response
refers to the predation rate per predator with a response to changes in the prey density,
i.e., predation effects of predators on the prey.

Since then, studies depending on all kinds of functional responses sprang up quickly,
such as of Holling type [–], Michaelis-Menton type [], Beddington-DeAngelis type
[], Ivlev type [], Hassell-Varley type [], and so on. In , Crowley and Martin [] pro-
posed a new functional response that can accommodate interference between predators.
It is similar to the well-known Beddington-DeAngelis functional response but has an ad-
ditional term in the first right term equation modeling mutual interference between the
predator terms.
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Crowley-Martin type functional response is used for data sets that indicate feeding rate
that is affected by predator density. It is assumed that predator feeding rate decreases by
higher predator density even when prey density is high, and effects of predator interference
in feeding rate remain important all the time whenever an individual predator is handling
or searching for a prey at a given instant of time. And the formula of the per capita feeding
rate Crowley and Martin proposed in [] is as follows:

f (x, y) =
mx

( + αx)( + βy)
. ()

Here m, α, β are positive parameters that describe the effects of capture rate handling
time and the magnitude of interference among predators, respectively, on the feeding rate.

On the one hand, since models with Crowly-Martin functional response can be gener-
ated by a number of natural mechanisms and admits rich but biological dynamics. How-
ever, to the best of our knowledge, references reported on this functional response seems
to much less until recent several years (see [–]) for the form of the functional response
is relatively complex, for the form of this functional response is relatively complex, and it
is worthwhile to further study the models with it.

Recently, Liu et al. in [] considered a stochastic prey-predator system with Crowley-
Martin type functional response as follows:

{
dx(t) = x(t)[r – bx(t) – cy(t)

(+αx(t))(+βy(t)) ] dt + x(t)[δ dB(t) + μ dB(t)],
dy(t) = y(t)[r – by(t) + cx(t)

(+αx(t))(+βy(t)) ] dt + y(t)[δ dB(t) + μ dB(t)],
()

in which they obtained the condition of the global existence of a unique positive solution
and the stochastic permanence of the positive solution to the model. Furthermore, it is
shown that both the prey and the predator species will become extinct with probability
one if the noise is sufficiently large.

Yin et al. in [] studied the following modified Leslie-Gower predator-prey model with
Crowley-Martin functional response and spatial diffusion under a homogeneous Neu-
mann boundary condition:

{
∂u
∂t = d�u + u( – u – v

(+au)(+bv) ), x ∈ �, t > ,
∂v
∂t = d�v + cv( – dv

u+e ), x ∈ �, t > ,
()

in which they obtained some important qualitative properties, including the existence of
the global positive solution, the dissipation and persistence of the two species, the local
and global asymptotic stability of the constant equilibria, and Hopf bifurcation around the
interior constant equilibrium.

On the other hand, it is well known that there are many natural or man-made factors in
the real world, such as earthquake, flooding, drought, crop-dusting, planting, hunting and
harvesting. These kinds of factors can bring sudden changes to an ecological system, and
the intrinsic discipline of the environment or the species in the system will often undergoes
these changes in a relatively short interval, usually we could regard it happens at some fixed
times. From the viewpoint of mathematics, such sudden changes could be described by
the impulsive effects to the system. In addition, when a prey-predator system is studied,
it is more reasonable to consider time delay during the predation, because there is often
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a digest time instead of transforming food into intrinsic growth rate of the predator. As
far as the impulsive system is concerned, there have appeared much excellent work in
the last decades, such as impulsive effects in ecological systems (see [–]), in epidemic
systems (see []) and in the neural network models (see [–]). Besides, there are many
important monographs in this field (see [–]).

Particularly, research on the impulsive system with delays still seems to be a hot issue
(see [–]), and these kinds of hybrid systems are usually called impulsive functional
systems. When an impulsive functional system is concerned, the difficulty both in the
impulsive differential equation and in the functional differential equation will occur at
the same time, then the dynamical behaviors, such as permanence, periodic solution, al-
most periodic solution, and its asymptotical stability properties, as well as bifurcations
and chaotic behaviors etc., might be richer, more complex, and more interesting.

Enlightened by the above literature, we propose an almost periodic prey-predator sys-
tem with Crowly-Martin type functional response and impulsive effects in this paper, in
which digest delays are also considered in the process of predation, and the final model is
as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt = x(t)[r(t) – d(t)x(t – τ) – c(t)y(t–τ)

(+α(t)x(t–τ))(+β(t)y(t–τ)) ],
dy
dt = y(t)[r(t) – d(t)y(t – τ) + c(t)x(t–τ)

(+α(t)x(t–τ))(+β(t)y(t–τ)) ],

}
t �= tk , k ∈ N ,

x(t+
k ) = ( + hk)x(tk),

y(t+
k ) = ( + hk)y(tk),

}
t = tk , k ∈ N ,

()

where x(t), y(t) are population densities of the predator and the prey at time t, respectively.
τi (i = , , , ) are all nonnegative constants, dj(t) (j = , ) denote the inner density resis-
tance of the predator and of the prey. hjk > –, j = , , k ∈ N , when hjk > , the impulsive
effects represent planting, while hjk <  represents the impulsive denote harvesting.

Throughout the present paper, we define

f u = sup
t∈R+

f (t), f l = inf
t∈R+

f (t),

for any bounded function f (t) defined on R+ = [, +∞).
Further, we assume that
(C) ri(t), ci(t), di(t) (i = , ), α(t) and β(t) are all bounded and positive almost periodic

functions;
(C) Hi(t) =

∏
<tk <t( + hik), i = , , k ∈ N is almost period functions and there exist

positive constants Hu
i and Hl

i such that Hl
i ≤ Hi(t) ≤ Hu

i .
The rest of this article is organized as follows: In Section , we will give some definitions

and several useful lemmas for the proof of our main results. In Section , we will state and
prove our main results such as permanence of the system, existence, and the uniqueness
of an almost periodic solution which is uniformly asymptotically stable by constructing a
series of Lyapunov functionals. In the last section, we give a numerical examples to support
our theoretical results, then provide a brief discussion and summary of our main results.

2 Preliminaries
In this section, we will state the following definitions and lemmas, which will be used in
the next sections.
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We have K = {tk ∈ R|tk < tk+, k ∈ N , limk→±∞ tk = ±∞}, and we thus denote the set of
all sequences that are unbounded and increasing. Let D ⊂ �, � �= �, τ = max≤i≤{τi},
ξ ∈ R. Also, we denote PC(ξ) is the space of all functions φ : [ξ – τ , ξ] → � having
points of discontinuity at μ,μ, . . . ∈ [ξ – τ , ξ] of the first kind and left continuous at
these points.

For J ⊂ R, PC(J , R) is the space of all piecewise continuous functions from J to R with
points of discontinuity of the first kind tk , at which we have left continuity.

Let φ,φ ∈ PC(), denote by x(t) = x(t; ,φ), y(t) = y(t; ,φ), x, y ∈ � the solution of
system () satisfying the following initial conditions:

 ≤ x(s; ,φ) = φ(s) < ∞,  ≤ y(s; ,φ) = φ(s) < ∞, s ∈ [–τ , ],

x(; ,φ) = φ() > , y(; ,φ) = φ() > .
()

Since the solution of system () with initial conditions () is a piecewise continuous func-
tion with points of discontinuity of the first kind, tk , k ∈ Z, we introduce the following
definitions for the almost periodicity.

Definition . (see []) The set of sequence {tj
k}, tk

j = tk+j – tk , k, j ∈ N , tk ∈ K is said to
be uniformly almost periodic, if for arbitrary ε >  there exists a relatively dense set of
ε-almost periodic common for any sequences.

Definition . (see []) The function ϕ ∈ PC(R, R) is said to be almost periodic if the
following conditions hold:

() The set of sequences {tj
k}, tk

j = tk+j – tk , k, j ∈ N , tk ∈ K is uniformly almost periodic.
() For any ε > , there exists a real number δ > , such that if the points t and t

belong to one and the same interval of continuity of ϕ(t) and satisfy the inequality
|t – t| < δ, then |ϕ(t) – ϕ(t)| < ε.

() For any ε > , there exists a relatively dense set T such that if η ∈ T , then
|ϕ(t + η) – ϕ(t)| < ε for all t ∈ R satisfying the condition |t – tk| > ε, k ∈ N . The
elements of T are called ε-almost periods.

For the following system:

{
du
dt = u(t)[r(t) – D(t)u(t – τ) – C(t)v(t–τ)

(+A(t)u(t–τ))(+B(t)v(t–τ)) ],
dv
dt = v(t)[r(t) – D(t)v(t – τ) + C(t)u(t–τ)

(+A(t)u(t–τ))(+B(t)v(t–τ)) ],
()

with initial value

u(s) = φ(s), v(s) = φ(s), φi ∈ PC(), i = , ,

 < u(s; ,φ) = φ(s) < +∞,  < v(s; ,φ) = φ(s) < +∞, s ∈ (–τ , ].
()

Here the expressions of the functions A(t), B(t), Ci(t), Di(t), i = , , are given as follows:

A(t) = H(t)α(t) =
∏

<tk <t

( + hk)α(t),

B(t) = H(t)β(t) =
∏

<tk <t

( + hk)β(t),
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C(t) = H(t)c(t) =
∏

<tk <t

( + hk)c(t),

C(t) = H(t)c(t) =
∏

<tk <t

( + hk)c(t),

D(t) = H(t)d(t) =
∏

<tk <t

( + hk)d(t),

D(t) = H(t)d(t) =
∏

<tk <t

( + hk)d(t).

In the following, we will give some useful lemmas, which will be used in the next sec-
tions.

Lemma . Assume that (u(t), v(t))T is any solution of system () with the initial conditions
(), then u(t) > , v(t) >  for all t ∈ R+.

Proof Let

M(t) = r(t) – D(t)u(t – τ) –
C(t)v(t – τ)

( + A(t)u(t – τ))( + B(t)v(t – τ))
,

N(t) = r(t) – D(t)v(t – τ) +
C(t)u(t – τ)

( + A(t)u(t – τ))( + B(t)v(t – τ))
.

Then from system () we have

u(t) = u() exp

{∫ t


M(s) ds

}
= φ() exp

{∫ t


M(s) ds

}
> ,

v(t) = v() exp

{∫ t


N(s) ds

}
= φ() exp

{∫ t


N(s) ds

}
> .

This completes the proof of this lemma. �

Lemma . For system () and system (), we have the following results:
() If (u(t), v(t))T is a solution of system (), then

(
x(t), y(t)

)T =
( ∏

<tk <t

( + hk)u(t),
∏

<tk <t

( + hk)v(t)
)T

is a solution of system ().
() If (x(t), y(t))T is a solution of system (), then

(
u(t), v(t)

)T =
( ∏

<tk <t

( + hk)–x(t),
∏

<tk<t

( + hk)( + hk)–y(t)
)T

is a solution of system ().

Proof () (u(t), v(t))T is a solution of system (). That is, for any t �= tk , k ∈ N ,

u(t) =
∏

<tk <t

( + hk)–x(t), v(t) =
∏

<tk <t

( + hk)–y(t)
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is a solution of system (), which yields

∏
<tk <t

( + hk)–x′(t)

=
∏

<tk <t

( + hk)–x(t)
{

r(t) – D(t)
∏

<tk <t

( + hk)–x(t – τ)

–
C(t)

∏
<tk <t( + hk)–y(t – τ)

( + A(t)
∏

<tk <t( + hk)–x(t – τ))( + B(t)
∏

<tk <t( + hk)–y(t – τ))

}
, ()

∏
<tk <t

( + hk)–y′(t)

=
∏

<tk <t

( + hk)–y(t)
{

r(t) – D(t)
∏

<tk <t

( + hk)–y(t – τ)

+
C(t)

∏
<tk <t( + hk)–x(t – τ)

( + A(t)
∏

<tk <t( + hk)–x(t – τ))( + B(t)
∏

<tk <t( + hk)–y(t – τ))

}
. ()

By the previous definitions of the functions A(t), B(t), Ci(t), and Di(t), i = , , it follows
from the simplification of () and () that

{
dx
dt = x(t)[r(t) – d(t)x(t – τ) – c(t)y(t–τ)

(+α(t)x(t–τ))(+β(t)y(t–τ)) ],
dy
dt = y(t)[r(t) – d(t)y(t – τ) + c(t)x(t–τ)

(+α(t)x(t–τ))(+β(t)y(t–τ)) ].
()

On the other hand, when t = tk , k ∈ N , we have

x
(
t+
k
)

= lim
t→t+

k

∏
<tk <t

( + hk)u(t) =
∏

<tj≤tk

( + hj)u(tk)

= ( + hk)
∏

<tk <t

( + hk)u(tk) = ( + hk)x(tk), ()

y
(
t+
k
)

= lim
t→t+

k

∏
<tk <t

( + hk)v(t) =
∏

<tj≤tk

( + hj)v(tk)

= ( + hk)
∏

<tk <t

( + hk)v(tk) = ( + hk)y(tk). ()

Combined () with () and (), we can see that (x(t), y(t))T is the solution of the im-
pulsive system ().

() Because u(t) and v(t) are continuous on each interval (tk , tk+], we only need to check
the continuity of u(t) and v(t) at the impulsive point t = tk , k ∈ N .

Since

u(t) =
∏

<tk <t

( + hk)–x(t), v(t) =
∏

<tk <t

( + hk)–y(t),

we have

u
(
t+
k
)

=
∏

<tj≤tk

( + hj)–x
(
t+
k
)

=
∏

<tj<tk

( + hj)–x(tk) = u(tk), ()
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u
(
t–
k
)

=
∏

<tj<tk

( + hj)–x
(
t–
k
)

=
∏

<tj<tk

( + hj)–x(tk) = u(tk). ()

Similarly, we can check that

v
(
t+
k
)

= v
(
t–
k
)

= v(tk). ()

Thus, u(t) and v(t) are continuous on [, +∞).
On the other hand, similar to the above proof of step (), we can verify that (u(t), v(t))T

satisfies system ().
Then (u(t), v(t))T is a solution of the non-impulsive system ().
This completes the proof of Lemma .. �

Lemma . (see [])
() Assume that for w(t) > , t ≥ , we have

w′(t) ≤ w(t)
(
a – bw(t – τ )

)
with initial conditions w(s) = φ(s) ≥ , s ∈ [–τ , ], where a, b are positive constants,
then there exists a positive constant w∗ such that

lim
t→∞ sup w(t) ≤ w∗ :=

aeaτ

b
.

() Assume that for w(t) > , t ≥ , we have

w′(t) ≥ w(t)
(
c – dw(t – τ )

)
with initial conditions w(s) = φ(s) ≥ , s ∈ [–τ , ], where c, d are positive constants,
then there exists a positive constant w∗ such that

lim
t→∞ inf w(t) ≥ w∗ :=

ce(c–dw∗)τ

d
.

Let R be the plane Euclidean space with element X = (x, y)T and norm |X| = |x| + |y|,
C = C([–τ , ], R), B ∈ R+, and denote CB = {ϕ = (ϕ(s),ϕ(s))T ∈ C|‖ϕ‖ ≤ B} with ‖ϕ‖ =
sups∈[–τ ,] |ϕ(s)| = sups∈[–τ ,](|ϕ(s)| + |ϕ(s)|).

Consider the following almost periodic system with delay:

x′(t) = f (t, xt), t ∈ R, ()

where f (t,ϕ) is continuous in (t,ϕ) ∈ R×CB and almost periodic in t uniformly for ϕ ∈ CB,
∀ρ > , ∃M(ρ) >  such that |f (t,ϕ)| ≤ M(ρ) as t ∈ R, ϕ ∈ Cρ , while xt ∈ CB is defined as
xt(s) = x(t + s) for s ∈ [–τ , ].

The associated product system of () is in the form of

x′(t) = f (t, xt), y′(t) = f (t, yt), t ∈ R. ()

Then by the conclusions of [, ], we have Lemma ..
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Lemma . (see []) For φ,ψ ∈ CB, suppose that there exists a Lyapunov function
V (t,φ,ψ) defined on R+ × CB × CB satisfying the following three conditions:

() u(‖φ – ψ‖) ≤ V (t,φ,ψ) ≤ v(‖φ – ψ‖), where u, v ∈P = {u : R+ → R+|u is
continuous increasing function and u(s) → , as s → };

() |V (t, φ̄, ψ̄) – V (t, φ̂, ψ̂)| ≤ L(‖φ̄ – φ̂‖ + ‖ψ̄ – ψ̂‖), where L is a positive constant;
() D+V (t,φ,ψ)|() ≤ –γ V (t,φ,ψ), where γ is a positive constant.

Further, assume that () has a solution x(t, v,φ) such that |x(t, v,φ)| ≤ B for t ≥ v ≥ ,
B > B > . Then system () has a unique almost periodic solution which is uniformly
asymptotically stable.

Lemma . (see []) For any x, y, u, v ∈ R, we have the following important inequality:

∣∣|x – y| – |u – v|∣∣ ≤ |x – u| + |y – v|. ()

3 Main results
First in this section we will give some notations as follows:

u∗ =
ru



Dl


exp
{

ru
 τ

}
, u∗ =

rl
Bl – Cu


BlDu


exp

{(
rl

Bl – Cu


Bl – Du
 u∗

)
τ

}
,

v∗ =
Alru

 + Cu


AlDl


exp

{
Alru

 + Cu


Al τ

}
, v∗ =

rl


Du


exp
{(

rl
 – Du

v∗)τ
}

.

Theorem . Assume that (C) and (C) hold, suppose further that
(C) Cu

 < Blrl
,

then any positive solution (u(t), v(t))T of system () satisfies

u∗ ≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
u(t) ≤ u∗,

v∗ ≤ lim inf
t→+∞ v(t) ≤ lim sup

t→+∞
v(t) ≤ v∗.

Proof Let (u(t), v(t))T be any solution of system (), then from the first equation of (),

u′(t) ≤ u(t)
[
ru

 – Dl
u(t – τ)

]
.

By the first conclusion of Lemma ., we have

lim sup
t→+∞

u(t) ≤ ru


Dl


exp
{

ru
 τ

}
= u∗. ()

Similarly, by the second equation of system (),

v′(t) ≤ v(t)
[

ru
 – Dl

v(t – τ) +
Cu

 u(t – τ)
 + Alu(t – τ)

]
≤ v(t)

[(
ru

 +
Cu


Al

)
– Dl

v(t – τ)
]

,

which leads to

lim sup
t→+∞

v(t) ≤ Alru
 + Cu



AlDl


exp

{
Alru

 + Cu


Al τ

}
= v∗. ()
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Therefore, there exists a T > , such that v(t) ≤ v∗ when t > T.
Thus, when t > T + τ , from the first equation of system () again we have

u′(t) ≥ u(t)
[

rl
 – Du

 u(t – τ) –
Cu

 v∗

 + Blv∗

]
≥ u(t)

[(
rl

 –
Cu


Bl

)
– Du

 u(t – τ)
]

.

Then by the second conclusion of Lemma ., we have

lim inf
t→+∞ u(t) ≥ rl

Bl – Cu


BlDu


exp

{(
rl

Bl – Cu


Bl – Du
 u∗

)
τ

}
= u∗. ()

On the other hand, from the second equation of system () again, we can get

v(t) ≥ v(t)
[
rl

 – Du
v(t – τ)

]
.

Then, by the second conclusion of Lemma . again, we have

lim inf
t→+∞ v(t) ≥ rl


Du


exp

{(
rl

 – Du
v∗)τ

}
= v∗. ()

Thus, we complete the proof of this theorem by combining (), (), (), and (). �

Theorem . Assume that (C)-(C) hold, then any positive solution (x(t), y(t))T of system
() satisfies

Hl
u∗ ≤ lim inf

t→+∞ x(t) ≤ lim sup
t→+∞

x(t) ≤ Hu
 u∗,

Hl
v∗ ≤ lim inf

t→+∞ y(t) ≤ lim sup
t→+∞

y(t) ≤ Hu
 v∗.

Proof Since (x(t), y(t))T is a solution of system (), then by the second conclusion of
Lemma .,

(
u(t), v(t)

)T =
(

x(t)
H(t)

,
y(t)

H(t)

)T

()

is a solution of system ().
Then it follows from Theorem . that

u∗ ≤ lim inf
t→+∞

x(t)
H(t)

≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
u(t) = lim sup

t→+∞
x(t)

H(t)
≤ u∗, ()

v∗ ≤ lim inf
t→+∞

y(t)
H(t)

≤ lim inf
t→+∞ v(t) ≤ lim sup

t→+∞
v(t) = lim sup

t→+∞
y(t)

H(t)
≤ v∗, ()

which implies that

Hl
u∗ ≤ lim inf

t→+∞ x(t) ≤ lim sup
t→+∞

x(t) ≤ Hu
 u∗, ()

Hl
v∗ ≤ lim inf

t→+∞ y(t) ≤ lim sup
t→+∞

y(t) ≤ Hu
 v∗. ()

This completes the proof of this theorem. �



Tian et al. Advances in Difference Equations  (2016) 2016:187 Page 10 of 23

Remark . Suppose that (C)-(C) hold, then system () is permanent.

Before we discuss the existence and uniformly asymptotically stability of a unique almost
periodic solution of system (), we will introduce the following notations first:

α = Kτ + Kτ; β = Dl
u∗ –

√
K – (K + K)τ – (K + K)τ;

α = Dl
v∗ + P – (τ + τ)L – Lτ – Lτ; β = Lτ + Lτ,

where

K =
[

AuCu
 u∗v∗

MN

]

, K =
(
Du

 u∗);

K =
AuCu

 Du
 (u∗)v∗

MN
, K =

Cu
 Du

u∗v∗

MN
, K =

Bu(Cu
 u∗)v∗

MN ;

L =
Cu

 Du
 u∗v∗

MN , L =
Au(Cu

 v∗)u∗

MN , L =
BuCu

 Du
u∗(v∗)

MN ;

L =
(
Du

v∗), L =
[

BuCu
 u∗v∗

MN

]

, M =
Cu

 u∗

MN
, M =

Cu
 v∗

MN ;

M =  + Alu∗, N =  + Blv∗, P =
BlCl

u∗v∗
( + Auu∗)( + Buv∗) .

Theorem . Assume that (C)-(C) hold, further assume that
(C) positive λ and λ exist, such that α

β
< λ

λ
< α

β
,

then system () admits a unique almost periodic solution which is uniformly asymptotically
stable.

Proof At first, we prove that system () has a unique uniformly asymptotically stable al-
most periodic solution.

In order to achieve this aim, we take a transformation

u(t) = ex(t), v(t) = ey(t), t ∈ R+. ()

Then system () is transformed into following system:

⎧⎨
⎩

x′
(t) = r(t) – D(t)ex(t–τ) – C(t)ey(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
,

y′
(t) = r(t) – D(t)ey(t–τ) + C(t)ex(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
.

()

Suppose that U(t) = (x(t), y(t))T and U(t) = (x(t), y(t))T are any two solutions of
system (), then the product system of () reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′
(t) = r(t) – D(t)ex(t–τ) – C(t)ey(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
,

y′
(t) = r(t) – D(t)ey(t–τ) + C(t)ex(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
,

x′
(t) = r(t) – D(t)ex(t–τ) – C(t)ey(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
,

y′
(t) = r(t) – D(t)ey(t–τ) + C(t)ex(t–τ)

(+A(t)ex(t–τ))(+B(t)ey(t–τ))
.

()
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Denote

S∗ =
{
φ = (xt , yt)T ∈ C

(
[–τ , ], R)| ln u∗ ≤ xt ≤ ln u∗, ln v∗ ≤ yt ≤ ln v∗, t ∈ R+}

.

For any � = (φ,φ)T = (xt , yt)T ∈ S∗, we can choose � = (ψ,ψ)T = (xt , yt)T ∈ S∗

such that

∣∣�() – �()
∣∣
 =

∣∣φ() – ψ()
∣∣ +

∣∣φ() – ψ()
∣∣ > . ()

Consider a Lyapunov functional V (t) = V (t,�,�) = V (t, (xt , yt)T , (xt , yt)T ) defined on
R+ × S∗ × S∗ as follows:

V (t) = V(t) + V(t) + V(t) + V(t), ()

where

V(t) = λ
∣∣x(t) – x(t)

∣∣ + λ
∣∣y(t) – y(t)

∣∣; ()

V(t) = λK

∫ –τ

–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds

+ λK

∫ –τ

–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣x(r) – x(r)
∣∣dr ds; ()

V(t) = λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds

+ λL

∫ –τ

–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds

+ λL

∫ –τ

–τ

∫ t

t+s

∣∣y(r) – y(r)
∣∣dr ds; ()

V(t) = λM

∫ t

t–τ

∣∣x(s) – x(s)
∣∣ds + λM

∫ t

t–τ

∣∣y(s) – y(s)
∣∣ds. ()
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According to the definitions of S∗ and V (t) = V (t,�,�), there is some positive constant
M large enough such that

V (t) = V (t,�,�) ≤ M. ()

By the structure of V (t), it is easy to see that

V (t) ≥ V(t) ≥ min{λ,λ}
(∣∣x(t) – x(t)

∣∣ +
∣∣y(t) – y(t)

∣∣) = λ
∣∣�() – �()

∣∣
 > , ()

where λ = min{λ,λ} > .
Moreover, by the integrative inequality and the absolute-value inequality properties we

have

V (t) ≤ 

{

(λ + λ) + λτ
(K + K + K + L + L)

+ λτ
(K + K + L + L + L) + τ (λM + λM)

}
× sup

s∈[–τ ,]

[∣∣xt(s) – xt(s)
∣∣ +

∣∣yt(s) – yt(s)
∣∣]

= λ̄‖� – �‖, ()

where

λ̄ :=


{

(λ + λ) + λτ
(K + K + K + L + L)

+ λτ
(K + K + L + L + L) + τ (λM + λM)

}
.

Let u, v ∈ C(R+, R+), choose u = λs, v = λ̄s, then the first condition of Lemma . is satisfied.
For ∀�̄ = (xt , yt)T , �̄ = (xt , yt)T , �̂ = (x∗

t , y∗
t)T , �̂ = (x∗

t , y∗
t)T ∈ S∗, then from the pre-

vious definitions of Vi(t), i = , , , , it is easy to calculate that

∣∣V (t, �̄, �̄) – V (t, �̂, �̂)
∣∣

= λ
∣∣∣∣x(t) – x(t)

∣∣ –
∣∣x∗

 (t) – x∗
(t)

∣∣| + λ|
∣∣y(t) – y(t)

∣∣ –
∣∣y∗

 (t) – y∗
(t)

∣∣∣∣
+ λK

∫ –τ

–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x(r)
∣∣ –

∣∣x∗
 (r) – x∗

(r)
∣∣∣∣dr ds
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+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ

∫ t

t+s

∣∣∣∣y(r) – y(r)
∣∣ –

∣∣y∗
 (r) – y∗

(r)
∣∣∣∣dr ds

+ λM

∫ t

t–τ

∣∣∣∣x(s) – x(s)
∣∣ –

∣∣x∗
 (s) – x∗

(s)
∣∣∣∣ds

+ λM

∫ t

t–τ

∣∣∣∣y(s) – y(s)
∣∣ –

∣∣y∗
 (s) – y∗

(s)
∣∣∣∣ds.

Then it follows from inequality () in Lemma . that

∣∣V (t, �̄, �̄) – V (t, �̂, �̂)
∣∣

≤ λ
∣∣∣∣x(t) – x∗

 (t)
∣∣ +

∣∣x(t) – x∗
(t)

∣∣∣∣ + λ
∣∣∣∣y(t) – y∗

 (t)
∣∣ +

∣∣y(t) – y∗
(t)

∣∣∣∣
+ λK

∫ –τ

–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λK

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣x(r) – x∗
 (r)

∣∣ +
∣∣x(r) – x∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds

+ λL

∫ –τ

–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds
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+ λL

∫ –τ

–τ

∫ t

t+s

∣∣∣∣y(r) – y∗
 (r)

∣∣ +
∣∣y(r) – y∗

(r)
∣∣∣∣dr ds

+ λM

∫ t

t–τ

∣∣∣∣x(s) – x∗
 (s)

∣∣ +
∣∣x(s) – x∗

(s)
∣∣∣∣ds

+ λM

∫ t

t–τ

∣∣∣∣y(s) – y∗
 (s)

∣∣ +
∣∣y(s) – y∗

(s)
∣∣∣∣ds,

which yields

∣∣V (t, �̄, �̄) – V (t, �̂, �̂)
∣∣

≤ λ̄

∑
i=

sup
s∈[–τ ,]

[∣∣xit(s) – x∗
it(s)

∣∣ +
∣∣yit(s) – y∗

it(s)
∣∣]

= λ̄
(‖�̄ – �̂‖ + ‖�̄ – �̂‖). ()

This means the second condition of Lemma . is satisfied.
Finally, we will prove the last condition of Lemma ..
In fact, calculating the right derivative D+V(t) of V(t) along the solutions of system

() we have

D+V(t) =
(
x′

(t) – x′
(t)

)
sgn

(
x(t) – x(t)

)
+

(
y′

(t) – y′
(t)

)
sgn

(
y(t) – y(t)

)
. ()

It follows from the mean-value theorem and the product system () that

x′
(t) – x′

(t)

= D(t)ex(t–τ) – D(t)ex(t–τ) +
C(t)ey(t–τ)

( + A(t)ex(t–τ))( + B(t)ey(t–τ))

–
C(t)ey(t–τ)

( + A(t)ex(t–τ))( + B(t)ey(t–τ))
.

Then

x′
(t) – x′

(t)

= –D(t)eθ(t)[x(t – τ) – x(t – τ)
]

+
A(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))
[
x(t – τ) – x(t – τ)

]

–
C(t)eθ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

[
y(t – τ) – y(t – τ)

]
, ()

where θ(t) lie between x(t – τ) and x(t – τ), θ(t) lie between x(t – τ) and x(t – τ),
θ(t) lie between y(t – τ) and y(t – τ).

That is,

x′
(t) – x′

(t)

= –D(t)eθ(t)[x(t) – x(t)
]

+ D(t)eθ(t)
∫ t

t–τ

[
x′

(s) – x′
(s)

]
ds
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+
A(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))
[
x(t) – x(t)

]

–
A(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

∫ t

t–τ

[
x′

(s) – x′
(s)

]
ds

–
C(t)eθ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

[
y(t – τ) – y(t – τ)

]
. ()

Integrating both sides of () on the interval [t – τ, t], we have

∫ t

t–τ

[
x′

(s) – x′
(s)

]
ds = –

∫ t

t–τ

D(s)eθ(s)[x(s – τ) – x(s – τ)
]

ds

+
∫ t

t–τ

A(s)C(s)eθ(s)+θ(s)

( + A(s)eθ(s))( + B(s)eθ(s))
[
x(s – τ) – x(s – τ)

]
ds

–
∫ t

t–τ

C(s)eθ(s)

( + A(s)eθ(s))( + B(s)eθ(s))

[
y(s – τ) – y(s – τ)

]
ds

= –
∫ –τ

–τ

D(t + s + τ)eθ(t+s+τ)[x(t + s) – x(t + s)
]

ds

+
∫ –τ

–τ–τ

A(t + s + τ)C(t + s + τ)eθ(t+s+τ)+θ(t+s+τ)

( + A(t + s + τ)eθ(s))( + B(t + s + τ)eθ(t+s+τ))

× [
x(t + s) – x(t + s)

]
ds

–
∫ –τ

–τ–τ

C(t + s + τ)eθ(t+s+τ)

( + A(t + s + τ)eθ(t+s+τ))( + B(t + s + τ)eθ(t+s+τ))

× [
y(t + s) – y(t + s)

]
ds,

which implies that
∣∣∣∣
∫ t

t–τ

[
x′

(s) – x′
(s)

]
ds

∣∣∣∣ ≤ √
K

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+
√

K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ M

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds. ()

Similarly, we can get
∣∣∣∣
∫ t

t–τ

[
x′

(s) – x′
(s)

]
ds

∣∣∣∣ ≤ √
K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+
√

K

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ M

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds. ()

Thus,

(
x′

(t) – x′
(t)

)
sgn

(
x(t) – x(t)

)
≤ –

(
Dl

u∗ –
√

K
)∣∣x(t) – x(t)

∣∣
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+ K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ K

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds + L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ K

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds + K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds + M

∣∣y(t – τ) – y(t – τ)
∣∣. ()

By the same argument, from the second and the fourth equation of system () we can
derive that

y′
(t) – y′

(t)

= D(t)ey(t–τ) – D(t)ey(t–τ) +
C(t)ex(t–τ)

( + A(t)ex(t–τ))( + B(t)ey(t–τ))

–
C(t)ex(t–τ)

( + A(t)ex(t–τ))( + B(t)ey(t–τ))

= –D(t)eθ(t)[y(t – τ) – y(t – τ)
]

+
C(t)eθ(t)

( + A(t)eθ(t))( + B(t)eθ(t))
[
x(t – τ) – x(t – τ)

]

–
B(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

[
y(t – τ) – y(t – τ)

]
, ()

where θ(t) lie between y(t – τ) and y(t – τ), θ(t) lie between x(t – τ) and x(t – τ),
θ(t) lie between y(t – τ) and y(t – τ).

Integrating both sides of () on the interval [t – τ, t], we have

∫ t

t–τ

[
y′

(s) – y′
(s)

]
ds

=
∫ t

t–τ

D(s)eθ(s)[y(s – τ) – y(s – τ)
]

ds

+
∫ t

t–τ

C(s)eθ(s)

( + A(s)eθ(s))( + B(s)eθ(s))
[
x(s – τ) – x(s – τ)

]
ds

–
∫ t

t–τ

B(s)C(s)eθ(s)+θ(s)

( + A(s)eθ(s))( + B(s)eθ(s))

[
y(s – τ) – y(s – τ)

]
ds

= –
∫ –τ

–τ

D(t + s + τ)eθ(t+s+τ)[y(t + s) – y(t + s)
]

ds

+
∫ –τ

–τ–τ

C(t + s + τ)eθ(t+s+τ)[x(t + s) – x(t + s)]
( + A(t + s + τ)eθ(t+s+τ))( + B(t + s + τ)eθ(t+s+τ))

ds

–
∫ –τ

–τ–τ

B(t + s + τ)C(t + s + τ)eθ(t+s+τ)+θ(t+s+τ)

( + A(t + s + τ)eθ(t+s+τ))( + B(s)eθ(t+s+τ))

× [
y(t + s) – y(t + s)

]
ds, ()
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which leads to∣∣∣∣
∫ t

t–τ

[
y′

(s) – y′
(s)

]
ds

∣∣∣∣
≤ √

L

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds +

√
L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ M

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds. ()

By the same argument, we can obtain
∣∣∣∣
∫ t

t–τ

[
y′

(s) – y′
(s)

]
ds

∣∣∣∣
≤ √

L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds +

√
L

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ M

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds. ()

On the other hand, it follows from () that

y′
(t) – y′

(t)

= D(t)eθ(t)
∫ t

t–τ

[
y(s) – y(s)

]
ds

– D(t)eθ(t)[y(t) – y(t)
]

–
B(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

[
y(t) – y(t)

]

+
B(t)C(t)eθ(t)+θ(t)

( + A(t)eθ(t))( + B(t)eθ(t))

∫ t

t–τ

[
y(s) – y(s)

]
ds

–
C(t)eθ(t)

( + A(t)eθ(t))( + B(t)eθ(t))
[
x(t – τ) – x(t – τ)

]
. ()

Thus, combined () with ()-(), one can deduce that

(
y′

(t) – y′
(t)

)
sgn

(
y(t) – y(t)

)
≤ –

(
Dl

v∗ + P
)∣∣y(t) – y(t)

∣∣ + L

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds + K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ L

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds + L

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ K

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds + M

∣∣x(t – τ) – x(t – τ)
∣∣. ()

Therefore,

D+V(t) ≤ –λ
(
Dl

u∗ –
√

K
)∣∣x(t) – x(t)

∣∣ – λ
(
Dl

v∗ + P
)∣∣y(t) – y(t)

∣∣
+ λK

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds + λK

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds
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+ λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds + λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds + λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

+ λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds + λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds + λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ λL

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds + λL

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds

+ λM
∣∣x(t – τ) – x(t – τ)

∣∣ + λM
∣∣y(t – τ) – y(t – τ)

∣∣. ()

On the other hand, according to the structure of Vi(t), i = , , , we can easily calculate
the right derivatives D+V(t), D+V(t), and D+V(t) along the solution of system () as
follows:

D+V(t) = (λτK + λτK + λτK + λτK + λτK + λτK) × ∣∣x(t) – x(t)
∣∣

– λK

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds – λK

∫ –τ

–τ

∣∣x(t + s) – x(t + s)
∣∣ds

– λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds – λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

– λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds

– λK

∫ –τ

–τ–τ

∣∣x(t + s) – x(t + s)
∣∣ds; ()

D+V(t) = (λτL + λτL + λτL + λτL + λτL + λτL) × ∣∣y(t) – y(t)
∣∣

– λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds – λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

– λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds – λL

∫ –τ

–τ–τ

∣∣y(t + s) – y(t + s)
∣∣ds

– λL

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds ds

– λL

∫ –τ

–τ

∣∣y(t + s) – y(t + s)
∣∣ds; ()

D+V(t) = λM
[∣∣x(t) – x(t)

∣∣ –
∣∣x(t – τ) – x(t – τ)

∣∣]
+ λM

[∣∣y(t) – y(t)
∣∣ –

∣∣y(t – τ) – y(t – τ)
∣∣]. ()

From ()-(), by a simple reduction we can easily give the following estimations for
the right derivatives of V (t):

D+V (t) ≤ –
{
λ

(
Dl

u∗ –
√

K
)

– (λτK + λτK + λτK + λτK

+ λτK + λτK)
} × ∣∣x(t) – x(t)

∣∣ –
{
λ

(
Dl

v∗ + P
)

– (λτL
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+ λτL + λτL + λτL + λτL + λτL)
} × ∣∣y(t) – y(t)

∣∣
= –(λβ – λα)

∣∣x(t) – x(t)
∣∣ – (λα – λβ)

∣∣y(t) – y(t)
∣∣. ()

If we denote δ = min{β – λ
λ

α,α – λ
λ

β}, then δ >  by the condition (C).
Thus, it follows from equalities () and () that

D+V (t) = –
(

β –
λ

λ
α

)
λ

∣∣x(t) – x(t)
∣∣

–
(

α –
λ

λ
β

)
λ

∣∣y(t) – y(t)
∣∣

≤ –δ
[
λ

∣∣x(t) – x(t)
∣∣ + λ

∣∣y(t) – y(t)
∣∣]

= –δV(t) = –δ
V(t)
V (t)

V (t)

≤ –
λ|�() – �()|

M
δV (t). ()

Let γ = λ|�()–�()|
M δ, then γ >  and

D+V (t) ≤ –γ V (t), t ∈ R+. ()

This means the last condition of Lemma . is satisfied. By Lemma ., the system ad-
mits a unique uniformly asymptotically stable almost periodic solution (x(t), y(t))T .

Thus, by the transformation (), we can conclude that system () admits a unique uni-
formly asymptotically stable almost periodic solution (u(t), v(t))T = (ex(t), ey(t))T .

Finally, we will explain that system () has a unique uniformly asymptotically stable al-
most periodic solution.

In fact, from Lemma ., we know that

(
x(t), y(t)

)T =
( ∏

<tk <t

( + hk)u(t),
∏

<tk<t

( + hk)v(t)
)T

is a solution of system (). Since the condition (C) holds, similar to the proofs of
Lemma  and Theorem  in [], we can prove that (x(t), y(t))T is almost periodic.
Therefore, (x(t), y(t))T is the unique uniformly asymptotically stable almost periodic so-
lution of system () because of the uniqueness and the uniformly asymptotical stability of
(u(t), v(t))T .

This completes the proof of this theorem. �

4 Numerical simulations and discussions
In this section, we will give a numerical example to illustrate the feasibility of our analytical
results, then some discussions of the effects of impulsive perturbations and time delays to
the system are referred to in the end of the paper.



Tian et al. Advances in Difference Equations  (2016) 2016:187 Page 20 of 23

Example . Consider the following nonautonomous prey-predator system with impul-
sive effects and delays:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = x(t)[. + . sin(t) – (. + . cos(t))x(t – .)

– (.+. sin(t))y(t–.)
(+x(t–.))(+y(t–.)) ],

dy
dt = y(t)[. + . sin(t) – (. + . sin(t))y(t – .)

+ (.+. cos(t))x(t–.)
(+x(t–.))(+y(t–.)) ],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t �= tk ,

x(t+
k ) = ( + hk)x(tk),

y(t+
k ) = ( + hk)y(tk),

}
t = tk , k ∈ N ,

()

where r(t) = .+. sin(t), r(t) = .+. sin(t), d(t) = .+. cos(t), d(t) =
. + . sin(t), c(t) = . + . sin(t), c(t) = . + . cos(t), α(t) = β(t) = 
are all positive, bounded and almost periodic functions which satisfy the condition (C)
in the paper.

If we can set hk = –., hk = –., tk = k, t ∈ [, ], and choose Hl
 = ., Hl

 =
., Hu

 = , Hu
 = , then it is not difficult to verify

Hl
i ≤ Hi(t) =

∏
<tk <t=

( + hik) ≤ Hl
u (i = , ),

which satisfies the condition (C).
Furthermore, according to the notations in Section  one can make some simple calcu-

lations as follows:

u∗ ≈ ., u∗ ≈ ., v∗ ≈ ., v∗ ≈ .;

Al ≈ ., Au = , Bl ≈ ., Bu = ;

rl
 = ., ru

 = ., rl
 = ., ru

 = .;

Cl
 ≈ ., Cu

 = ., Cl
 ≈ ., Cu

 = .,

Dl
 ≈ ., Du

 = ., Dl
 ≈ ., Du

 = ..

Then it is obvious that Cu
 ≈ . < Blrl

 ≈ ., which satisfies the condition (C) in
Theorems . and .. Meanwhile, with the help of mathematical software such as Maple,
we can calculate that

α ≈ ., β ≈ ., α ≈ ., β ≈ ..

Then we can choose positive constants λ = λ = , which satisfy

α

β
≈ . <

λ

λ
=  � α

β
≈ ..

That is to say, the condition (C) in Theorem . is also satisfied. Thus, all the conditions
of Theorems . and . hold, according to the theoretical analysis, system () should be
permanent and admits a unique uniformly asymptotically stable almost periodic solution.
In order to verify this point by numerical simulations, we plot the time-series of the preda-
tor x(t) (see Figure (a)) and the prey y(t) (see Figure (b)). One can see that the population
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Figure 1 The dynamics of system (4) with two initial conditions x(0) = 1, y(0) = 0.2 and x(0) = 1.2,
y(0) = 0.8.

Figure 2 The dynamics of system (4) with initial condition x(0) = 1, y(0) = 0.2 but different impulsive
effects.

Figure 3 The dynamics of system (4) with initial condition x(0) = 1, y(0) = 0.5 but different cases of
time delay.

density of the predator oscillates around x(t) = . and the population density of the prey
oscillates around y(t) = ., this indicates the permanence of the system. The almost pe-
riodic phenomenon is also easily observed from the figure. Moreover, we can see that the
solution U(t) = (x(t), y(t))T with initial condition x() = ., y() = . gradually approx-
imate the other solution of U(t) = (x(t), y(t))T with initial condition x() = , y() = .,
and it proved that the almost periodic case is asymptotically stable.

On the other hand, when the system is permanent, we will show the difference with two
different impulsive effects (see Figure ) and different cases of time delays (see Figure ).
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From Figure , we can see that both the mean density population of the predator and the
prey are decreasing with stronger impulsive effects, such as enhancing the harvesting rate,
the efficiency of the insecticides for the species, and so on. In addition, in order to show
the effects of the delays to the dynamics of the species, we consider two different cases of
time delays, Case  (with τ = ., τ = ., τ = ., τ = . in Figure (a)) and
Case  (with τ = ., τ = , τ = ., τ = . in Figure (b)) with the same initial condition
x() = , y() = .. We can see that the mean population density of the bigger time delays
(Case ) is bigger that the smaller ones (Case ). This suggests that a longer digest delay in
the predation may be conductive and could increase the possibility of the permanence of
the population.
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