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Abstract
In this paper, we present some results concerning the existence and attractivity of
global solutions for a class of nonlinear fractional integral equations and fractional
differential equations in a Banach space X , respectively. These results are new even in
the case of X = R. Some examples are given to show the applications of the abstract
results.
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1 Introduction
The theory of integral equations is frequently applicable in other branches of mathemat-
ics and mathematical physics, like as radiative transfer, kinetic theory of gases, neutron
transport, etc., and engineering, economics, biology as well as in describing problems con-
nected with the real world (see [–] and the references therein). On the other hand, the
application of fractional calculus is very broad, including the characterization of mechan-
ics and electricity, earthquake analysis, the memory of many kinds of material, electronic
circuits, electrolysis chemical, etc. [–].

Recently, some basic theory for initial value problems for fractional differential equa-
tions and inclusions was discussed by many researchers (see [–] and the references
therein). Moreover, there has been a significant development in solving integral equations
involving fractional derivatives in X = R (see [–] and the references therein). How-
ever, to the best of our knowledge, there are few works on the attractivity of solutions for
fractional integral equations in a Banach space.

In this paper, let X be a Banach space, we discuss the existence and attractivity of global
solutions for fractional integral equation on X of the form

x(t) = f
(
t, x

(
α(t)

))
+

g(t, x(β(t)))
�(q)

∫ η(t)



K(t, s)h(s, x(γ (s)))
(t – s)–q ds, t ∈ [, +∞), (.)

where  < q < . f , g, h : R+ × X → X are to be specified later. α,β ,γ ,η : R+ → R+ are con-
tinuous. {K(t, s) : t ≥ s, t, s ∈ R+} is a set of bounded linear operators on X.
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In previous work [–], there are different techniques dealing with integral equations.
For example, the authors apply the measure of noncompactness and fixed point theorem
of Darbo type to deal with quadratic Erdélyi-Kober type integral equations of fractional
order with three parameters []; the authors deal with integral equations in an order in-
terval of a cone []; in [], the technique used is the measure of noncompactness on
space BC(R+) associated with the Schauder fixed point theorem, etc. In [–] and the
references therein, the continuity (even Lipschitz continuity) of f (or g , h) of two variables
is always required. In this paper, we study a more complicated model than previous ones
[–], apply different techniques and obtain results under weaker assumptions. We de-
fine a Banach space C

δ (X) and investigate the existence and attractivity of global solutions
for equation (.) on C

δ (X) by using the fixed point theorem. The above mentioned tech-
niques are new even in the case of X = R.

The rest of the paper is organized as follows. In Section , we recall some definitions
and preliminary facts. In Section , we present the notion of the so-called space C

δ (X)
and study equation (.) on this space with the fixed point theorem, as the additional pro-
duction, we obtain the corresponding results for the global mild solutions of the fractional
differential equations as follows:

{
cDq

t (x(t) – m(t, x(t))) = A(x(t) – m(t, x(t))) + h(t, x(t)), t > ,
x() = x,

(.)

and the global solutions of the following fractional differential equations:

{
cDq

t x(t) = h(t, x(t)), t > ,
x() = x,

(.)

where A is the infinitesimal generator of an analytic semigroup of linear operators
{T(t)}t≥ in X. Finally, three examples are given to illustrate our main results.

2 Preliminaries
We introduce some terminology. Throughout this paper, X denotes a Banach space with
norm ‖ · ‖ and L(X) the Banach space of all linear and bounded operators on X. We write
Br(x, Z) to denote the closed ball with center at x and radius r >  in a Banach space Z, and
C(R+, X) the space of all X-valued continuous functions on R+ with the supremum norm
‖x‖∞ = sup{‖x(t)‖ : t ≥ } for any x ∈ C(R+, X).

We recall the following basic definitions and properties of the fractional calculus theory.
For more details see [].

Definition . ([]) The fractional integral of order q with the lower limit zero for a func-
tion f ∈ L[,∞) is defined as

Jq
t f (t) =


�(q)

∫ t


(t – s)q–f (s) ds, t > ,  < q < ,

provided the right side is point-wise defined on [,∞), where �(·) is the gamma func-
tion.
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Definition . ([]) The Riemann-Liouville derivative of order q with the lower limit zero
for a function f ∈ C[,∞) can be written as

LDq
t f (t) =


�( – q)

d
dt

∫ t


(t – s)–qf (s) ds, t > ,  < q < .

Definition . ([]) The Caputo derivative of order q for a function f ∈ C[,∞) can be
written as

cDq
t f (t) = LDq

t
(
f (t) – f ()

)
, t > ,  < q < ,

where cDq
t := dq

dtq . Moreover, cDq
t c = , where c is a constant.

Remark . ([]) If α ∈ (, ), f ∈ C[,∞), then (Jα
t

cDα
t f )(t) = f (t) – f () and (cDα

t Jα
t f )(t) =

f (t).

We need the following lemma concerning on a fixed point theorem (see [], Theo-
rem ..).

Lemma . Let D be a convex, bounded, and closed subset of a Banach space Z and F :
D → D be a condensing map. Then F has a fixed point in D.

Assuming that � is a nonempty subset of the space C(R+, X), we review the concept of
attractivity of solutions of equation (.).

Definition . ([]) We say that solutions of equation (.) are locally attractive if there
exists a ball B(x, C(R+, X)) such that for arbitrary solutions x(t) and y(t) of equation (.)
belonging to B(x, C(R+, X)) ∩ �,

lim
t→∞

∥
∥x(t) – y(t)

∥
∥ =  (.)

holds.

Remark . When the limit (.) is uniform with respect to the set B(x, C(R+, X)) ∩ �,
i.e. when for each ε >  there exists T >  such that ‖x(t) – y(t)‖ < ε for all solutions
x, y ∈ B(x, C(R+, X)) ∩ � of equation (.) and for any t ≥ T , we will say that solutions
of equation (.) are uniformly locally attractive (or equivalently that solutions of (.) are
asymptotically stable).

Lemma . ([])
() For all τ , θ > –, we have

∫ t


sθ (t – s)τ ds = tθ+τ+B(τ + , θ + ).

() For all λ,κ ,� > , for t ≥ , we have

∫ t


sλ–(t – s)κ–e–� (t–s) ds ≤ max

{
, –λ

}
�(κ)

(
 +

κ

λ

)
� –κ tλ–,

where B(·, ·) is the beta function.
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3 Main results
In this section, we study the existence and attractivity of global solutions for equation (.),
equation (.), and equation (.), respectively.

3.1 The case of fractional integral equations
Motivated by the work in [], for any δ > , we define the space

C
δ (X) =

{
x ∈ C(R+, X) : lim

t→∞
‖x(t)‖

eδt = 
}

endowed with the norm ‖x‖δ = supt≥ e–δt‖x(t)‖.
We recall the following results of compactness of this spaces.

Lemma . ([]) A set B ⊂ C
δ (X) is relatively compact in C

δ (X) if and only if:
(a) B is equicontinuous;
(b) limt→∞ e–δt‖x(t)‖ = , uniformly for x ∈ B;
(c) the set B(t) = {x(t) : x ∈ B} is relatively compact in X , for every t ≥ .

Let r > , and in the following let V (r, g) denote the set V (r, g) = {t → g(t, x(β(t))) : x ∈
Br(, C(R+, X))}.

We study the fractional integral equation (.) with the following conditions:

(H) α,β ,γ ,η : R+ → R+ is continuous, η is nondecreasing on R+, α(t) → ∞, η(t) → ∞,
as t → ∞, and α(t),η(t),γ (t) ≤ t.

(H) The function f (t, x(α(t))) is continuous with respect to t on [, +∞) and there exists
a continuous function Lf (t) such that

∥∥f (t,ψ) – f (t,ψ)
∥∥ ≤ Lf (t)‖ψ – ψ‖, for ψ,ψ ∈ C(R+, X),

where L∗
f = supt≥ Lf (t) < , limt→∞ Lf (t) = , and supt≥ ‖f (t, )‖ < ∞.

(H) The function g(t, x(β(t))) is continuous with respect to t on [, +∞) and for every
a > , g(t, ·) : X → X is continuous for t ∈ [, a]. The set V (r, g) is an equicontinuous
subset of C(R+, X) and there exists a function ζ : R+ → R+ such that ‖g(t, x)‖ ≤ ζ (t)
and supt∈[,a] ζ (t) = ζ̃a < ∞, for every a > .

(H) The operator K(·, s) is continuous in the uniform operator topology for all s ∈ R+ and
k = ‖K(t, s)‖L(X) < ∞.

(H) For any a > , the function h : [, a] × X → X satisfies the following conditions:
(a) the function h(t, ·) : X → X is continuous a.e. t ∈ [, a];
(b) the function h(·, x) : [, a] → X is strongly measurable for every x ∈ X ;
(c) there exists ν(·) ∈ L

loc(R+) such that ‖h(t, x)‖ ≤ ν(t)‖x‖, the function
s → ν(s)

(t–s)–q belongs to L([, t], R+) and

lim
t→∞ ζ (t)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds = ;

(d) for every t >  and r > , the set {K(t, s)h(s, eδsz) : s ∈ [, t), z ∈ Br(, C
δ (X))} is

relatively compact in X .
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In the following, we choose a constant δ >  such that

L∗
f + sup

t≥

ζ (t)k
�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds < . (.)

Theorem . Let the assumptions (H)-(H) be satisfied, then there exists a solution for
equation (.) on the space C

δ (X).

Proof For x ∈ C
δ (X), we consider the operator M of the form

(Mx)(t) = (Fx)(t) + (Gx)(t),

where

(Fx)(t) = f
(
t, x

(
α(t)

))
, (Gx)(t) =

g(t, x(β(t)))
�(q)

∫ η(t)



K(t, s)h(s, x(γ (s)))
(t – s)–q ds.

From our assumptions, it is easy to see that Gx ∈ C(R+, X) and

e–δt∥∥(Gx)(t)
∥∥ ≤ kζ (t)e–δt

�(q)

∫ η(t)



ν(s)eδγ (s)e–δγ (s)‖x(γ (s))‖
(t – s)–q ds

≤ kζ (t)
�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds · ‖x‖δ → , t → ∞,

and we conclude that Gx ∈ C
δ (X) and G is a function from C

δ (X) to C
δ (X).

Applying condition (H), we get

‖(Fx)(t)‖
eδt ≤ 

eδt

[∥∥f
(
t, x

(
α(t)

))
– f (t, )

∥∥ +
∥∥f (t, )

∥∥] ≤ Lf (t)‖x‖δ +
‖f (t, )‖

eδt .

Hence, F is C
δ (X)-valued. Moreover, ‖Fx – Fy‖δ ≤ L∗

f ‖x – y‖δ , which implies that F is a
contraction on C

δ (X).
Now, we show that G is continuous. Let {xn}n∈N be a sequence in C

δ (X) such that xn → x
in C

δ (X) as n → ∞, that is, for arbitrary ε >  such that ‖xn – x‖δ < ε for sufficient large n.
We can see

e–δt∥∥(Gxn)(t) – (Gx)(t)
∥∥

≤ k‖g(t, xn(β(t))) – g(t, x(β(t)))‖ · ‖xn‖δ

�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds

+
kζ (t)

�(q)eδt

∫ η(t)



‖h(s, xn(γ (s))) – h(s, x(γ (s)))‖
(t – s)–q ds

= I(t) + I(t).

From condition (H)(c) there exists T > , for t ≥ η(t) ≥ T such that

kζ (t)
�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds <
ε

(ε + ‖x‖δ)
. (.)
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Moreover, noting that ‖xn‖δ ≤ ε + ‖x‖δ and from (H), there exists N 
ε ∈ N such that

∥∥g
(
t, xn

(
β(t)

))
– g

(
t, x

(
β(t)

))∥∥

≤ ε�(q)

k(ε + ‖x‖δ)
∫ T


ν(s)e–δ(t–s)

(t–s)–q ds
, t ∈ [, T], n > N 

ε , (.)

then

∥∥I(t)
∥∥ <

ε


, for t ∈ [, T], n > N 

ε , (.)

on the other hand, for t ≥ η(t) ≥ T , N 
ε ∈ N, noting that (.) and (.), we have

∥∥I(t)
∥∥ ≤ k‖g(t, xn(β(t))) – g(t, x(β(t)))‖ · ‖xn‖δ

�(q)

∫ T



ν(s)e–δ(t–s)

(t – s)–q ds

+
kζ (t)‖xn‖δ

�(q)

∫ η(t)

T

ν(s)e–δ(t–s)

(t – s)–q ds

<
ε


,

then

∥
∥I(t)

∥
∥ <

ε


, for t ≥ η(t) ≥ T , n > N 

ε . (.)

For I(t), from the Lebesgue dominated convergence theorem and (H)(a), there exists
N

ε ∈ N such that

k
�(q)

∫ T



‖h(s, xn(γ (s))) – h(s, x(γ (s)))‖
(t – s)–q ds <

ε

ζ̃T
, n > N

ε , (.)

then we have

∥∥I(t)
∥∥ <

ε


, for t ∈ [, T], n > N

ε , (.)

on the other hand, for t ≥ η(t) ≥ T and n > N
ε , noting that

∥∥h
(
t, xn

(
γ (t)

))
– h

(
t, x

(
γ (t)

))∥∥

≤ ν(t)
(∥∥xn

(
γ (t)

)
– x

(
γ (t)

)∥∥ + 
∥
∥x

(
γ (t)

)∥∥)

≤ ν(t)eδt(ε + ‖x‖δ

)
,

and (.), (.), we obtain

∥
∥I(t)

∥
∥ ≤ ζ̃T k

�(q)eδt

∫ T



‖h(s, xn(γ (s))) – h(s, x(γ (s)))‖
(t – s)–q ds

+
ζ (t)k

�(q)eδt

∫ η(t)

T

‖h(s, xn(γ (s))) – h(s, x(γ (s)))‖
(t – s)–q ds
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<
ε


+

ζ (t)k
�(q)

∫ η(t)

T

ν(s)e–δ(t–s)

(t – s)–q ds · (ε + ‖x‖δ

)

<
ε


, t ≥ η(t) ≥ T , n > N

ε . (.)

Now, from (.) and (.), we have

sup
{

e–δt∥∥(Gxn)(t) – (Gx)(t)
∥∥ : t ∈ [, T], n > max

{
N 

ε , N
ε

}} ≤ ε,

and from (.) and (.), we obtain

sup
{

e–δt∥∥(Gxn)(t) – (Gx)(t)
∥∥ : t ≥ η(t) ≥ T , n > max

{
N 

ε , N
ε

}} ≤ ε.

Now, we can conclude that G is continuous.
Next, we show that G is completely continuous. Let r >  and Br = Br(, C

δ (X)), we first
of all show that the set G(Br) is equicontinuous. For any ε > , t, t ≥ , we may assume
that t < t without loss of generality, for x ∈ Br , we get

∥
∥(Gx)(t) – (Gx)(t)

∥
∥

≤ keδt r‖g(t, x(β(t))) – g(t, x(β(t)))‖
�(q)

∫ η(t)



ν(s)
(t – s)–q ds

+
eδt rζ (t)

�(q)

{∫ η(t)–ε



(‖K(t, s) – K(t, s)‖L(X)

(t – s)–q + k
[


(t – s)–q –


(t – s)–q

])

× ν(s) ds + k
∫ η(t)

η(t)–ε

(
ν(s)

(t – s)–q +
ν(s)

(t – s)–q

)
ds + k

∫ η(t)

η(t)

ν(s)
(t – s)–q ds

}
.

Under the conditions (H) and (H), ‖(Gx)(t) – (Gx)(t)‖ →  as t → t and ε → , that
is, the set G(Br) is equicontinuous.

Next, we prove that the set U(t) = {Gx(t) : x ∈ Br , t ∈ [, a]} is a relatively compact subset
of X for every a ∈ (, +∞). For arbitrary ε ∈ (,η(t)), define an operator Gε as follows:

(Gεx)(t) =
g(t, x(β(t)))

�(q)

∫ η(t)–ε



K(t, s)h(s, x(γ (s)))
(t – s)–q ds.

Noting that (H)(c) and (H), for x ∈ Br , from the mean value theorem for the Bochner
integral (see [], Lemma ..), we obtain

(Gεx)(t) ∈ (t – ε)ζ̃a

�(q)
co

{
(t – s)q–K(t, s)h(s, x) : s ∈ [, t – ε], x ∈ Br

}
,

where co(·) denotes the convex hull. Using (H)(d), we infer that the set {Gεx(t) : x ∈ Br} is
relatively compact in X for arbitrary ε ∈ (,η(t)).

Moreover, for x ∈ Br , t ∈ [, a], we get

∥∥(Gx)(t) – (Gεx)(t)
∥∥ =

‖g(t, x(β(t)))‖
�(q)

∫ η(t)

η(t)–ε

‖K(t, s)h(s, x(γ (s)))‖
(t – s)–q ds

≤ eδarζ̃ak
�(q)

∫ η(t)

η(t)–ε

ν(s)
(t – s)–q ds.
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Hence, there are relatively compact sets arbitrarily close to the set U(t), t ≥ . This proves
that the set U(t), t ≥  is relatively compact in X.

Moreover, for x ∈ Br , we obtain

e–δt∥∥(Gx)(t)
∥
∥ ≤ kζ (t)r

�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds → , t → ∞.

Now, from Lemma ., we can conclude that G(Br) is relatively compact in C
δ (X). Thus,

G is completely continuous.
Next, we prove that there exists r >  such that MBr ⊂ Br , where Br = Br(, C

δ (X)).
Suppose on the contrary that, for each r > , there exist x∗ ∈ Br and some t∗ ≥  such that
e–δt∗‖(Mx∗)(t∗)‖ > r. Then

r < e–δt∗∥∥(
Mx∗)(t∗)∥∥

≤ Lf
(
t∗)∥∥x∗∥∥

δ
+ e–δt∗∥∥f

(
t∗, 

)∥∥ +
ζ (t∗)k
�(q)

∫ η(t∗)



ν(s)e–δ(t∗–s)

(t∗ – s)–q ds · ∥∥x∗∥∥
δ

≤
(

Lf
(
t∗) +

ζ (t∗)k
�(q)

∫ η(t∗)



ν(s)e–δ(t∗–s)

(t∗ – s)–q ds
)

r + e–δt∗∥∥f
(
t∗, 

)∥∥. (.)

Dividing both sides of (.) by r and taking r → ∞, we obtain

Lf
(
t∗) +

ζ (t∗)k
�(q)

∫ η(t∗)



ν(s)e–δ(t∗–s)

(t∗ – s)–q ds ≥ .

This contradicts (.). This shows that there exists r >  such that M is a condensing map
from Br into Br . Now from Lemma . we see that the operator M has a fixed point and
thus equation (.) has at least one solution on C

δ (X).
Moreover, the solutions of equation (.) are lying in the ball Br , and for any solutions x,

y of equation (.) and x, y ∈ Br , we obtain

e–δt∥∥x(t) – y(t)
∥∥ ≤ Lf (t)

(‖x‖δ + ‖y‖δ

)

+
k‖x‖δ

�(q)
∥
∥g

(
t, x

(
β(t)

))
– g

(
t, y

(
β(t)

))∥∥
∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds

+
kζ (t)e–δt

�(q)

∫ η(t)



‖h(s, x(γ (s))) – h(s, y(γ (s)))‖
(t – s)–q ds

≤ rLf (t) +
rkζ (t)
�(q)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds → , t → ∞,

then the solutions of equation (.) are uniformly locally attractive by Definition . (or
equivalently that solutions of (.) are asymptotically stable). �

From the proof of Theorem ., we can immediately study equation (.) on X = R under
the following assumptions:

(H′) α,β ,γ ,η : R+ → R+ is continuous, η is nondecreasing on R+, α(t) → ∞, η(t) → ∞,
as t → ∞ and α(t),η(t),γ (t) ≤ t.
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(H′) The function f (t, x(α(t))) is continuous with respect to t on [, +∞) and there exists
a continuous function Lf (t) such that

∣∣f (t,ψ) – f (t,ψ)
∣∣ ≤ Lf (t)|ψ – ψ|, for ψ,ψ ∈ C(R+, R),

where L∗
f = supt≥ Lf (t) < , limt→∞ Lf (t) = , and supt≥ |f (t, )| < ∞.

(H′) The function g(t, x(β(t))) is continuous with respect to t on [, +∞) and for every
a > , g(t, ·) : R → R is continuous for t ∈ [, a]. The set V (r, g) is an equicontinuous
subset of C(R+, R) and there exists a function ζ : R+ → R+ such that |g(t, x)| ≤ ζ (t)
and supt∈[,a] ζ (t) = ζ̃a < ∞, for every a > .

(H′) The function K : R+ × R+ → R is continuous and |K(t, s)| ≤ k.
(H′) For every a > , the function h : [, a] × R → R satisfies the following conditions:

(a) the function h(t, ·) : R → R is continuous a.e. t ∈ [, a];
(b) the function h(·, x) : [, a] → R is strongly measurable for every x ∈ R;
(c) there exists ν(·) ∈ L

loc(R+) such that |h(t, x)| ≤ ν(t)|x|, the function
s → ν(s)

(t–s)–q belongs to L([, t], R+) and

lim
t→∞ ζ (t)

∫ η(t)



ν(s)e–δ(t–s)

(t – s)–q ds = .

We choose δ >  such that (.) holds, then we have the following result.

Theorem . Assume that (H′)-(H′) hold, then there exists a solution on the space C
δ (R)

for equation (.). Moreover, the solutions of equation (.) are uniformly locally attractive
(or, equivalently, the solutions are asymptotically stable).

3.2 Application to fractional differential equations
Motivated by the proof of Theorem ., we can immediately obtain the global existence
of a mild solution for the fractional differential equation as follows:

{
cDq

t (x(t) – m(t, x(t))) = A(x(t) – m(t, x(t))) + h(t, x(t)), t > ,
x() = x,

(.)

where  < q < , m(, x()) = , A is the infinitesimal generator of an analytic semigroup of
linear operators {T(t)}t≥ in X with ‖T(t)‖ ≤ M.

It is well known that a function x ∈ C(R+, X) and

x(t) = Q(t)x + m
(
t, x(t)

)
+

∫ t


(t – s)q–R(t – s)h

(
s, x(s)

)
ds, t ≥ , (.)

is the mild solution of (.), where

Q(t) =
∫ ∞


ξq(σ )T

(
tqσ

)
dσ and

∥
∥Q(t)

∥
∥ ≤ M,

R(t) = q
∫ ∞


σξq(σ )T

(
tqσ

)
dσ and

∥∥R(t)
∥∥ ≤ M

�(q)
,
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and ξq is a probability density function defined on (,∞) (see []) such that

ξq(σ ) =

π

∞∑

n=

(–)n–σ n– �(nq)
(n – )!

sin(nπq) ≥ , σ ∈ (,∞).

For more details, we refer to [, ].
Set f (t, x) = Q(t)x +m(t, x(t)), K(t –s) = R(t –s), we can study the existence of solution for

equation (.) by Theorem .. To this end, for every a > , δ > , we make the following
assumptions:

(A) The function m(t, x(t)) is continuous with respect to t on [, +∞) and there exists a
continuous function mf (t) such that

∥∥m(t,ψ) – m(t,ψ)
∥∥ ≤ mf (t)‖ψ – ψ‖, for ψ,ψ ∈ C(R+, X),

where m∗
f = supt≥ mf (t) < , limt→∞ mf (t) = , and supt≥ ‖m(t, )‖ < ∞.

(A) For every a > , the function h : [, a] × X → X satisfies the following conditions:
(a) the function h(t, ·) : X → X is continuous a.e. t ∈ [, a];
(b) the function h(·, x) : [, a] → X is strongly measurable for every x ∈ X ;
(c) there exists ν(·) ∈ L

loc(R+) such that ‖h(t, x)‖ ≤ ν(t)‖x‖, the function
s → ν(s)

(t–s)–q belongs to L([, t], R+) and limt→∞
∫ t


ν(s)e–δ(t–s)

(t–s)–q ds = ;
(d) for every t >  and r > , the set {T(t – s)h(s, eδsz) : s ∈ [, t), z ∈ Br(, C

δ (X))} is
relatively compact in X .

From the continuity of T(t) in the uniform operator topology, (A) and (A), it is easy to
check that the assumptions in Theorem . hold. If we choose δ >  such that

m∗
f + sup

t≥

M
�(q)

∫ t



ν(s)e–δ(t–s)

(t – s)–q ds < ,

then we obtain the following result on the space C
δ (X).

Theorem . Assume that (A) and (A) are satisfied, then there exists a global mild so-
lution for (.) on the space C

δ (X). Moreover, the mild solutions of (.) are uniformly
locally attractive (or equivalently, the solutions are asymptotically stable).

Next, we consider the following fractional differential equation in X = R:

{
cDq

t x(t) = h(t, x(t)), t > ,
x() = x.

(.)

If h(t, x(t)) is continuous with respect to t on R+, from Remark .,

x(t) = x +


�(q)

∫ t


(t – s)q–h

(
s, x(s)

)
ds

is equivalent to equation (.). For more details see [] and the references therein.
For every a > , δ > , assume the function h : [, a] × R → R satisfies the following

conditions:
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(a) the function h(t, ·) : R → R is continuous a.e. t ∈ [, a];
(b) the function h(·, x) : [, a] → R is strongly measurable for every x ∈ R;
(c) there exists ν(·) ∈ L

loc(R+) such that |h(t, x)| ≤ ν(t)|x|, the function s → ν(s)
(t–s)–q

belongs to L([, t], R+) and limt→∞
∫ t


ν(s)e–δ(t–s)

(t–s)–q ds = .
Using the results of Theorem ., and choosing δ such that

sup
t≥


�(q)

∫ t



ν(s)e–δ(t–s)

(t – s)–q ds < ,

we can obtain without proof the following result on the space C
δ (R).

Theorem . Assume that (a), (b), (c) are satisfied, then on the space C
δ (R), (.) has a

global solution which is uniformly locally attractive (or, equivalently, the solution is asymp-
totically stable).

4 Examples
As applications of our results, we study the following examples.

Example . Let X = L([,π ]), we consider the following fractional integral equation:

x(t, ξ ) =
t sin(x(t, ξ ))

 + t +
(∫ t

 s– 
 cos(x(s, ξ )) ds

(t + ) 
 �( 

 )

)

×
∫ t





e–t–sh(s, x( s
 , ξ ))

(t – s) 


ds, t ≥ , (.)

where α(t) = β(t) = t, η(t) = t
 , γ (t) = t

 , K(t, s) = e–t–s, q = 
 , and

h
(

t, x
(

t


, ξ
))

= ( + t)– 
 sin

(
x
(

t


, ξ
))∫ π


e–|x( s

 ,ξ )| dξ .

Observe that this equation has the form of equation (.) if we put

x(t)(ξ ) = x(t, ξ ),

f
(
t, x

(
α(t)

)
(ξ )

)
=

t sin(x(t)(ξ ))
 + t ,

g
(
t, x

(
β(t)

)
(ξ )

)
=




(t + )– 


∫ t


s– 

 cos
(
x(s)(ξ )

)
ds,

h
(
t, x

(
γ (t)

)
(ξ )

)
= ( + t)– 

 sin

(
x
(

t


)
(ξ )

)∫ π


e–|x( s

 )(ξ )| dξ .

We can easily see

∥∥f (t,ψ) – f (t,ψ)
∥∥ ≤ t

 + t

∥∥ψ(t)(ξ ) – ψ(t)(ξ )
∥∥, ψ,ψ ∈ C(R+, X),

∥
∥g(t, x)

∥
∥ ≤ 


(t + )– 

 t

 ,

∥∥h(t, x)
∥∥ < π t– 

 ‖x‖.
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Obviously, limt→∞ t

+t =  and t

+t ≤ 
 , the function s → s– 



(t–s)



belongs to L([, t], R+)
and, for any δ > , from Lemma .(),

π t 


(t + ) 


∫ t



s– 

 (t – s)– 
 e–δ(t–s) ds ≤

√
πδ– 



(t + ) 

�

(



)
→ , t → ∞.

Now, we can see clearly that (H)-(H) in Theorem . hold for x ∈ C(R+, X).
Let δ = , we have




+ sup
t≥

π t 


(t + ) 
 �( 

 )

∫ t




s– 
 (t – s)– 



et–s ds ≤ 


+
√

π


sup
t≥


(t + ) 


≈ . < ,

then equation (.) has a solution on the space C
 (X) by Theorem . and the solutions of

(.) are uniformly locally attractive by Theorem ..

Example . Let X = L([,π ]), we consider the following fractional heat conduction
equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂



∂t



(v(t, ξ ) – t sin(v(t,ξ ))
(+t) ) = ∂

∂ξ (v(t, ξ ) – t sin(v(t,ξ ))
(+t) ) + e–t sin( v(t,ξ )

√t
), t > ,

v(t, ) – t sin(v(t,))
(+t) = v(t,π ) – t sin(v(t,π ))

(+t) = , t > ,
v(, ξ ) = v.

(.)

To treat the above problem, we define D(A) = H([,π ]) ∩ H
([,π ]), Au = –u′′. The oper-

ator –A is the infinitesimal generator of an analytic semigroup {T(t)}t≥ on X and {T(t)}t>

is compact and ‖T(t)‖ ≤ .
For ξ ∈ [,π ], we set

x(t)(ξ ) = v(t, ξ ),

h(t, x)(ξ ) = e–t sin

(
x(t)(ξ )

√t

)
,

m(t, x)(ξ ) =
t sin(x(t)(ξ ))

( + t)
.

Then the above equation (.) can be reformulated as the abstract equation (.).
Clearly, for t > , ψ,ψ ∈ C(R+, X),

∥
∥m(t,ψ) – m(t,ψ)

∥
∥ ≤ t

( + t)
‖ψ – ψ‖,

where limt→∞ t
(+t) =  and t

+t ≤ 
 . Moreover, ‖h(t, x)‖ ≤ t– 

 e–t‖x‖ and the function

s → s– 
 e–s

(t–s)



belongs to L([, t], R+). Moreover, for any δ > , noting that Lemma .()

holds, we have

∫ t



s– 
 e–se–δ(t–s)

(t – s) 


ds =

et

∫ t



s– 
 e–(δ–)(t–s)

(t – s) 


ds ≤  √�( 
 )

et √t(δ – ) 


→ , t → ∞.
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For δ ∈ (, ], by Lemma .(), we obtain

∫ t



s– 
 e–se–δ(t–s)

(t – s) 


ds =


eδt

∫ t



s– 
 e–(–δ)s

(t – s) 


ds ≤ t 


eδt B
(




,



)

→ , t → ∞. (.)

Hence, for any δ > , limt→∞
∫ t


s– 

 e–se–δ(t–s)

(t–s)



ds = . Moreover, (A)(d) is ensured by the

compactness of {T(t)}t>. Now, (A) and (A) in Theorem . hold for x ∈ C(R+, X).
Choosing δ = , from (.), we obtain




+ sup
t≥


�( 

 )

∫ t



s– 
 e–se–(t–s)

(t – s) 


ds ≤ 


+
�( 

 )
�( 

 )
sup
t≥

t 


et ≈ . < .

Then the existence and uniformly local attractivity of the global mild solution of (.) on
the space C

 (X) can be obtained by Theorem ..

Example . Let X = R, we consider the following fractional differential equation:

{
cD



t x(t) = 

 (t– 
 + )e–t sin(x(t)), t > ,

x() = .
(.)

Clearly, if x(t) ∈ C(R+, R), the integral equation

x(t) =  +


�( 
 )

∫ t



h(s, x(s))
(t – s) 


ds

is the solution of (.), where h(t, x(t)) = 
 (t– 

 + )e–t sin(x(t)), by simple calculations we

see that |h(t, x)| ≤ 
 (t– 

 + )e–t|x| and the function s → (s– 
 +)e–s

(t–s)



belongs to L([, t], R+).

Moreover, for any δ > , noting that Lemma .() holds, we have

∫ t



(s– 
 + )e–se–δ(t–s)

(t – s) 


ds =


et

[∫ t



s– 
 e–(δ–)(t–s)

(t – s) 


ds +
∫ t



e–(δ–)(t–s)

(t – s) 


ds
]

≤ 
et

[
B
(




,



)
+ t




]

→ , t → ∞. (.)

For δ ∈ (, ], by Lemma .(),

∫ t



(s– 
 + )e–se–δ(t–s)

(t – s) 


ds =


eδt

∫ t



(s– 
 + )e–(–δ)s

(t – s) 


ds

≤ 
eδt

[
B
(




,



)
+ t




]

→ , t → ∞.
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Hence, for any δ > ,
∫ t


(s– 

 +)e–se–δ(t–s)

(t–s)



ds → , t → ∞. It is now obvious that conditions

(a), (b), (c) in Theorem . hold for x ∈ C(R+, R). By choosing δ = , from (.), we have

sup
t≥


�( 

 )

∫ t



(s– 
 + )e–se–(t–s)

(t – s) 


ds ≤ 


�

(



)
+


�( 

 )
sup
t≥

t 


et ≈ . < .

Then the existence and uniformly local attractivity of the solution of equation (.) on the
space C

 (X) can be obtained by Theorem ..

5 Conclusions
We discuss the existence and attractivity of global solutions for a class of nonlinear frac-
tional quadratic integral equations in a Banach space X in this paper. The nonlinear
fractional-order quadratic integral equation on an unbounded interval is difficult to solve.
By employing some necessary restrictions on nonlinear terms and defining a Banach space
C

δ (X), we obtain the existence and attractivity results of global solutions on C
δ (X), these

strategies are different from that of [–]. As an application, we obtain the correspond-
ing results for the global mild solutions of two classes of fractional differential equations.
The above mentioned techniques are new even in the case of X = R.
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