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Abstract
Viruses can be spread and transmitted through two fundamental modes, one by
virus-to-cell infection and the other by direct cell-to-cell transmission. In this paper,
we propose a new generalized virus dynamics model, which incorporates both
modes and takes into account the cure of infected cells. We first show mathematically
and biologically the well-posedness of our model. Further, an explicit formula for the
basic reproduction number R0 of the model is determined. By analyzing the
characteristic equations we establish the local stability of the disease-free equilibrium
and the chronic infection equilibrium in terms of R0. The global behavior of the model
is investigated by constructing an appropriate Lyapunov functional for disease-free
equilibrium and by applying geometrical approach to chronic infection equilibrium.
Moreover, mathematical virus models and results presented in many previous studies
are generalized and improved.

Keywords: virus dynamics; cell-to-cell transmission; compound matrices; global
stability

1 Introduction
Many viruses infect humans and cause different infectious diseases such as human im-
munodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), Ebola
virus, and more recently Zika virus. They are often transmitted in body by two funda-
mentally distinct modes, either by virus-to-cell infection through the extracellular space
or by cell-to-cell transmission involving direct cell-to-cell contact [–]. During both in-
fection modes, a part of infected cells returns to the uninfected state by loss of all cova-
lently closed circular DNA (cccDNA) from their nucleus [–]. To model viral infection
dynamics, several mathematical models have been proposed and developed. Most of these
models are based on the assumption that healthy cells can only be infected by viruses, and
so they consider only the virus-to-cell infection mode. However, there are few virus dy-
namics models in the literature with both modes of transmission and taking into account
the cure of infected cells.

Motivated by the mentioned biological and mathematical considerations, we propose
the following generalized virus dynamics model with two transmission modes and cure
rate:

⎧
⎪⎨

⎪⎩

ẋ = λ – dx – f (x, y, v)v – g(x, y)y + ρy,
ẏ = f (x, y, v)v + g(x, y)y – (a + ρ)y,
v̇ = ky – uv,

()
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where x(t), y(t), and v(t) denote the concentrations of uninfected cells, infected cells, and
free viruses at time t, respectively, λ is the recruitment rate of uninfected cells, ρ is the cure
rate of infected cells, k is the production rate of free viruses by infected cells, and d, a, and
u are the death rates of uninfected cells, infected cells, and free viruses, respectively. In
addition, healthy cells become infected either by free viruses at rate f (x, y, v)v or by direct
contact with an infected cell at rate g(x, y)y. Hence, the term f (x, y, v)v + g(x, y)y represents
the total infection rate of uninfected cells.

The incidence function g(x, y) for direct cell-to-cell transmission mode is assumed to be
continuously differentiable in the interior of R

+ and satisfy the following property:

(H) g(, y) =  for all y ≥ , ∂g
∂x (x, y) ≥  (or g(x, y) is a strictly increasing function with

respect to x when f ≡ ), and ∂g
∂y (x, y) ≤  for all x ≥  and y ≥ .

Further, the incidence function f (x, y, v) for virus-to-cell infection mode is assumed to be
continuously differentiable in the interior of R

+ and has the properties similar to those
assumed in []:

(H) f (, y, v) =  for all y ≥  and v ≥ ,
(H) f (x, y, v) is a strictly increasing function with respect to x (or ∂f

∂x (x, v, y) ≥  when g(x, y)
is a strictly increasing function with respect to x) for any fixed y ≥  and v ≥ ,

(H) f (x, y, v) is a decreasing function with respect to y and v, that is, ∂f
∂y (x, y, v) ≤  and

∂f
∂v (x, y, v) ≤  for all x ≥ , y ≥ , and v ≥ .

The first assumption on the function g(x, y) means that the incidence rate by cell-to-cell
transmission is equal to zero if there are no susceptible cells. This incidence rate is increas-
ing when the numbers of infected cells are constant and the number of susceptible cells
increases. Biologically speaking, the greater the amount of susceptible cells, the greater the
average number of cells infected by direct contact with an infected cell in the unit time.
Similarly, the last assumption on the function g(x, y) means that the greater the amount
of infected cells, the lower the average number of cells infected by direct contact in the
unit time. Therefore, the three hypotheses summarized in assumption (H) are reason-
able and consistent with the reality. For the biological significance of three hypotheses
(H)-(H) on the function f (x, y, v), we refer the reader to [, ]. Furthermore, the four
assumptions (H)-(H) are satisfied by most incidence rates existing in the literature.

On the other hand, system () includes various special cases. For example, when we
ignore the cell-to-cell transmission mode (i.e., g ≡ ), we obtain the model of Hattaf et al.
[], which is a generalization of many classical models presented in [, –]. However,
when only the cell-to-cell transmission mode is considered, we have f ≡ , and the model
() is reduced to

{
ẋ = λ – dx – g(x, y)y + ρy,
ẏ = g(x, y)y – (a + ρ)y.

()

Notice that the model of Bonhoeffer et al. [] is a particular case of system (). When
both virus-to-cell and cell-to-cell transmission modes are considered with f (x, y, v) = βx
and g(x, y) = βx, we get the model of Zhang et al. []. In this work, we aim to study
the dynamical behavior of system () with general incidence functions for both modes. In
addition, we improve the results of Zhang et al. by proving that the global stability of the
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model [] is completely determined by the value of a certain threshold parameter called
the basic reproduction number R.

The rest of this paper is organized as follows. The next section deals with some prelim-
inary results about the positivity and boundedness of solutions, the basic reproduction
number, and the existence of equilibria. In Section , we establish the local stability of
the disease-free equilibrium and the chronic infection equilibrium. The global stability of
both equilibria is investigated in Section . The paper ends with some applications of our
results in Section .

2 Preliminary results
In this section, we first show that the solutions of system () with nonnegative initial con-
ditions remain nonnegative and bounded for all t ≥ .

Let R
+ = {(x, y, v) ∈R

 : x ≥ , y ≥ , v ≥ }. We have the following result.

Theorem . The first quadrant R
+ is positively invariant with respect (). Moreover, all

solutions of () are uniformly bounded in the compact subset

� =
{

(x, y, v) ∈R

+ : x + y ≤ λ

δ
, v ≤ kλ

uδ

}

, where δ = min{a, d}.

Proof Obviously, R
+ is positively invariant with respect (). It remains to prove that all

solutions of system () are uniformly bounded.
Let (x(t), y(t), v(t)) be any solution with nonnegative initial conditions (x, y, v). Adding

the first two equations of system (), we obtain

ẋ + ẏ = λ – dx – ay ≤ λ – δ(x + y).

Hence,

lim sup
t→∞

(
x(t) + y(t)

) ≤ λ

δ
.

Similarly, from the third equation of system () we get

lim sup
t→∞

v(t) ≤ λk
uδ

.

Therefore, all solutions of system () starting in R

+ are eventually confined in the region �.

This completes the proof. �

This theorem shows mathematically and biologically the well-posedness of our model
(). Now, we discuss the existence of equilibria.

By simple computation system () has always one disease-free equilibrium of the form
Ef ( λ

d , , ). Hence, we define the basic reproduction number of our model as follows:

R =
kf ( λ

d , , ) + ug( λ
d , )

u(a + ρ)
, ()
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which can be rewritten as R = R + R, where

R =
k

a + ρ
× f

(
λ

d
, , 

)

× 
u

and R = g
(

λ

d
, 

)

× 
a + ρ

.

From the biological point of view, the factor 
u is the average life expectancy of viruses,

and 
a+ρ

is the average life expectancy of infected cells, which is less than 
a because a part

of infected cells returns to the uninfected state by loss of all cccDNA from their nucleus
at a rate ρ . Since the viruses are produced by infected cells at a rate ky, k

a+ρ
denotes the

amount of viruses generated from living infected cell. Further, the number of susceptible
cells at beginning of the infection is λ

d , which means that f ( λ
d , , ) and g( λ

d , ) are the
values of both incidence functions when all cells are uninfected. Therefore, R is the basic
reproduction number corresponding to virus-to-cell infection mode, whereas R is the
basic reproduction number corresponding to cell-to-cell transmission mode.

To find the other equilibrium of system (), we solve the system

λ – dx – f (x, y, v)v – g(x, y)y + ρy = , ()

f (x, y, v)v + g(x, y)y – (a + ρ)y = , ()

ky – uv = . ()

By () to () we obtain the equation

kf
(

x,
λ – dx

a
,

k(λ – dx)
au

)

+ ug
(

x,
λ – dx

a

)

= (a + ρ)u. ()

Since y = λ–dx
a ≥ , we have x ≤ λ

d . Hence, there is no biological equilibrium when x > λ
d .

Define the function ψ on the interval [, λ
d ] by

ψ(x) = kf
(

x,
λ – dx

a
,

k(λ – dx)
au

)

+ ug
(

x,
λ – dx

a

)

– (a + ρ)u.

We have ψ() = –(a + ρ)u < , ψ( λ
d ) = (a + ρ)u(R – ), and

ψ ′(x) = k
(

∂f
∂x

–
d
a

∂f
∂y

–
kd
au

∂f
∂v

)

+ u
(

∂g
∂x

–
d
a

∂g
∂y

)

> .

Hence, for R > , there exists a unique endemic equilibrium E∗(x∗, y∗, v∗) with x∗ ∈ (, λ
d ),

y∗ > , and v∗ > .
The previous discussions can be summarized in the following result.

Theorem .
(i) If R ≤ , then system () has a unique disease-free equilibrium of the form Ef ( λ

d , , ).
(ii) If R > , then the disease-free equilibrium is still present, and system () has a unique

chronic infection equilibrium of the form E∗(x∗, y∗, v∗) with x∗ ∈ (, λ
d ), y∗ > , and

v∗ > .
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3 Local stability
In this section, we discuss the local stability of both equilibria of system (). Note that the
Jacobian matrix of system () is given by

J =

⎛

⎜
⎝

–d – v ∂f
∂x – y ∂g

∂x –v ∂f
∂y – ∂g

∂y y – g(x, y) + ρ –v ∂f
∂v – f (x, y, v)

v ∂f
∂x + y ∂g

∂x v ∂f
∂y + y ∂g

∂y + g(x, y) – (a + ρ) v ∂f
∂v + f (x, y, v)

 k –u

⎞

⎟
⎠ . ()

Firstly, we have the following result.

Theorem . The disease-free equilibrium Ef is locally asymptotically stable if R <  and
becomes unstable if R > .

Proof Evaluating () at Ef , we have

JEf =

⎛

⎜
⎝

–d –g( λ
d , ) + ρ –f ( λ

d , , )
 g( λ

d , ) – (a + ρ) f ( λ
d , , )

 k –u

⎞

⎟
⎠ .

Clearly, the eigenvalues of the matrix JEf are

ξ = –d,

ξ =
–(a + ρ + u – g( λ

d , )) –
√

(a + ρ + u – g( λ
d , )) – u(a + ρ)( – R)


,

ξ =
–(a + ρ + u – g( λ

d , )) +
√

(a + ρ + u – g( λ
d , )) – u(a + ρ)( – R)


.

It is clear that ξ and ξ are negative. However, ξ is negative if R <  and is positive if
R > . Therefore, Ef is locally asymptotically stable if R <  and unstable if R > . �

Next, we study the local stability of the chronic infection equilibrium E∗. Note that the
equilibrium E∗ does not exist if R <  and E∗ = Ef when R = .

Theorem . If R > , then the chronic infection equilibrium E∗ is locally asymptotically
stable.

Proof We assume that R > . Evaluating () at E∗ and computing the characteristic equa-
tion about this point, we have

λ + aλ
 + aλ + a = , ()

where

a = u + d + a + ρ – g
(
x∗, y∗) + v∗ ∂f

∂x
(
x∗, y∗, v∗) + y

∂g
∂x

(
x∗, y∗)

– v∗ ∂f
∂y

(
x∗, y∗, v∗) – y∗ ∂g

∂y
(
x∗, y∗),
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a = d
(
u + a + ρ – g

(
x∗, y∗)) + (u + a)

(

v∗ ∂f
∂x

(
x∗, y∗, v∗) + y∗ ∂g

∂x
(
x∗, y∗)

)

– (u + d)
(

v∗ ∂f
∂y

(
x∗, y∗, v∗) + y∗ ∂g

∂y
(
x∗, y∗)

)

– kv∗ ∂f
∂v

(
x∗, y∗, v∗),

a = au
(

v∗ ∂f
∂x

(
x∗, y∗, v∗) + y∗ ∂g

∂x
(
x∗, y∗)

)

– ud
(

v∗ ∂f
∂y

(
x∗, y∗, v∗) + y∗ ∂g

∂y
(
x∗, y∗)

)

– kdv∗ ∂f
∂v

(
x∗, y∗, v∗).

Since R >  and a + ρ – g(x∗, y∗) = kf (x∗ ,y∗ ,v∗)
u > , we deduce that a, a, and a are positive.

Furthermore,

aa – a = (a – u – d)a + u
(

a – av∗ ∂f
∂x

(
x∗, y∗, v∗) – ay∗ ∂g

∂x
(
x∗, y∗)

)

+ d
[

ud + d
(
a + ρ – g

(
x∗, y∗))

+ (u + a)
(

v∗ ∂f
∂x

(
x∗, y∗, v∗) + y∗ ∂g

∂x
(
x∗, y∗)

)

– d
(

v∗ ∂f
∂y

(
x∗, y∗, v∗) + y∗ ∂g

∂y
(
x∗, y∗)

)]

> .

From the Routh-Hurwitz theorem [] we know that all roots of () have negative real
parts. Thus, the chronic infection equilibrium E∗ is locally asymptotically stable for
R > . �

4 Global stability
In this section, we investigate the global stability of the disease-free equilibrium Ef and
the chronic infection equilibrium E∗. For the global stability of Ef , we assume that a ≥ d.
Biologically, this assumption is often satisfied because a represents the death rate of in-
fected cells and includes the possibility of death by bursting of infected cells. Further, this
assumption is considered by many authors; see, for example, [–]. Therefore, we have
the following result.

Theorem . If R ≤ , then the disease-free equilibrium Ef is globally asymptotically sta-
ble.

Proof Construct the Lyapunov functional

V (t) = y(t) +
f ( λ

d , , )
u

v(t).

Calculating the time derivative of V (t) along the positive solution of system (), we have

V̇ (t)|() =
(

f (x, y, v) – f
(

λ

d
, , 

))

v + (a + ρ)y
(kf ( λ

d , , ) + ug(x, y)
(a + ρ)u

– 
)

.

Note that lim supt→∞ x(t) ≤ λ
d . This yields that all omega limit points satisfy x(t) ≤ λ

d .
Hence, it suffices to consider solutions for which x(t) ≤ λ

d . Using the expression of R
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given in (), we get

V̇ (t)|() ≤
(

f (x, , ) – f
(

λ

d
, , 

))

v + (a + ρ)(R – )y

≤ (a + ρ)(R – )y.

Consequently, V̇ |() ≤  for R ≤ . Further, it is easy to show that the largest compact
invariant set in {(x, y, v)|V̇ = } is the singleton {Ef }. By the LaSalle invariance principle
[], the disease-free equilibrium Ef is globally asymptotically stable for R ≤ . �

Now, we will investigate the global dynamics of system () when R > . Firstly, we need
the following lemma.

Lemma . If R > , then system () is uniformly persistent.

Proof This result follows from an application of Theorem . in [] with X = R
 and

E = �. The maximal invariant set M on the boundary ∂� is the singleton {Ef }, and it is
isolated. From Theorem . in [] we can see that the uniform persistence of system ()
is equivalent to the instability of the disease-free equilibrium Ef . On the other hand, we
have proved in Theorem . that Ef is unstable if R > . Thus, system () is uniformly
persistent when R > . �

Next, we focus ourselves on the global stability of the chronic infection equilibrium E∗

by assuming that R >  and the incidence function f satisfies the following hypothesis:

(H) f (x, y, v) + v
∂f
∂v

(x, y, v) ≥  for all x ≥ , y ≥ , and v ≥ .

Theorem . Assume that R >  and (H) hold. Then the chronic infection equilibrium
E∗ is globally asymptotically stable.

Proof To prove the global stability of E∗, we will apply the geometrical approach developed
by Li and Muldowney [].

The second additive compound matrix of the Jacobian matrix J , given by (), is defined
by

J [] =

⎛

⎜
⎝

j + j j –j

j j + j j

–j j j + j

⎞

⎟
⎠ , ()

where jkl is the (k, l)th entry of the matrix J .
We consider the matrix P = diag(, y

v , y
v ). It follows then that

Pf P– = diag

(

,
ẏ
y

–
v̇
v

,
ẏ
y

–
v̇
v

)

,

where the matrix Pf is obtained by replacing each entry pij of P by its derivative in the
direction of solution of (). Furthermore, we have

B = Pf P– + PJ []P– =

(
B B

B B

)

,
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where

B = –(a + d + ρ) – v
∂f
∂x

– y
∂g
∂x

+ v
∂f
∂y

+ y
∂g
∂y

+ g(x, y),

B =
(

v
y (v ∂f

∂v + f (x, y, v)) v
y (v ∂f

∂v + f (x, y, v))
)

,

B =

(
ky
v


)

,

B =

( ẏ
y – v̇

v – u – d – v ∂f
∂x – y ∂g

∂x ρ – v ∂f
∂y – y ∂g

∂y – g(x, y)
v ∂f

∂x + y ∂g
∂x

ẏ
y – v̇

v – a – ρ – u + v ∂f
∂y + y ∂g

∂y + g(x, y)

)

.

Define the norm in R
 as |(w, w, w)| = max{|w|, |w| + |w|} for (w, w, w) ∈ R

. Then
the Lozinskii measure μ with respect to the norm | · | can be estimated as follows (see
[]):

μ(B) ≤ sup{g, g}, ()

where g = μ(B) + |B| and g = |B| + μ(B). Here μ denotes the Lozinskii measure
with respect to the l vector norm, and |B| and |B| are matrix norms with respect to
the l norm. Moreover, we have

μ(B) = –(a + d + ρ) – v
∂f
∂x

– y
∂g
∂x

+ v
∂f
∂y

+ y
∂g
∂y

+ g(x, y),

|B| =
∣
∣
∣
∣
v
y

(

v
∂f
∂v

+ f (x, y, v)
)∣

∣
∣
∣ =

ẏ
y

+ a + ρ +
v

y
∂f
∂v

– g(x, y),

|B| =
ky
v

=
v̇
v

+ u,

μ(B) = max

{
ẏ
y

–
v̇
v

– u – d,
ẏ
y

–
v̇
v

– u – a
}

=
ẏ
y

–
v̇
v

– u – δ.

Hence, we obtain

g =
ẏ
y

– d +
v

y
∂f
∂v

– v
∂f
∂x

– y
∂g
∂x

+ v
∂f
∂y

+ y
∂g
∂y

≤ ẏ
y

– δ ()

and

g =
ẏ
y

– δ. ()

From ()-() we get

μ(B) ≤ ẏ
y

– δ.
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From Lemma . we know that system () is uniformly persistent when R > . Then there
exists a compact absorbing set K ⊂ � []. Along each solution (x(t), y(t), v(t)) of () with
X = (x(), y(), v()) ∈ K , we have


t

∫ t


μ(B) ds ≤ 

t
ln

(
y(t)
y()

)

– δ,

which implies that

q̄ = lim sup
t→∞

sup
X∈K


t

∫ t


μ(B) ds < –

δ


< .

Then, based on Theorem . of [], we deduce that the chronic infection equilibrium E∗

is globally asymptotically stable. This completes the proof. �

5 Applications
The aim of this section is to apply our main results to some special cases of our model ().

Example  Consider the system

⎧
⎪⎨

⎪⎩

ẋ = λ – dx – βxv – βxy + ρy,
ẏ = βxv + βxy – (a + ρ)y,
v̇ = ky – uv,

()

where β is the infection rate by a free virus, and β is the infection rate by the cell-to-cell
transmission. The other parameters in () have the same biological meanings as in model
(). The global dynamical behavior of this system was studied by Zhang et al. []. They
proved that the disease-free equilibrium Ef is globally asymptotically stable if R <  and
the chronic infection equilibrium E∗ is globally asymptotically stable when the condition

 < R ≤  + δ is satisfied, where δ = βλ+(a–ρ)d+
√

(βλ+(a–ρ)d)+aρd

ρd . On the other hand, it
is easy to verify that assumptions (H)-(H) hold for f (x, y, v) = βx and g(x, y) = βx. By
applying Theorems ., ., and . we obtain the following result, which improves the
corresponding results in [].

Corollary .
(i) If R ≤ , then the disease-free equilibrium Ef of system () is globally

asymptotically stable.
(ii) If R > , then the disease-free equilibrium Ef becomes unstable, and the chronic

infection equilibrium E∗ of system () is globally asymptotically stable.

Example  Consider the system

⎧
⎪⎨

⎪⎩

ẋ = λ – dx – βxv
α+αx+αv+αxv – βxy

x+y + ρy,
ẏ = βxv

α+αx+αv+αxv + βxy
x+y – (a + ρ)y,

v̇ = ky – uv,
()

which is a particular case of system () by letting

f (x, y, v) =
βx

α + αx + αv + αxv
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and g(x, y) = βx
x+y , where α,α,α,α ≥  are constants. Here, the incidence function for

virus-to-cell infection mode includes six most common forms existing in the literature:
the bilinear incidence (or mass action) when α =  and α = α = α = ; the saturated
incidence when α =  and α = α = ; the Beddington-DeAngelis functional response
[, ] when α =  and α = ; the Crowley-Martin functional response presented in
[] and used in [] when α =  and α = αα; the more generalized Hattaf functional
response [] when α = ; and the incidence function used by Zhuo in [] in order to
study the HBV infection with noncytolytic loss of infected cells when α = α =  and
α = α = . However, the second incidence function for the cell-to-cell transmission mode
was used by many authors (see, for example, [, , ]. Obviously, assumptions (H)-
(H) hold, and we have

f (x, y, v) + v
∂f
∂v

(x, y, v) =
βx(α + αx)

(α + αx + αv + αxv) ≥ .

Therefore, assumption (H) is satisfied. From Theorems ., ., and . we have the fol-
lowing result.

Corollary .
(i) If R ≤ , then the disease-free equilibrium Ef of system () is globally

asymptotically stable.
(ii) If R > , then the disease-free equilibrium Ef becomes unstable, and the chronic

infection equilibrium E∗ of system () is globally asymptotically stable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to the writing of this paper. They both read and approved the final version of the
manuscript.

Author details
1Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco.
2Department of Mathematics and Computer Science, Faculty of Sciences Ben M’sik, Hassan II University, Sidi Othman,
P.O. Box 7955, Casablanca, Morocco.

Acknowledgements
The authors would like to express their gratitude to the editor and the anonymous referees for their constructive
comments and suggestions, which have improved the quality of the manuscript.

Received: 1 May 2016 Accepted: 22 June 2016

References
1. Marsh, M, Helenius, A: Virus entry: open sesame. Cell 124, 729-740 (2006)
2. Mothes, W, Sherer, NM, Jin, J, Zhong, P: Virus cell-to-cell transmission. J. Virol. 84, 8360-8368 (2010)
3. Sattentau, Q: Avoiding the void: cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6, 815-826 (2008)
4. Zhong, P, Agosto, LM, Munro, JB, Mothes, W: Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3, 44-50 (2013)
5. Guidotti, LG, Rochford, R, Chung, J, Shapiro, M, Purcell, R, Chisari, FV: Viral clearance without destruction of infected

cells during acute HBV infection. Science 284, 825-829 (1999)
6. Lewin, SR, Ribeiro, RM, Walters, T, Lau, GK, Bowden, S, Locarnini, S, Perelson, AS: Analysis of hepatitis B viral load

decline under potent therapy: complex decay profiles observed. Hepatology 34, 101-1020 (2001)
7. Essunger, P, Perelson, AS: Modeling HIV infection of CD4+ T-cell subpopulations. J. Theor. Biol. 170, 367-391 (1994)
8. Hattaf, K, Yousfi, N, Tridane, A: Mathematical analysis of a virus dynamics model with general incidence rate and cure

rate. Nonlinear Anal., Real World Appl. 13, 1866-1872 (2012)
9. Hattaf, K, Yousfi, N: A numerical method for a delayed viral infection model with general incidence rate. J. King Saud

Univ., Sci. (2015). doi:10.1016/j.jksus.2015.10.003
10. Wang, X-Y, Hattaf, K, Huo, H-F, Xiang, H: Stability analysis of a delayed social epidemics model with general contact

rate and its optimal control. J. Ind. Manag. Optim. 12(4), 1267-1285 (2016)

http://dx.doi.org/10.1016/j.jksus.2015.10.003


Hattaf and Yousfi Advances in Difference Equations  (2016) 2016:174 Page 11 of 11

11. Nowak, MA, Bangham, CRM: Population dynamics of immune responses to persistent viruses. Science 272, 74-79
(1996)

12. Nowak, MA, Bonhoeffer, S, Hill, AM, Boehme, R, Thomas, HC, McDade, H: Viral dynamics in hepatitis B virus infection.
Proc. Natl. Acad. Sci. USA 93, 4398-4402 (1996)

13. Neumann, AU, Lam, NP, Dahari, H, Gretch, DR, Wiley, TE, Layden, TJ, Perelson, AS: Hepatitis C viral dynamics in vivo and
the antiviral efficacy of interferon-α therapy. Science 282, 103-107 (1998)

14. Perelson, AS: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28-36 (2002)
15. Min, L, Su, Y, Kuang, Y: Mathematical analysis of a basic model of virus infection with application to HBV infection.

Rocky Mt. J. Math. 38(5), 1573-1585 (2008)
16. Huang, G, Ma, W, Takeuchi, Y: Global properties for virus dynamics model with Beddington-DeAngelis functional

response. Appl. Math. Lett. 22, 1690-1693 (2009)
17. Wang, K, Fan, A, Torres, A: Global properties of an improved hepatitis B virus model. Nonlinear Anal., Real World Appl.

11, 3131-3138 (2010)
18. Hattaf, K, Yousfi, N: Dynamics of HIV infection model with therapy and cure rate. Int. J. Tomogr. Stat. 16, 74-80 (2011)
19. Zhou, X, Cui, J: Global stability of the viral dynamics with Crowley-Martin functional response. Bull. Korean Math. Soc.

48(3), 555-574 (2011)
20. Bonhoeffer, S, Coffin, JM, Nowak, MA: Human immunodeficiency virus drug therapy and virus load. J. Virol. 71,

3275-3278 (1997)
21. Zhang, T, Meng, X, Zhang, T: Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate.

Comput. Math. Methods Med. (2015). doi:10.1155/2015/758362
22. Gradshteyn, IS, Ryzhik, IM: Routh-Hurwitz theorem. In: Tables of Integrals, Series, and Products. Academic Press, San

Diego (2000)
23. Srivastava, PK, Chandra, P: Modeling the dynamics of HIV and CD4+ T cells during primary infection. Nonlinear Anal.,

Real World Appl. 11, 612-618 (2010)
24. Pang, J, Cui, JA, Hui, J: The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn. 67(1),

723-734 (2012)
25. Wang, L, Li, MY: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math.

Biosci. 200, 44-57 (2006)
26. LaSalle, JP: The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics. SIAM,

Philadelphia (1976)
27. Freedman, H, Ruan, S, Tang, M: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ.

6, 583-600 (1994)
28. Li, MY, Muldowney, JS: A geometric approach to the global-stability problems. SIAM J. Math. Anal. 27, 1070-1083

(1996)
29. Martin, RH Jr.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45,

432-454 (1974)
30. Butler, G, Waltman, P: Persistence in dynamical systems. Proc. Am. Math. Soc. 98, 425-430 (1986)
31. Beddington, JR: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim.

Ecol. 44, 331-341 (1975)
32. DeAngelis, DL, Goldsten, RA, Neill, R: A model for trophic interaction. Ecology 56, 881-892 (1975)
33. Crowley, PH, Martin, EK: Functional responses and interference within and between year classes of a dragonfly

population. J. North Am. Benthol. Soc. 8, 211-221 (1989)
34. Hattaf, K, Yousfi, N, Tridane, A: Stability analysis of a virus dynamics model with general incidence rate and two delays.

Appl. Math. Comput. 221, 514-521 (2013)
35. Zhuo, X: Analysis of a HBV infection model with non-cytolytic cure process. In: IEEE 6th International Conference on

Systems Biology, pp. 148-151 (2012)
36. Yousfi, N, Hattaf, K, Tridane, A: Modeling the adaptative immune response in HBV infection. J. Math. Biol. 63, 933-957

(2011)
37. Wang, J, Tian, X: Global stability of a delay differential equation of hepatitis B virus infection with immune response.

Electron. J. Differ. Equ. 2013, 94 (2013)

http://dx.doi.org/10.1155/2015/758362

	A generalized virus dynamics model with cell-to-cell transmission and cure rate
	Abstract
	Keywords

	Introduction
	Preliminary results
	Local stability
	Global stability
	Applications
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


