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Abstract
In this paper, we study a stochastic non-autonomous logistic system with feedback
control. Sufficient conditions for stochastic asymptotically bounded, extinction,
non-persistence in the mean, weak persistence, and persistence in the mean are
established. The critical number between weak persistence and extinction is
obtained. A very important fact is found in our results, that is, the feedback control is
harmless to the permanence of species under the randomized environment.
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1 Introduction
The classical non-autonomous logistic equation can be expressed as follows:

ẋ(t) = x(t)
(
r(t) – a(t)x(t)

)
, (.)

where x(t) denotes the population size at time t, r(t) is the intrinsic growth rate and
r(t)/a(t) is the carrying capacity at time t. It has been studied extensively and many impor-
tant results on the global dynamics of solutions have been found (see [–] and references
therein). On the other hand, sometimes we should search for certain schemes (such as a
harvesting procedure or biological control) to ensure the system still have the same dy-
namic property as system (.) under the same conditions. For this reason, many authors
considered the controlled system. In [], Gopalsamy and Weng motivated by control the-
ory and studied the global asymptotic stability of positive equilibrium of a regulated logis-
tic growth with a delay in the state feedback of the control model. In [], by constructing a
suitable Lyapunov functional, the global stability of a single species model with feedback
control and distributed time delay were studied. By using coincidence degree theory, some
excellent results (see [–]) which were concerned with the existence of periodic solu-
tion of single species with feedback control are obtained. In many works (see [–]), the
authors obtained the result that the feedback controls are harmless to the permanence for
the deterministic systems.

However, population systems in the real world are often affected by environmental noise.
It is important to discover whether the presence of a such noise affects these results (see
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[–]). Recently many authors have discussed population systems subject to white noise
(see [–]). Recall that r(t) represents the intrinsic growth rate at time t. In practice we
usually estimate it by an average value plus an error term. In general, by the well-known
central limit theorem, the error term follows a normal distribution. Thus, for a short cor-
relation time, we may replace r(t) by

r(t) → r(t) + σ (t)Ḃ(t),

where Ḃ(t) is white noise and σ (t) is a positive number representing the intensity of the
noise at time t. Then (.) becomes a stochastic differential equation

dx(t) = x(t)
(
r(t) – a(t)x(t)

)
dt + σ (t)x(t) dB(t). (.)

In [], the authors considered the case that the coefficients of (.) are all periodic func-
tions with period T . They obtained the stochastic permanence of (.) and global attrac-
tivity of one positive solution xp(t) satisfying E[/xp(t)] = E[/xp(t + T)]. In [], Liu and
Wang improved the permanence results in [], and obtained the critical number between
weak persistence and extinction. However, to the best of the authors’ knowledge, to this
day, still few scholars consider the stochastic perturbation logistic system with feedback
controls. In fact, we have known very little about how feedback controls affect the survival
of species which is under the randomized environment.

So, motivated by the above analysis, we will study the following non-autonomous ran-
domized logistic system with feedback control:

{
dx(t) = x(t)(r(t) – a(t)x(t) – c(t)u(t)) dt + σ (t)x(t) dBt ,
du(t) = (–e(t)u(t) + f (t)x(t)) dt,

(.)

where r(t) is a continuous bounded function on [, +∞) and a(t), c(t), σ (t), e(t), and f (t) are
nonnegative continuous bounded function on [, +∞). Throughout this paper, for system
(.) we introduce the following hypotheses:

(H) There is a positive constant λ such that

lim inf
t→∞

∫ t+λ

t
a(s) ds > .

(H) There is a positive constant γ such that

lim inf
t→∞

∫ t+γ

t
e(s) ds > .

(H) There is a positive constant γ such that

lim inf
t→∞

∫ t+γ

t
f (s) ds > .

In this work, our purpose is to establish the sufficient conditions for asymptotically
bounded, extinction, non-persistence in the mean, weak persistence and persistence in
the mean of system (.). We will find that, in our results, the feedback control is harmless
to the permanence of species with stochastic perturbation.
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2 Preliminaries
Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥,P) be a complete
probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e. it is right
continuous and F contains all P-null set). Let B(t), t ≥ , be -dimension standard Brow-
nian motion defined on this probability space. We also denote by R+ the interval [, +∞),
and denote by R

+ the set {(x, y)|x > , y > }. For convenience and simplicity in the follow-
ing discussion, define

fu = sup
s∈R+

f (s), fl = inf
s∈R+

f (s),
〈
f (t)

〉
=


t

∫ t


f (s) ds,

〈f 〉∗ = lim sup
t→∞


t

∫ t


f (s) ds and 〈f 〉∗ = lim inf

t→∞

t

∫ t


f (s) ds,

where f (s) is a continuous bounded function on R+.
Now, we introduce several lemmas which will be very useful in the proofs of the main

results. We consider the following randomized non-autonomous logistic equation:

dN(t) = N(t)
((

m(t) – n(t)N(t)
)

dt + α(t) dB(t)
)
. (.)

We have the following results which can be found in [].

Lemma . Suppose m(t), n(t), and α(t) are continuous bounded functions on R+ and n(t)
is nonnegative on R+. Then there exists a unique continuous positive solution N(t) to system
(.) for any positive initial value N() = N, which is global and represented by

N(t) =
exp{∫ t

 (m(s) – α(s)
 ) ds +

∫ t
 α(s) dB(s)}

/N +
∫ t

 n(s) exp{∫ s
 (m(τ ) – α(τ )

 ) dτ +
∫ s

 α(τ ) dB(τ )}ds
.

Remark . In [], the authors obtained the same results as Lemma . with conditions
m(t), n(t),α(t) > . But checking the proof in Theorem . in [], we can obtain the same
results in Lemma ., only n(t) needs to be nonnegative.

We consider the following non-autonomous differential equation:

dy(t)
dt

= yα(t)
(
m(t) – n(t)yβ (t)

)
, (.)

where m(t) and n(t) are continuous bounded function on R+. We have the following results
for system (.).

Lemma . Suppose that there are positive constants θ and γ such that

lim inf
t→∞

∫ t+θ

t
m(s) ds >  and lim inf

t→∞

∫ t+γ

t
n(s) ds > . (.)

Assume β >  and one of the following conditions is satisfied:
(a) α =  and n(t) is nonnegative;
(b) α + β = , α ≥ , and m(t) is nonnegative.
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Then we have
(i) for any given initial value y > , there is a unique solution y(t) of (.) which is

global positive;
(ii) there exist positive constants l and L such that

l ≤ lim inf
t→∞ y(t) ≤ lim sup

t→∞
y(t) ≤ L

for any positive solution y(t) of equation (.);
(iii) for any two positive solutions x(t) and y(t) of system (.) we have

lim
t→∞

(
x(t) – y(t)

)
= .

Proof If α = , it is obviously that system (.) has a unique global positive solution for
any positive initial value. And we can prove the conclusion (ii) of this lemma similar to
Lemma  in []. Now, we prove the conclusion (iii) for this case. Let x(t) and y(t) be
any two solutions of equation (.). By conclusion (ii), there are positive constants l and
L such that l ≤ x(t), y(t) ≤ L for all t ≥ t. We can choose the Lyapunov function V (t) =
| ln x(t) – ln y(t)|. By calculating the upper derivative of V (t) and using the mean value
theorem of differential, we have

D+V (t) ≤ –n(t)
∣
∣xβ (t) – yβ (t)

∣
∣

= –βn(t)ξβ–(t)
∣
∣x(t) – y(t)

∣
∣

≤ –qn(t)V (t) for all t ≥ t,

where ξ (t) is between x(t) and y(t), and

q =

{
βlβ , if β ≥ ,
βlLβ–, if β < .

Since
∫ ∞

 n(s) ds = +∞, we have V (t) →  as t → ∞. Therefore,

lim
t→∞

(
x(t) – y(t)

)
= .

This completes the proof of the case (a).
Now, we prove the case (b). From system (.) we have

d
dt

yβ (t) = β
(
m(t) – n(t)yβ (t)

)
.

We denote z(t) = yβ (t), and this yields

dz(t)
dt

= β
(
m(t) – n(t)z(t)

)
.

Let w(t) = /z(t), we obtain

dw(t)
dt

= βw(t)
(
n(t) – m(t)w(t)

)
. (.)
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Consequently, (i) of this lemma holds. By Lemma  of [], we can find that system (.)
has the following results:

(i) there exist positive constants l and L such that

l ≤ lim inf
t→∞ w(t) ≤ lim sup

t→∞
w(t) ≤ L

for any positive solution w(t) of equation (.);
(ii) for any two positive solutions w(t) and w(t) of system (.) we have

lim
t→∞

(
w(t) – w(t)

)
= .

Therefore, the conclusions (ii) and (iii) of this lemma hold if (b) arises. This completes the
proof of the lemma. �

Remark . In [], the authors considered the case α = β =  of system (.), and ob-
tained the same conclusions with this lemma. Hence, their results are generalized by
Lemma ..

Remark . If ml and nl are positive, it is easy to find that

ml

nu
≤ lim inf

t→∞ yβ (t) ≤ lim sup
t→∞

yβ (t) ≤ mu

nl

for any positive solution y(t) of equation (.).

Now, we consider the following non-autonomous linear equation:

dy(t)
dt

= m(t) – n(t)y(t) + p(t), (.)

where functions m(t), n(t), and p(t) are bounded continuous defined on R+ and m(t) and
n(t) are nonnegative for all t ≥ . Suppose that v(t) is the solution of the following equation:

dv(t)
dt

= m(t) – n(t)v(t)

with initial condition v() = . We have the following useful result which can be found
in [].

Lemma . Suppose that there exists a constant ω >  such that

lim inf
t→∞

∫ t+ω

t
n(s) ds > .

Then, for any constants ε >  and M >  there exist constants δ = δ(ε) >  and T = T(M) >
 such that for any t ∈ R+, v ∈ R, and |y| ≤ M, when |p(t)| < δ for all t ≥ t, one has

∣∣y(t, t, y) – v(t)
∣∣ < ε for all t ≥ t + T,

where y(t, t, y) is the solution of equation (.) with initial condition y(t) = y.
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Further, we consider the following non-autonomous equation:

dy(t)
dt

= yα(t)
(
m(t) – n(t)yβ (t) + p(t)

)
, (.)

where α ≥ , β > , α + β = , the functions m(t), n(t), and p(t) are bounded continuous
defined on R+ and m(t) and n(t) are nonnegative for all t ≥ . Suppose that v(t) is the
solution of the following equation:

dv(t)
dt

= vα(t)
(
m(t) – n(t)vβ (t)

)
(.)

with initial condition v() = . We have the following result.

Lemma . Suppose that there exists a constant γ >  such that

lim inf
t→∞

∫ t+γ

t
n(s) ds > . (.)

Then, for any constants ε >  and M >  there exist constants δ = δ(ε) >  and T = T(M) >
 such that for any t ∈ R+ and  < y < M, when |p(t)| < δ for all t ≥ t, one has

∣
∣yβ (t, t, y) – vβ (t)

∣
∣ < ε for all t ≥ t + T,

where y(t, t, y) is the solution of system (.) with initial condition y(t) = y.

Proof If α = , we have β = . This case is the same as Lemma .. If α 
= , we let ỹ(t) = yβ (t)
and ṽ(t) = vβ (t), from (.) and (.) we have

dỹ(t)
dt

= β
(
m(t) – n(t)ỹ(t) + p(t)

)
(.)

and

dṽ(t)
dt

= β
(
m(t) – n(t)ṽ(t)

)
. (.)

Then, using Lemma ., we can obtain the conclusion of this lemma. �

Remark . In Lemma ., the authors discussed the case α =  and β =  of this lemma.
Hence, their results are extended by this lemma.

3 Asymptotically bounded of the global positive solution
In system (.), x(t) is the size of the species and u(t) is the regulator, thus we are only
interested in the positive solutions. Moreover, in order for a stochastic differential equa-
tion to have a unique global (i.e. no explosion in a finite time) solution for any given initial
value, the coefficients of the equation are generally required to satisfy the linear growth
condition and local Lipschitz condition (cf. Mao []). However, the coefficients of system
(.) do not satisfy the linear growth condition, though they are locally Lipschitz contin-
uous. In this section, using the comparison theorem of stochastic equations (see []) we
will show there is a unique positive solution with positive initial value of system (.).
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Theorem . For any given initial value (x, u) ∈ R
+, there is a unique solution (x(t), u(t))

to system (.) on t ≥  and the solution will remain in R
+ with probability one, namely

(x(t), u(t)) ∈ R
+ for all t ≥  almost surely.

Proof Since the coefficients of the equation are locally Lipschtiz continuous, it is known
that for any given initial value (x, u) ∈ R

+ there is a unique maximal local solution
(x(t), u(t)) for all t ∈ [, τe) where τe is the explosion time. Furthermore, by Lemma .,
we have

x(t) =
exp{∫ t

 [b(s) – c(s)u(s)] ds +
∫ t

 σ (s) dB(s)}
/x +

∫ t
 a(s) exp{∫ s

 [b(τ ) – c(s)u(s)] dτ +
∫ s

 σ (τ ) dB(τ )}ds
> 

and

u(t) ≥ u exp

{
–

∫ t


e(s) ds

}
>  for all t ∈ [, τe),

where b(t) = r(t) – .σ (t). Hence, to show this solution is globally positive, we only to
show that τe = ∞ a.s. By the first equation of (.) we have

dx(t) ≤ x(t)
(
r(t) – a(t)x(t)

)
dt + σ (t)x(t) dB(t). (.)

Consider the following auxiliary equation:
{

dy(t) = y(t)(r(t) – a(t)y(t)) dt + σ (t)y(t) dB(t),
y() = x.

(.)

From Lemma ., we know that there exists a unique continuous positive solution y(t) of
system (.) for any positive initial value x, which will remain in R+ with probability one.
Consequently, by the comparison theorem of stochastic differential equation we have

x(t) ≤ y(t) for all t ≥  a.s.

Therefore, x(t) < ∞ for all t >  a.s. By the second equation of (.) we can represent u(t)
by

u(t) =
(∫ t


f (s)x(s) exp

{∫ s


e(τ ) dτ

}
+ u

)
exp

{
–

∫ t


e(s) ds

}
.

From this we can find that if x(t) is global, then u(t) also is a global solution, i.e. τe = ∞ a.s.
This complete the proof of the theorem. �

Now, we will discuss the asymptotically bounded property of the unique global positive
solution of system (.). To be precise, let us now give the definition of asymptotically
bounded.

Definition . Let p > , system (.) is said to be asymptotically bounded in pth moment
if there are positive constants H = H(p) and K = K(p) such that

lim sup
t→∞

E
[∣∣x(t; t, x, u)

∣
∣p] ≤ H and lim sup

t→∞
E
[∣∣u(t; t, x, u)

∣
∣p] ≤ K

for all (x, u) ∈ R
+.
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Theorem . Suppose (H)-(H) hold, for any p ≥  there is a positive constant μ such
that

lim inf
t→∞

∫ t+μ

t

(
r(s) +




(p – )σ (s)
)

ds > . (.)

Then system (.) is asymptotically bounded in pth moment. Furthermore, we have

lim sup
t→∞

E
[
xp(t)

] ≤ lim sup
t→∞

y∗(t) and lim sup
t→∞

E
[
up(t)

] ≤ lim sup
t→∞

v∗(t),

where y∗(t) is the solution of the equation

dy(t)
dt

= py(t)
((

r(t) +



(p – )σ (t)
)

– a(t)y

p (t)

)
(.)

with initial value y∗() = , and v∗(t) is the solution of the equation

dv(t)
dt

= pv
p–

p (t)
(
–e(t)v


p (t) + f (t)y∗ 

p (t)
)

with initial value v∗() = .

Proof Applying Itô’s formula to xp(t), we have

dxp(t) = pxp(t)
((

r(t) +



(p – )σ (t) – a(t)x(t) – c(t)u(t)
)

dt + σ (t) dB(t)
)

.

For every integer n ≥ , define the stopping time

τn = inf
{

t ≥  :
∣
∣x(t)

∣
∣ ≥ n

}
.

Clearly, τn ↑ ∞ a.s. Integrating from  to t ∧ τn and taking expectations yield

E
[
xp(t∧τn)

]
–E

[
xp


]

= p
∫ t∧τn


E
[

xp(s)
((

r(s)+



(p–)σ (s)–a(s)x(s)–c(s)u(s)
))]

ds.

Letting n → ∞, and by the well-known Hölder inequality,

dE[xp(t)]
dt

= p
((

r(t) +



(p – )σ (t)
)

E
[
xp(t)

]
– a(t)E

[
xp+(t)

]
– c(t)E

[
u(t)xp(t)

]
)

≤ pE
[
xp(t)

]
(

r(t) +



(p – )σ (t) – a(t)
(
E
[
xp(t)

]) 
p

)
.

By the assumption (H) and (.), considering the auxiliary equation (.) and using the
standard comparison theorem and (a) of Lemma ., we can obtain

lim sup
t→∞

E
[
xp(t)

] ≤ lim sup
t→∞

y∗(t) := H(p).

Furthermore, for any α >  there exists a constant T >  such that

E
[
xp(t)

] ≤ y∗(t) + α for all t ≥ t + T.
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By the second equation of system (.) we have

dup(t)
dt

= p
[
–e(t)up(t) + f (t)x(t)up–(t)

]
.

Integrating from  to t and taking expectations, we have

E
[
up(t)

]
– E

[
up


]

= p
∫ t



(
–e(s)E

[
up(s)

]
+ f (s)E

[
x(s)up–(s)

])
ds.

So,

dE[up(t)]
dt

= p
(
–e(t)E

[
up(t)

]
+ f (t)E

[
x(t)up–(t)

])

≤ p
(
E
[
up(t)

]) p–
p

[
–e(t)

(
E
[
up(t)

]) 
p + f (t)

(
E
[
xp(t)

]) 
p
]

≤ p
(
E
[
up(t)

]) p–
p

[
–e(t)

(
E
[
up(t)

]) 
p + f (t)

(
y∗(t) + α

) 
p
]

(.)

for all t ≥ t + T. Consider the following comparison equation:

dz(t)
dt

= pz
p–

p (t)
[
–e(t)z


p (t) + f (t)

(
y∗(t) + α

) 
p
]
. (.)

By the assumptions (H) and (H) and (b) of Lemma . we can find that for the so-
lution z(t) of equation (.) with initial value z(t + T) = E[up(t + T)] is bounded.
Hence, we can denote M = supt∈R+ z(t). By Lemma ., for any ε >  and M there ex-
ist positive constants δ = δ(ε) and T = T(M) ≥ T such that for any t ∈ R+, when
|f (t)(y∗(t) + α)


p – f (t)y∗ 

p (t)| < δ for all t ≥ t, we have

∣∣z

p (t) – v∗ 

p (t)
∣∣ ≤ ε. (.)

By the comparison theorem of differential equation, we can obtain from (.) and (.)

E
[
up(t)

] ≤ (
v∗ 

p (t) + ε
)p

for all t ≥ t + T. Since ε is arbitrary, we can obtain

lim sup
t→∞

E
[
up(t)

] ≤ lim sup
t→∞

v∗(t) := K(p).

This completes the proof of the theorem. �

In the following, we denote q(t) = r(t) + .(p – )σ (t).

Remark . If qu, al , and el are positive, we can choose

H(p) =
qp

u

ap
l

and K(p) =
f p
u H(p)

ep
l

,

which will be discussed in the following corollary.
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Corollary . Suppose qu, al , and el are positive. Then system (.) is asymptotically
bounded in the pth moment for any p ≥ . Furthermore,

lim sup
t→∞

E
[
xp(t)

] ≤ qp
u

ap
l

and lim sup
t→∞

E
[
up(t)

] ≤ f p
u qp

u

ap
l ep

l
.

Remark . If c(t) ≡ , we can obtain a randomized logistic equation without feedback
control

dx(t) = x(t)
(
r(t) – a(t)x(t)

)
dt + σ (t)x(t) dB(t). (.)

From Theorem ., if (H) and (.) hold, then system (.) is asymptotically bounded in
pth moment. In [], the authors studied the stochastic bounded of system (.) with the
assumptions rl >  and al > . Hence, our conditions in Theorem . are weaker than that
in [].

Definition . System (.) is said to be stochastically ultimately bounded, if for any ε ∈
(, ) there is a positive constant χ (= χ (ε)) such that the solution of SDE (.) with any
positive initial value has the property that

lim sup
t→∞

P
(
x(t) > χ

)
< ε and lim sup

t→∞
P
(
u(t) > χ

)
< ε.

Theorem . Suppose assumptions (H)-(H) hold, and for some p ≥  and μ >  such
that

lim inf
t→∞

∫ t+μ

t

(
r(s) +




(p – )σ (s)
)

ds > .

Then system (.) is stochastically ultimately bounded.

Proof This can easily be verified by Chebyshev’s inequality and Theorem .. �

Corollary . Suppose al and el are positive, and for some p ≥  such that qu > . Then
solution of system (.) are stochastically ultimately bounded.

Remark . From Theorems . and ., we can find that the asymptotically bounded
property of system (.) cannot be changed by the feedback control even though the sys-
tem is randomized by the environment.

4 Extinction and persistence in time average
Now, we will discuss extinction and persistence of system (.). For any positive solution
(x(t), u(t)) of system (.) we first introduce some useful definitions.

Definition . System (.) is said to be extinction almost surely, if

lim
t→∞ x(t) =  and lim

t→∞ u(t) =  a.s.;
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non-persistence in the mean, if

lim
t→∞

〈
x(t)

〉
=  and lim

t→∞
〈
u(t)

〉
=  a.s.;

uniform persistence in the mean, if there are positive constants m and M such that

m ≤ 〈x〉∗ ≤ 〈x〉∗ ≤ M and m ≤ 〈u〉∗ ≤ 〈u〉∗ ≤ M a.s.

For convenience and simplicity in the following discussion, we denote b(t) = r(t) –
.σ (t) and (x(t), u(t)) = (x(t, , x, u), u(t, , x, u)) for any (x, u) ∈ R

+. Applying Itô’s
formula to ln x(t), we have

d ln x(t) =
(
b(t) – a(t)x(t) – c(t)u(t)

)
dt + σ (t) dB(t). (.)

Then we have

ln x(t) = ln x +
∫ t



(
b(s) – a(s)x(s) – c(s)u(s)

)
ds + M(t), (.)

where M(t) =
∫ t

 σ (s) dB(s). By the second equation of system (.) we have

u(t) – u = –
∫ t


e(s)u(s) ds +

∫ t


f (s)x(s) ds. (.)

Note that M(t) is a local martingale. Making use of the strong law of large numbers for
local martingales (see Mao []), we have

lim
t→∞

M(t)
t

=  a.s. (.)

We denote � = {limt→∞ M(t)/t = }, obviously, P(�) = .

Theorem . If (H) holds and 〈b〉∗ < , then system (.) will go to extinction almost
surely.

Proof For any ω ∈ �, from (.) we have

ln x(t,ω)
t

≤ ln x

t
+


t

∫ t


b(s) ds +

M(t,ω)
t

. (.)

Making use of (.) we obtain

lim sup
t→∞

ln x(t,ω)
t

≤ 〈b〉∗.

That is to say, limt→∞ x(t,ω) =  for 〈b〉∗ < . Now, we will prove limt→∞ u(t,ω) = . Since
limt→∞ x(t,ω) = , then for any α > , there is a positive constant T such that

∣∣x(t,ω)
∣∣ <

α

fu
for all t ≥ T.
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Consequently, from (.) we have

du(t,ω)
dt

≤ –e(t)u(t,ω) + α for all t ≥ T.

We consider the comparison equation

dv(t)
dt

= –e(t)v(t) + α. (.)

By (H) and Lemma . with m(t) ≡  and v() = , we see for any positive constant ε that
there are constants δ = δ(ε) and T = T(u(T)) > T such that when |α| < δ, we have

∣
∣v(t)

∣
∣ < ε for all t ≥ T,

where v(t) is the solution of system (.) with initial condition v(T) = u(T,ω). Therefore,
by the comparison theorem, we obtain

u(t,ω) < ε for all t ≥ T.

Since ε is arbitrary, we have limt→∞ u(t,ω) = . This complete the proof of the theorem,
for P(�) = . �

Remark . If c(t) ≡ , we can obtain system (.). In Theorem  in [], the authors ob-
tained the extinction of system (.) under the same conditions with Theorem .. Hence,
if 〈b〉∗ < , the feedback control cannot change the extinction of the species x.

Theorem . Suppose 〈b〉∗ = , we have
(i) if 〈a〉∗ > , 〈c〉∗ > , and (H) hold, then lim inft→∞ x(t) =  and lim inft→∞ u(t) = 

a.s.;
(ii) if al, el > , then system (.) will be non-persistent in the mean a.s.

Proof (i) First of all, we will prove lim inft→∞ x(t,ω) =  for all ω ∈ �. Otherwise, there is
a positive constant ε such that

lim inf
t→∞ x(t,ω) > ε for some ω ∈ �.

Hence, by 〈a〉∗ >  and 〈b〉∗ = , for any positive constant ε < ε there is a positive constant
T such that

x(t,ω) ≥ ε and
|M(t,ω)|

t
<

〈a〉∗


ε for all t ≥ T. (.)

And there is a positive constant T = T(ε) > T such that


t

∫ t

T

(
b(s) – εa(s)

)
ds < –

〈a〉∗


ε for all t ≥ T. (.)

Then from (.), (.), and (.) we have

ln x(t,ω) – ln x(T,ω) ≤
∫ t

T

(
b(s) – a(s)ε

)
ds + M(t,ω) – M(T,ω)

≤ –
〈a〉∗


t for all t ≥ T.



Hu and Zhu Advances in Difference Equations  (2016) 2016:192 Page 13 of 21

Consequently, we have

x(t,ω) ≤ x(T,ω) exp

{
–

〈a〉∗


t
}

.

Letting t → ∞ we have lim supt→∞ x(t,ω) ≤ , which is a contradiction. Therefore,

lim inf
t→∞ x(t,ω) =  for all ω ∈ �.

Now, we will prove lim inft→∞ u(t,ω) =  for all ω ∈ �. Otherwise, there is a η >  such
that

lim inf
t→∞ u(t,ω) ≥ η for some ω ∈ �.

Consequently, we see that there is a positive constant T such that

u(t,ω) ≥ η for all t ≥ T.

From (.) we can obtain

ln x(t,ω) – ln x(T,ω) ≤
∫ t

T

(
b(s) – ηc(s)

)
ds + M(t,ω) – M(T,ω)

for all t ≥ T. Dividing the two side of above equation by t and letting t → ∞, we can get

lim sup
t→∞

ln x(t,ω)
t

≤ 〈b〉∗ – η〈c〉∗ <  for 〈c〉∗ > .

This leads to limt→∞ x(t,ω) = . By the proof of Theorem . we can obtain limt→∞ u(t,
ω) = . This is a contradiction. Therefore, the proof of (i) is completed.

(ii) 〈b〉∗ =  and (.) imply that, for any ε >  and ω ∈ �, there is a positive constant
T such that

∫ t


b(s) ds ≤ εt


and M(t,ω) ≤ εt


for all t ≥ T.

Then it follows from (.) that

ln x(t,ω) ≤ ln x + εt – al

∫ t


x(s,ω) ds.

Let h(t) =
∫ t

 x(s,ω) ds, then we deduce that

ealh(t) dh(t) ≤ xeεt dt.

Integrating this inequality from T > T to t results in

ealh(t) ≤ ealh(T) +
xal

ε

(
eεt – eεT)

.
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It follows that

h(t) ≤ 
al

ln

(
ealh(T) +

xal

ε

(
eεt – eεT))

.

Using L’Hospital’s rule we get

lim sup
t→∞

h(t)
t

≤ ε

al
.

Since ε is arbitrary and x(t,ω) >  (t > ), we can obtain limt→∞〈x(t,ω)〉 = .
Now, we will prove limt→∞〈u(t,ω)〉 = . Dividing both sides of equation (.) by t, we

get


t

∫ t


u(s,ω) ds ≤ fu

elt

∫ t


x(s,ω) ds –

u(t,ω)
elt

+
u

elt

≤ fu

elt

∫ t


x(s,ω) ds +

u

elt
.

From limt→∞〈x(t,ω)〉 = , letting t → ∞ we obtain limt→∞〈u(t,ω)〉 = . Since P(�) = ,
this completes the proof of the theorem. �

Theorem . If el >  and 〈b〉∗ > , then species x will be weakly persistent in the mean
a.s., i.e. 〈x〉∗ >  a.s.

Proof We claim that � ⊂ {〈x〉∗ > }. If the claim is not true, then {〈x〉∗ = } ∩ � 
= ∅. By
the proof of (ii) in Theorem ., if el > , we have 〈u(t,ω)〉∗ =  for any ω ∈ {〈x〉∗ = }∩�.
It is easy to see that

〈
a(t)x(t,ω)

〉∗ ≤ au
〈
x(t,ω)

〉∗ =  and
〈
c(t)u(t,ω)

〉∗ ≤ cu
〈
u(t,ω)

〉∗ = . (.)

From (.) we get

ln x(t,ω)
t

=
ln x

t
+


t

∫ t


b(s) ds –


t

∫ t


a(s)x(s,ω) ds

–

t

∫ t


c(s)u(s,ω) ds +

M(t,ω)
t

.

Combining this equation with (.) and (.) we have

lim sup
t→∞

ln x(t,ω)
t

= 〈b〉∗.

Hence, there are a positive constant T and a time sequence {tn} with tn ≥ T and tn+ –tn ≥
 for all n ≥  such that

ln x(tn,ω)
tn

>
〈b〉∗


and

|M(t,ω)|
t

<
〈b〉∗


for all t > T. (.)
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Let b̄ = supt≥{|b(s)|}. For any positive constant �t < min{, 〈b〉∗t/(b̄)} from (.) we have

ln x(tn,ω) – ln x(t,ω) ≤
∫ tn

t
b(s) ds + M(tn,ω) – M(t,ω)

≤ b̄�t +
〈b〉∗


tn for all t ∈ [tn – �t, tn].

Combining with (.) we obtain

ln x(t,ω) ≥ ln x(tn,ω) – b̄�t –
〈b〉∗


tn

≥ 〈b〉∗


tn – b̄�t

≥ 〈b〉∗


tn for all t ∈ [tn – �t, tn] and n ≥ .

Consequently,


tn

∫ tn

t

x(s,ω) ds ≥ 
tn

∑

t<tm≤tn

∫ tm

tm–�t
x(s,ω) ds

≥ 
tn

∑

t<tm≤tn

�t exp

{ 〈b〉∗


tm

}

≥ �t
tn

exp

{ 〈b〉∗


tn

}
.

Since 〈b〉∗ > , limn→∞ 
tn

∫ tn
t

x(s,ω) ds = +∞, which contradicts with ω ∈ {〈x〉∗ = } ∩ �.
Therefore, � ⊂ {〈x〉∗ > }, i.e. 〈x〉∗ >  a.s. �

Remark . In Theorem  in [], the authors studied the weakly persistent in the mean
of system (.) with the conditions al >  and 〈b〉∗ > . Obviously, from Theorem . we
can obtain the same result with [] only under the condition 〈b〉∗ > . Therefore, the
result in [] is improved by Theorem ..

Remark . In this theorem, due to shortage of the analysis techniques on the stochastic
model, the weakly persistent in the mean of u case has not been studied. But we can see
that the feedback control does not affect the persistence property of the species x under
the conditions in this theorem.

Theorem . Assume al > , el > , fl > , and 〈b〉∗ > . Then system (.) will be uniform
permanent in the mean a.s. Moreover,

x ≤ 〈x〉∗ ≤ 〈x〉∗ ≤ x̄ and u ≤ 〈u〉∗ ≤ 〈u〉∗ ≤ ū a.s.,

where x = 〈b〉∗el/(auel +cufu), u = flel〈b〉∗/eu(auel +cufu), x̄ = (〈b〉∗eu(auel +cufu)–clflel〈b〉∗)/
aleu(auel + cufu), and ū = fu(〈b〉∗eu(auel + cufu) – clflel〈b〉∗)/aleleu(auel + cufu).

Proof From equation (.) we have

∫ t


e(s)u(s) ds =

∫ t


f (s)x(s) ds – u(t) + u ≤ fu

∫ t


x(s) ds + u.
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Consequently, we have

∫ t


u(s) ds ≤ fu

el

∫ t


x(s) ds +

u

el
. (.)

For any ε >  and ω ∈ �, there is a T such that

〈
b(t)

〉
> 〈b〉∗ –

ε


and

M(t)
t

> –
ε


for all t > T .

Substituting these inequalities and (.) into equation (.) we get

ln x(t) – ln x ≥ νt –
(

au +
cufu

el

)∫ t


x(s) ds –

cuu

el
for all t ≥ T ,

where ν = 〈b〉∗ – ε. Let g(t) =
∫ t

 x(s) ds, then we have

ln
dg(t)

dt
– ln x ≥ νt –

cuu

el
–

(
au +

cufu

el

)
g(t).

Consequently,

exp

{(
au +

cufu

el

)
g(t)

}
dg(t)

dt
≥ x exp

{
νt –

cuu

el

}
.

Integrating this inequality from T to t we have

exp

{(
au +

cufu

el

)
g(t)

}
≥ exp

{(
au +

cufu

el

)
g(T)

}
+

x(au + cufu
el

)
ν exp{ cuu

el
}

(
exp{νt} – exp{νT}).

Taking the logarithm of both sides yields

g(t) ≥
(

au +
cufu

el

)–

ln

(
exp

{(
au +

cufu

el

)
g(T)

}
+

x(au + cufu
el

)
ν exp{ cuu

el
}

(
exp{νt} – exp{νT})

)
.

That is to say,

〈x〉∗ ≥ lim inf
t→∞

[(
au +

cufu

el

)
t
]–

× ln

(
exp

{(
au +

cufu

el

)
g(T)

}
+

x(au + cufu
el

)
ν exp{ cuu

el
}

(
exp{νt} – exp{νT})

)
.

Using L’Hospital’s rule, we can obtain

〈x〉∗ ≥ ν

au + cufu
el

=
νel

auel + cufu
.

Since ε is arbitrary, we obtain

〈x〉∗ ≥ 〈b〉∗el

auel + cufu
:= x for all ω ∈ �.
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Now, we will prove 〈u〉∗ also has a lower bound. From the above proof, we can see for
any ε >  and ω ∈ � that there is a positive constant T such that

∫ t


x(s) ds ≥ (x – ε)t for all t ≥ T .

Substituting the above inequality into (.), we have

u(t) ≥ –eu

∫ t


u(s) ds + fl(x – ε)t for all t ≥ T .

Let h(t) =
∫ t

 u(s) ds, then we have

dh(t)
dt

≥ –euh(t) + fl(x – ε)t for all t ≥ T .

Consider the following comparison equation:

dy(t)
dt

= –euy(t) + fl(x – ε)t

with initial value y(T) = h(T). By the well-known variation-of-constants formula, we have

y(t) = fl(x – ε)
∫ t

T
s exp

{
–eu(t – s)

}
ds + h(T) exp

{
–eu(t – T)

}

=
fl

eu
(x – ε)

((
t –


eu

)
–

(
T –


eu

)
exp

{
–eu(t – T)

})
+ h(T) exp

{
–eu(t – T)

}
.

By the comparison theorem, we have

lim inf
t→∞

h(t)
t

≥ lim inf
t→∞

y(t)
t

=
fl

eu
(x – ε).

Since ε is arbitrary, we obtain

〈u〉∗ = lim inf
t→∞

h(t)
t

≥ fl

eu
x := u. (.)

In the following, we will prove the upper bound of 〈x〉∗ and 〈u〉∗. From (.) and (.),
for any ε >  and ω ∈ � there exists a positive constant T such that

∫ t


b(s) ds ≤

(
〈b〉∗ +

clε



)
t,

∫ t


u(s) ds ≥

(
u –

ε



)
t and M(t) ≤ clε


t (.)

for all t ≥ T. Substituting (.) into equation (.) we have

ln x(t) – ln x ≤
(

〈b〉∗ +
clε



)
t – al

∫ t


x(s) ds – cl

(
u –

ε



)
t +

clε


t

=
(〈b〉∗ – cl(u – ε)

)
t – al

∫ t


x(s) ds for all t ≥ T.
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Let k(t) =
∫ t

 x(s) ds, then we have

ln
dk(t)

dt
– ln x ≤ ρt – alk(t) for all t ≥ T,

where ρ = 〈b〉∗ – cl(u – ε). Consequently,

exp
{

alk(t)
}dk(t)

dt
≤ x exp{ρt} for all t ≥ T.

Integrating this inequality from T to t we have

exp
{

alk(t)
} ≤ exp

{
alk(T)

}
+

alx

ρ

(
exp{ρt} – exp{ρT}

)
.

Taking the logarithm of both sides yields

k(t) ≤ 
al

ln

{
exp

{
alk(T)

}
+

alx

ρ

(
exp{ρt} – exp{ρT}

)}
.

That is to say,

〈x〉∗ ≤ lim sup
t→∞


alt

ln

{
exp

{
alk(T)

}
+

alx

ρ

(
exp{ρt} – exp{ρT}

)
}

.

Using L’Hospital’s rule, we can obtain 〈x〉∗ ≤ ρ/al . Since ε is arbitrary, we obtain

〈x〉∗ ≤ 〈b〉∗ – clu
al

:= x̄. (.)

Rewriting equation (.) we have

∫ t


u(s) ds ≤ fu

el

∫ t


x(s) ds –

u(t)
el

+
u

el

≤ fu

el

∫ t


x(s) ds +

u

el
.

Combining this inequality with equation (.), we have 〈u〉∗ ≤ fux̄/el := ū. This completes
the proof. �

Remark . From Theorems .-., we can find that the feedback control is harmless to
the permanence of the species under the randomized environment.

5 Numerical simulation
In this section we use the Milstein method mentioned in Higham [] to substantiate the
analytical findings. For system (.), consider the discretization equation:

⎧
⎪⎨

⎪⎩

xk+ = xk + xk[r(k�t) – a(k�t)xk – c(k�t)uk]�t + σ (k�t)xk
√

�tξk

+ .σ (k�t)xk(ξ 
k �t – �t),

uk+ = uk – e(k�t)uk + f (k�t)xk ,

where ξk is a Gaussian random variable that follows N(, ).
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Figure 1 Extinction.

Figure 2 Weakly persistent in the mean.

Figure 3 Persistent in the mean of x (the left figure) and persistent in the mean of u (the right figure).

In Figure , we choose r(t) =  + sin t, a(t) = . + . sin t, σ (t)/ = . + . sin t, c(t) =
 + sin t, e(t) =  + cos t, and f (t) =  + cos

√
t. Then it is easy to obtain 〈b〉∗ = –. <  and

∫ t+π

t e(s) ds =  > . In view of Theorem ., x and u will go to extinction. Figure  confirms
this.

In Figure , we choose r(t) =  + sin t, a(t) = . + . sin t, σ (t)/ = . + . sin t, c(t) =
 + sin t, e(t) =  + . cos t, and f (t) =  + cos

√
t. Then the conditions 〈b〉∗ = . >  and

el = . >  are valid. By virtue of Theorem ., x will be weakly persistent in the mean.
This can be seen from Figure .



Hu and Zhu Advances in Difference Equations  (2016) 2016:192 Page 20 of 21

In Figure , we choose r(t) =  + sin t, a(t) = . + . sin t, σ (t)/ = . + . sin t,
c(t) = . + . sin t, e(t) = . + . cos t, and f (t) = . + . cos

√
t. Then it is easy

to obtain 〈b〉∗ = . > , al = ., au = ., cl = ., cu = ., el = ., eu = , fl = ., fu = ..
Consequently, we have x = ., x̄ = ., u = ., and ū = .. Applying The-
orem ., x and u will be persistent in the mean. Figure (a) and (b) confirms this.

6 Future directions
Recently, some scholars studied some interesting problems, such as model with jumps (see
[, ]) and model with time delay (see [, ]). It is an interesting question to investigate
the dynamics property of the stochastic species systems with feedback control, jumps, and
time delay. This will be our future work.
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