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Abstract
In this paper, we derive a family of ordinary differential equations from the generating
function of the Laguerre polynomials. Then these differential equations are used in
order to obtain some properties and new identities for those polynomials.
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1 Introduction
The Laguerre polynomials, Ln(x) (n ≥ ), are defined by the generating function

e– xt
–t

 – t
=

∞∑

n=

Ln(x)tn (see [, ]). ()

Indeed, the Laguerre polynomial Ln(x) is a solution of the second order linear differential
equation

xy′′ + ( – x)y + ny =  (see [–]). ()

From (), we can get the following equation:

∞∑

n=

Ln(x)tn =
e– xt

–t

 – t
=

∞∑

m=

(–)mxmtm

m!
( – t)–m–

=
∞∑

m=

(–)mxmtm

m!

∞∑

l=

(
m + l

l

)
tl

=
∞∑

n=

( n∑

m=

(–)m(n
m
)
xm

m!

)
tn. ()

Thus by (), we get immediately the following equation:

Ln(x) =
n∑

m=

(–)m(n
m
)
xm

m!
(n ≥ )

(
see [, –]

)
. ()
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Alternatively, the Laguerre polynomials are also defined by the recurrence relation as fol-
lows:

L(x) = , L(x) =  – x,

(n + )Ln+(x) = (n +  – x)Ln(x) – nLn–(x) (n ≥ ).
()

The Rodrigues’ formula for the Laguerre polynomials is given by

Ln(x) =

n!

ex dn

dxn

(
e–xxn) (n ≥ ). ()

The first few of Ln(x) (n ≥ ) are

L(x) = ,

L(x) =  – x,

L(x) =


(
x – x + 

)
,

L(x) =



(
–x + x – x + 

)
,

L(x) =



(
x – x + x – x + 

)
.

The Laguerre polynomials arise from quantum mechanics in the radial part of the solu-
tion of the Schrödinger equation for a one-electron action. They also describe the static
Wigner functions of oscillator system in the quantum mechanics of phase space. They
further enter in the quantum mechanics of the Morse potential and of the D isotropic
harmonic oscillator (see [, , ]). A contour integral that is commonly taken as the defi-
nition of the Laguerre polynomial is given by

Ln(x) =


π i

∮

C

e –xt
–t

 – t
t–n– dt

(
see [, , , ]

)
, ()

where the contour encloses the origin but not the point z = .
FDEs (fractional differential equations) have wide applications in such diverse areas as

fluid mechanics, plasma physics, dynamical processes and finance, etc. Most FDEs do not
have exact solutions and hence numerical approximation techniques must be used. Spec-
tral methods are widely used to numerically solve various types of integral and differential
equations due to their high accuracy and employ orthogonal systems as basis functions. It
is remarkable that a new family of generalized Laguerre polynomials are introduced in ap-
plying spectral methods for numerical treatments of FDEs in unbounded domains. They
can also be used in solving some differential equations (see [–]).

Also, it should be mentioned that the modified generalized Laguerre operational matrix
of fractional integration is applied in order to solve linear multi-order FDEs which are
important in mathematical physics (see [–]).

Many authors have studied the Laguerre polynomials in mathematical physics, combi-
natorics and special functions (see [–]). For the applications of special functions and
polynomials, one may referred to the papers (see [, , ]).
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In [], Kim studied nonlinear differential equations arising from Frobenius-Euler poly-
nomials and gave some interesting identities. In this paper, we derive a family of ordinary
differential equations from the generating function of the Laguerre polynomials. Then
these differential equations are used in order to obtain some properties and new identi-
ties for those polynomials.

2 Laguerre polynomials arising from linear differential equations
Let

F = F(t, x) =


 – t
e

–xt
–t . ()

From (), we note that

F () =
dF(t, x)

dt
=

(
( – t)– – x( – t)–)F . ()

Thus, by (), we get

F () =
dF ()

dt
=

(
( – t)– – x( – t)– + x( – t)–)F ()

and

F () =
dF ()

dt
=

(
( – t)– – x( – t)– + x( – t)– – x( – t)–)F . ()

So we are led to put

F (N) =

( N∑

i=N

ai–N (N , x)( – t)–i

)
F , ()

where N = , , , . . . .
From (), we can get equation ():

F (N+) =

( N∑

i=N

ai–N (N , x)i( – t)–i–

)
F +

( N∑

i=N

ai–N (N , x)( – t)–i

)
F ()

=

( N∑

i=N

ai–N (N , x)i( – t)–i–

)
F

+

( N∑

i=N

ai–N (N , x)( – t)–i

)
(
( – t)– – x( – t)–)F

=

( N∑

i=N

(i + )ai–N (N , x)( – t)–i– – x
N∑

i=N

ai–N (N , x)( – t)–i–

)
F

=

( N+∑

i=N+

iai–N–(N , x)( – t)–i – x
N+∑

i=N+

ai–N–(N , x)( – t)–i

)
F . ()
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Replacing N by N +  in (), we get

F (N+) =

(N+∑

i=N+

ai–N–(N + , x)( – t)–i

)
F . ()

Comparing the coefficients on both sides of () and (), we have

a(N + , x) = (N + )a(N , x), ()

aN+(N + , x) = –xaN (N , x), ()

and

ai–N–(N + , x) = iai–N–(N , x) – xai–N–(N , x) (N +  ≤ i ≤ N + ). ()

We note that

F = F () = a(, x)F . ()

Thus, by (), we get

a(, x) = . ()

From () and (), we note that

(
( – t)– – x( – t)–)F = F () =

(
a(, x)( – t)– + a(, x)( – t)–)F . ()

Thus, by comparing the coefficients on both sides of (), we get

a(, x) = , a(, x) = –x. ()

From (), (), we get

a(N + , x) = (N + )aN (N , x) = (N + )NaN–(N – , x) · · ·
= (N + )N(N – ) · · ·a(, x) = (N + )! ()

and

aN+(N + , x) = (–x)aN (N , x) = (–x)aN–(N – , x) · · ·
= (–x)N a(, x) = (–x)N+. ()

We observe that the matrix [ai(j, x)]≤i,j≤N is given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

 ! ! · · · N !
 (–x) · · ·
  (–x)

...
...

  · · · (–x)N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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From (), we can get the following equations:

a(N + , x) = –xa(N , x) + (N + )a(N , x)

= –x
{

a(N , x) + (N + )a(N – , x)
}

+ (N + )(N + )a(N – , x)

= · · ·

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·a(, x)

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·(–x)

= –x
N∑

i=

(N + )ia(N – i, x), ()

a(N + , x) = –xa(N , x) + (N + )a(N , x)

= –x
{

a(N , x) + (N + )a(N – , x)
}

+ (N + )(N + )a(N – , x)

= · · ·

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·a(, x)

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·(–x)

= –x
N–∑

i=

(N + )ia(N – i, x), ()

and

a(N + , x) = –xa(N , x) + (N + )a(N , x)

= –x
{

a(N , x) + (N + )a(N – , x)
}

+ (N + )(N + )a(N – , x)

= · · ·

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·a(, x)

= –x
N–∑

i=

(N + )ia(N – i, x) + (N + )(N + ) · · ·(–x)

= –x
N–∑

i=

(N + )ia(N – i, x), ()

where (x)n = x(x – ) · · · (x – n + ) (n ≥ ), and (x) = .
Continuing this process, we have

aj(N + , x) = –x
N–j+∑

i=

(N + j + )iaj–(N – i, x), ()
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where j = , , . . . , N . Now we give explicit expressions for aj(N + , x), j = , , . . . , N . From
() and (), we note that

a(N + , x) = –x
N∑

i=

(N + )i a(N – i, x)

= –x
N∑

i=

(N + )i (N – i)!. ()

By () and (), we get

a(N + , x) = –x
N–∑

i=

(N + )i a(N – i, x)

= (–x)–
N–∑

i=

N–i–∑

i=

(N + )i (N – i + )i (N – i – i – )!. ()

From () and (), we get

a(N + , x) = –x
N–∑

i=

(N + )i a(N – i, x)

= (–x)–
N–∑

i=

N–i–∑

i=

N–i–i–∑

i=

(N + )i (N – i + )i (N – i – i)i

× (N – i – i – i – )!. ()

By continuing this process, we get

aj(N + , x) = (–x)j
N–j+∑

ij=

N–ij–j+∑

ij–=

· · ·
N–ij–···–i–j+∑

i=

(N + j + )ij

×
( j∏

k=

N – ij – · · · – ik –
(
j – (k – )

)
ik–

)

× (N – ij – · · · – i – j + )!. ()

Therefore, we obtain the following theorem.

Theorem  The linear differential equation

F (N) =

( N∑

i=N

ai–N (N , x)( – t)–i

)
F (N ∈N)
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has a solution F = F(t, x) = ( – t)– exp(– xt
–t ), where a(N , x) = N !, aN (N , x) = (–x)N ,

aj(N , x) = (–x)j
N–j∑

ij=

N–ij–j∑

ij–=

· · ·
N–ij–···–i–j∑

i=

(N + j)ij

×
( j∏

k=

(
N – ij – · · · – ik –

(
j – (k – )

))
ik–

)
(N – ij – · · · – i – j)!.

From (), we note that

F = F(t, x) =
e– xt

–t

 – t
=

∞∑

n=

Ln(x)tn. ()

Thus, by (), we get

F (N) =
(

d
dt

)N

F(t, x) =
∞∑

n=N

Ln(x)(n)N tn–N =
∞∑

n=

Ln+N (x)(n + N)N tn. ()

On the other hand, by Theorem , we have

F (N) =

( N∑

i=N

ai–N (N , x)( – t)–i

)
F

=
N∑

i=N

ai–N (N , x)
∞∑

l=

(
i + l – 

l

)
tl

∞∑

k=

Lk(x)tk

=
N∑

i=N

ai–N (N , x)
∞∑

n=

( n∑

l=

(
i + l – 

l

)
Ln–l(x)

)
tn

=
∞∑

n=

( N∑

i=N

ai–N (N , x)
N∑

l=

(
i + l – 

l

)
Ln–l(x)

)
tn. ()

Therefore, by comparing the coefficients on both sides of () and (), we have the fol-
lowing theorem.

Theorem  For n ∈N∪ {} and N ∈N, we have

Ln+N (x) =


(n + N)N

N∑

i=N

ai–N (N , x)
N∑

l=

(
i + l – 

l

)
Ln–l(x),

where a(N , x) = N !, aN (N , x) = (–x)N ,

aj(N , x) = (–x)j
N–j∑

ij=

N–ij–j∑

ij–=

· · ·
N–ij–···–i–j∑

i=

(N + j)ij

×
( j∏

k=

(
N – ij – · · · – ik –

(
j – (k – )

))
ik–

)
(N – ij – · · · – i – j)!.
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3 Conclusion
It has been demonstrated that it is a fascinating idea to use differential equations asso-
ciated with the generating function (or a slight variant of generating function) of special
polynomials or numbers. Immediate applications of them have been in deriving interest-
ing identities for the special polynomials or numbers. Along this line of research, here
we derived a family of differential equations from the generating function of the Laguerre
polynomials. Then from these differential equations we obtained interesting new identi-
ties for those polynomials.
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