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Abstract
We construct a discrete-time ruin model with general premium rate and dependent
setting, where the time between two occurrences depends on the previous claim
size. The generating function and defective renewal equation satisfied by the
Gerber-Shiu expected discounted penalty function are derived by using the roots of a
generalized Lundberg’s equation. Explicit expressions for the Gerber-Shiu function are
obtained with discrete Km-family claim sizes and geometric thresholds. Numerical
illustration is then examined.

MSC: 62P05; 91B30

Keywords: dependence; Gerber-Shiu discounted penalty function; defective
renewal equation; Lundberg’s equation

1 Introduction
In ruin theory, the compound binomial model and the risk model based on a discrete-
time renewal process have been extensively analyzed by [, ], among many others. Note
that, for these mentioned risk models, it is explicitly assumed that claim sizes and claim
intervals are independent, which can be restrictive in practical context. Cossette et al.
[] propose a compound Markov binomial model based on the Markov Bernoulli process
that introduces dependence between claim occurrences. Woo [] analyzes a generalized
Gerber-Shiu function in a discrete-time renewal risk model with an arbitrary dependence
structure. Liu and Bao [] consider a particular dependence structure among the inter-
claim time and the subsequent claim size and derive defective renewal equation satisfied
by the Gerber-Shiu expected discounted penalty function. We mention that the depen-
dence among claim sizes and interclaim arrivals through bivariate geometric distributions
and copula functions have been investigated by Marceau [], where explicit expressions
for the Gerber-Shiu expected penalty function are derived.

As mentioned by Landriault [], unlike the classical compound Poisson model, in which
a unite premium can be assumed without loss of generality, it is clear that such reasoning
does not hold for compound binomial model. In that paper, the author studies the evalu-
ation of the generalized expected penalty function in the compound binomial risk model
in which the premium rate received per period is c (c ∈N

+). See also Liu and Bao [] for a
discrete-time risk model with general premium rate and time-dependent claim sizes.
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Inspired by the works [] and [] in a continuous-time risk process with dependence,
we consider a fully discrete risk model, in which the distribution of the time until the next
claim depends on the amount of the previous claim. Moreover, we further assume that the
premium rate received per period is an arbitrary positive integer c. The surplus process of
an insurance company is described as

U(n) = u + cn –
N(n)∑

i=

Xi, (.)

where U() = u ∈ N is the initial surplus, c ∈ N
+ is the level premium rate, and {N(n), n ∈

N} is the claim-counting process. The claim amounts {Xi, i = , , . . . } are a sequence of
independent and identically distributed (i.i.d.) positive random variables with cumulative
distribution function (c.d.f.) B(·), probability function (p.f.) b(·), and mean μ. Assume that
the random thresholds {Qi, i = , , . . . } are i.i.d. with c.d.f. H(·) =  – H(·) and are inde-
pendent of the claim sizes {Xi}. The distribution of the waiting time until the next claim
depends on the size of the previous claim by comparing it to {Qi} as follows: If the size of
the Xj is greater than or equal to Qj, then the time until the next claim follows geomet-
ric distribution with p.f. ( – p)pn–

 , n ∈ N
+; if Xj is less than Qj, then the time until the

next claim follows another geometric distribution with p.f. ( – p)pn–
 , n ∈ N

+, where we
assume that p �= p and  < pi < , i = , . Further, to guarantee that U(n) has a positive
drift, we assume that

P(X ≥ Q)
 – p

+
P(X < Q)

 – p
>

μ

c
, (.)

which is the positive safety loading condition. Let mi(u) denote the Gerber-Shiu expected
discounted penalty function with initial capital u given that the first claim occurs accord-
ing to the geometric distribution with parameter pi, where we classify the insured as Class
i for convenience. More precisely, we define

mi(u) = E
{

vTiω
(
U(Ti – ),

∣∣U(Ti)
∣∣)I(Ti < ∞)|u() = u

}
, u ∈N, i = , , (.)

where  < v ≤  is the discount factor, ω : N × N
+ → N is a penalty function, I(A) is the

indicator function of an event A, and Ti, i = , , is the time to ruin for Class i.
The rest of the paper is structured as follows: In Section , we analyze the roots of the

generalized Lundberg’s equation. The defective renewal equations for the Gerber-Shiu
expected discounted penalty function are derived in Section . In Section , we obtain
the explicit expressions for the Gerber-Shiu function when the claim sizes have discrete
Km distributions and the random thresholds follow geometric distributions. A numerical
example is also provided.

2 Generalized Lundberg’s equation
In this section, we aim to analyze the roots of generalized Lundberg’s equation, which will
play an important role in deriving the renewal equation for the Gerber-Shiu function mi(u)
defined by (.). Throughout the rest of the entire paper, we use the hat ‘∧’ to designate
the generating function of the corresponding quantity. For simplicity, we introduce the
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following notation:

ξ (j) = H(j)b(j), j ∈ N
+; (.)

χ (j) = H(j)b(j) = b(j) – ξ (j), j ∈ N
+. (.)

By (.) and (.) we can rewrite (.) as

ξ̂ ()
 – p

+
χ̂ ()

 – p
>

μ

c
. (.)

Denote

γ (u) =
∞∑

k=u+

ω(u, k – u)b(k), u ∈N. (.)

Then conditioning on the time and the amount of the first claim for Class  leads to

m(u) =
∞∑

n=

vn( – p)pn–


{u+cn∑

j=

[
m(u + cn – j)ξ (j) + m(u + cn – j)χ (j)

]
+ γ (u + cn)

}

=
 – p

p

∞∑

n=

(vp)n

{u+cn∑

j=

[
m(u + cn – j)ξ (j) + m(u + cn – j)χ (j)

]
+ γ (u + cn)

}
.

(.)

Replacing u with u – c in (.) and then rearranging the resulting equation yield

m(u – c) = v( – p)
∞∑

n=

(vp)n

{u+cn∑

j=

[
m(u + cn – j)ξ (j) + m(u + cn – j)χ (j)

]
+γ (u + cn)

}
.

(.)

Combining (.) and (.), we get

m(u – c) = vpm(u) + v( – p)

{ u∑

j=

[
m(u – j)ξ (j) + m(u – j)χ (j)

]
+ γ (u)

}
. (.)

Multiplying both sides of (.) by zu and summing over u from c to ∞ produce

zcm̂(z) = v( – p)zcTzγ (c) + vp

[
m̂(z) –

c–∑

u=

zum(u)

]

+ v( – p)

[
m̂(z)ξ̂ (z) –

c–∑

u=

zum ∗ ξ (u) + m̂(z)χ̂ (z) –
c–∑

u=

zum ∗ χ (u)

]
,

(.)
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where ∗ is the convolution factor, and Tz is the discrete version of the Dickson-Hipp op-
erator defined by

Tzγ (c) =
∞∑

u=c
zu–cγ (u) =

∞∑

u=

zuγ (u + c).

See Li [] for further details about the elegant properties of the discrete operator. After
simple rearrangement, (.) can be rewritten as

[
zc – vp – v( – p)ξ̂ (z)

]
m̂(z) – v( – p)χ̂ (z)m̂(z)

= v( – p)zcTzγ (c) – vp

c–∑

u=

zum(u) – v( – p)
c–∑

u=

zu[m ∗ ξ (u) + m ∗ (u)
]

= v( – p)zcTzγ (c) – v
∑

j=

c–∑

u=

mj(u)fj,u(z), (.)

where f,u(z) = pzu + ( – p)
∑c–

y=u+ zyξ (y – u) and f,u(z) = ( – p)
∑c–

y=u+ zyχ (y – u) are
polynomials of degree c –  in z.

For Class , along very similar lines as discussed before, we obtain

[
zc – vp – v( – p)χ̂ (z)

]
m̂(z) – v( – p)ξ̂ (z)m̂(z)

= v( – p)zcTzγ (c) – v
∑

j=

c–∑

u=

mj(u)gj,u(z), (.)

where g,u(z) = ( – p)
∑c–

y=u+ zyξ (y – u) and g,u(z) = pzu + ( – p)
∑c–

y=u+ zyχ (y – u) are
also polynomials of degree c –  in z. Now we rewrite (.) and (.) in matrix form as

(
A(z) – B(z)

)
m̂(z) = v

[
zcTzγ (c)P –

c–∑

u=

Fu(z)m(u)

]
, (.)

where the matrices are defined respectively as A(z) = diag(zc – vp, zc – vp), B(z) =
vP(ξ̂ (z), χ̂ (z)), P = ( – p,  – p)T , m(u) = (m(u), m(u))T , m̂(z) = (m̂(z), m̂(z))T , and

Fu(z) =

(
f,u(z) f,u(z)
g,u(z) g,u(z)

)
.

To ultimately invert m̂(z), we need an expression for m(u) for u = , , . . . , c – , which
depends on the roots of generalized Lundberg’s equation det(A(z)– B(z)) = . It is not hard
to calculate that Lundberg’s equation is equivalent to

ĥ,v(z) – ĥ,v(z) = , (.)

where

ĥ,v(z) =
(
zc – vp

)(
zc – vp

)
, (.)
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ĥ,v(z) = v( – p)
(
zc – vp

)
χ̂ (z) + v( – p)

(
zc – vp

)
ξ̂ (z). (.)

In the following lemma, we first apply Rouché’s theorem on a given contour to identify
the number of roots of equation (.) for v ∈ (, ).

Lemma  For v ∈ (, ), there are c solutions of generalized Lundberg’s equation (.),
say zi = zi(v) for i = , , . . . , c, inside the unit circle C = {z : |z| = }.

Proof For v ∈ (, ), it is easy to see that

∣∣ĥ(z)
∣∣≤ ∣∣v( – p)

(
zc – vp

)
χ̂ (z)

∣∣ +
∣∣v( – p)

(
zc – vp

)
ξ̂ (z)

∣∣

≤ v( – p)
∣∣zc – vp

∣∣χ̂ () + v( – p)
∣∣zc – vp

∣∣ξ̂ ()

< ( – vp)
∣∣zc – vp

∣∣χ̂ () + ( – vp)
∣∣zc – vp

∣∣ξ̂ (). (.)

Note that χ̂ () + ξ̂ () =  and

∣∣zc – vpi
∣∣≥ ∣∣zc∣∣ – |vpi| =  – vpi, i = , . (.)

Combining (.) and (.) yields

∣∣ĥ(z)
∣∣ <

∣∣zc – vp
∣∣∣∣zc – vp

∣∣(χ̂ () + ξ̂ ()
)

=
∣∣ĥ(z)

∣∣.

Therefore, Rouché’s theorem implies that ĥ,v(z) =  and ĥ,v(z) – ĥ,v(z) =  have the same
number of zeros inside the unit circle C . Given that ĥ,v(z) =  has c zeros inside C , so
does ĥ,v(z) – ĥ,v(z) = . �

In the case of v = , the conditions of Rouché’s theorem are no longer satisfied. However,
we can determine the roots of (.) by applying Theorem  of Klimenok [] as follows.

Lemma  For v = , there are c –  roots, say z, . . . , zc–, to equation (.) inside C , in
addition to the trivial root zc = .

Proof By direct calculations we obtain that

d
dz ĥ,(z)|z= – d

dz ĥ,(z)|z=

h̃,()

=
c( – p) + c( – p) – [c( – p)χ̂ () + c( – p)ξ̂ () + ( – p)( – p)μ]

( – p)( – p)

= c
[

ξ̂ ()
 – p

+
χ̂ ()

 – p

]
– μ > , (.)

where the last inequality is due to the positive security loading condition (.). On the
other hand, we can easily check that |ĥ,(z)||z|=,z �= < |ĥ,(z)||z|=,z �=. By Klimenok [] we
conclude that the number of solutions to (.) inside C is equal to c – , that is, the
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number of roots of ĥ,(z) =  inside C minus . Moreover, a trivial root to generalized
Lundberg’s equation (.) is zc = . �

In what follows, we only consider the case where the roots of Lundberg’s equation (.)
are distinct. For i = , . . . , c, let the nonzero row vector (hi)T = (hi,, hi,) be the left eigen-
vector of A(zi) – B(zi) associated with the eigenvalue . Applying equation (.) yields

(hi)T

[
zc

i Tziγ (c)P –
c–∑

u=

Fu(zi)m(u)

]
= , i = , . . . , c. (.)

To identify the expression of m(u) for u = , , . . . , c – , we introduce the partitioned
matrices H = diag((h)T , (h)T , . . . , (hc)T ) and F = ((F(z))T , (F(z))T , . . . , (F(zc))T )T with
F(zi) = (F(zi), F(zi), . . . , Fc–(zi)), i = , , . . . , c. Thus, equation (.) can be reexpressed
as

Q

⎛

⎜⎜⎜⎜⎝

m()
m()

...
m(c – )

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

zc
Tzγ (c)

∑
l=( – pl)h,l

zc
Tzγ (c)

∑
l=( – pl)h,l
...

zc
cTzcγ (c)

∑
l=( – pl)hc,l

⎞

⎟⎟⎟⎟⎠
, (.)

where the matrix Q = HF.

Theorem  For i = , , the Gerber-Shiu expected discounted penalty function mi(u) with
the initial surplus u ∈ {, , . . . , c – } can be determined as

mi(u) =
c∑

j=

αj,u+i(Q)
det Q

(zj)cTzjγ (c)
∑

l=

( – pl)hj,l,

where αl,i(Q) is the cofactor associated with the element in row l and column i of matrix Q.

3 Defective renewal equations
The main goal of this section is to obtain the defective renewal equation for mi(u), i = , .
To do so, we solve the linear system of equations (.) and (.):

m̂(z) =
v[( – p)(zc – vp)γ̂ (z) + vχ̂ (z)

∑c–
u= zuδ(u) – l(z)]

ĥ,v(z) – ĥ,v(z)
, (.)

where

l(z) =
(
zc – vp

) c–∑

u=

[
m(u)f,u(z) + m(u)f,u(z) + γ (u)( – p)zu]

is a polynomial of degree c –  in z, and δ(u) = p( – p)m(u) – p( – p)m(u) for
u = , , . . . , c – .

Since m̂(z) is analytic, the solutions of generalized Lundberg’s equation are also zeros
of the numerator in (.), we have

l(zi) = ( – p)
(
zc

i – vp
)
γ̂ (zi) + vχ̂ (zi)

c–∑

u=

zu
i δ(u), i = , , . . . , c.
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Thus, applying the Lagrange interpolating theorem for l(z) leads to

l(z) =
c∑

j=

l(zj)
c∏

i=,i�=j

(
z – zi

zj – zi

)

= π (z)

[
( – p)

c∑

j=

(zc
j – vp)γ̂ (zj)

(z – zj)π ′(zj)
+ v

c∑

j=

χ̂ (zj)
∑c–

u= zu
j δ(u)

(z – zj)π ′(zj)

]
, (.)

where π (z) =
∏c

i=(z – zi) and π ′(zj) =
∏c

i=,i�=j(zi – zj). From (.) we conclude that

( – p)
(
zc – vp

)
γ̂ (z) + vχ̂ (z)

c–∑

u=

zuδ(u) – l(z)

= π (z)

{
( – p)

c∑

j=

(zc – vp)γ̂ (z) – (zc
j – vp)γ̂ (zj)

(z – zj)π ′(zj)

+ v
c∑

j=

∑c–
u= δ(u)[zuχ̂ (z) – zu

j χ̂ (zj)]
(z – zj)π ′(zj)

}

= π (z)

{
( – p)

c∑

j=

(zc
j – vp)(γ̂ (z) – γ̂ (zj)) + (zc – zc

j )γ̂ (z)
(z – zj)π ′(zj)

+ v
c∑

j=

∑c–
u=[δ(u)zu

j (χ̂ (z) – χ̂ (zj)) + (zu – zu
j )χ̂ (z)]

(z – zj)π ′(zj)

}

= π (z)

{
( – p)

[ c∑

j=

zc
j – vp

π ′(zj)
γ̂ (z) – γ̂ (zj)

z – zj
+

c∑

j=

γ̂ (z)
π ′(zj)

zc – zc
j

z – zj

]

+ v
c–∑

u=

δ(u)

[ c∑

j=

zu
j

π ′(zj)
χ̂ (z) – χ̂ (zj)

z – zj
+

c∑

j=

χ̂ (z)
π ′(zj)

zu – zu
j

z – zj

]}

= π (z)

{
( – p)

c∑

j=

zc
j – vp

π ′(zj)
TzTzjγ () + v

c–∑

u=

δ(u)
c∑

j=

zu
j

π ′(zj)
TzTzjχ ()

}
, (.)

where the last equality is due to the following formula in interpolation theory:

m∑

j=

(zj – z)k
∏m

i=,i�=j(zj – zi)
=

⎧
⎨

⎩
, k = m – ,

, k = , , . . . , m – .

Observing that ĥ,v(z) is a polynomial of degree c in z, we deduce that ĥ,v(z) – π (z) is a
polynomial of degree c –  in z. We use the Lagrange interpolating polynomial to obtain

ĥ,v(z) – π (z) = π (z)
c∑

i=

ĥ,v(zj)
π ′(zj)(z – zj)

. (.)
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Since zj, j = , , . . . , c, are roots of generalized Lundberg’s equation, we know that ĥ,v(zj) =
ĥ,v(zj). Then equation (.) is equivalent to

ĥ,v(z) = π (z)

[
 +

c∑

i=

ĥ,v(zj)
π ′(zj)(z – zj)

]
.

Therefore, we can employ a similar procedure to find an alternative expression for the
denominator of the right side of (.) as

ĥ,v(z) – ĥ,v(z)

= π (z)

{
 – v

[
( – p)

c∑

j=

zc
j – vp

π ′(zj)
TzTzjχ () + ( – p)

c∑

j=

zc
j – vp

π ′(zj)
TzTzjξ ()

]}
.

(.)

Substituting (.) and (.) into (.), we deduce

m̂(z) =
v[( – p)

∑c
j=

zc
j –vp
π ′(zj)

TzTzjγ () + v
∑c–

u= δ(u)
∑c

j=
zu

j
π ′(zj)

TzTzjχ ()]

 – v[( – p)
∑c

j=
zc

j –vp
π ′(zj)

TzTzjχ () + ( – p)
∑c

j=
zc

j –vp
π ′(zj)

TzTzjξ ()]

=
vη̂(z)

 – vτ̂ (z)
, (.)

where

η(i) = ( – p)
c∑

j=

zc
j – vp

π ′(zj)
Tzjγ ( + i) + v

c–∑

u=

δ(u)
c∑

j=

zu
j

π ′(zj)
Tzjχ ( + i), i ∈ N, (.)

τ (i) =
c∑

j=

[
( – p)

zc
j – vp

π ′(zj)
Tzjχ ( + i) + ( – p)

zc
j – vp

π ′(zj)
Tzjξ ( + i)

]
, i ∈N. (.)

For the Gerber-Shiu function m(u), following a similar procedure, we have

m̂(z) =
vη̂(z)

 – vτ̂ (z)
, (.)

where

η(i) = ( – p)
c∑

j=

zc
j – vp

π ′(zj)
Tzjγ ( + i) + v

c–∑

u=

δ(u)
c∑

j=

zu
j

π ′(zj)
Tzjξ ( + i), i ∈N, (.)

with δ(u) = p( – p)m(u) – p( – p)m(u) for u = , , . . . , c – .
Equations (.) and (.) eventually lead to the defective renewal equation for the

Gerber-Shiu discounted penalty function mi(u), as presented in the following theorem.
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Theorem  The Gerber-Shiu expected discounted penalty function mi(u) defined in (.)
satisfies the following defective renewal equation:

mi(u) = v
u∑

j=

mi(u – j)τ (j) + vηi(u), i = , , (.)

where τ (·) is defined by (.), and η(·) and η(·) are determined by (.) and (.), respec-
tively.

Proof The renewal equation (.) follows by inverting (.) and (.) directly. For (.) to
be a defective renewal equation, it remains to show that kv

.= vτ̂ () < . Let us first assume
that v ∈ (, ). Using (.), we have kv =  – ĥ,v()–ĥ,v()

π () . We easily calculate that

ĥ,v() = v( – p)( – vp)χ̂ () + v( – p)( – vp)ξ̂ ()

< ( – vp)( – vp)χ̂ () + ( – vp)( – vp)ξ̂ ()

= ĥ,v()

and then deduce that kv < .
Now we turn to the case of v = . Since zc is a root of generalized Lundberg’s equation

(.), we have

ĥ,v(zc) – ĥ,v(zc) = . (.)

Differentiating (.) with respect to zc and taking the limit v → , we eventually find

z′
c =

( – p)( – p) + p( – p)ξ̂ () + p( – p)χ̂ ()
c( – p)ξ̂ () + c( – p)χ̂ () – ( – p)( – p)μ

> ,

where the inequality is derived via (.). Thus,

lim
v→

kv =  –
( – p)χ̂ () + ( – p)ξ̂ ()

π ′()
lim
v→

 – v
 – zc

=  –
( – p)χ̂ () + v( – p)ξ̂ ()

π ′()


z′
c

< . �

4 Applications with geometric thresholds
The thresholds can be viewed as a criterion for classifying claims as large or small. In
this section, we suppose that the random thresholds {Qi, i = , , . . . } follow a geometric
distribution with p.f. (–p)pn–

 , n ∈N
+,  < p < . We derive an explicit expression for the

Gerber-Shiu function when the claim sizes belong to the discrete Km-family and present
some special cases.

4.1 The Gerber-Shiu function with Km-family claim sizes
We assume that the claim sizes {Xi, i = , , . . . } follow a distribution from discrete Km-
family, that is, the generating function of the density function b(·) satisfies the following
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form:

b̂(z) =
z[
∏m

i=( – qi) +
∑m–

j= βj(z – )j]
∏m

i=( – qiz)
, R(z) < min

{

qi

,  ≤ i ≤ m
}

, (.)

where  < qi < , i = , , . . . , m, and the coefficients β,β, . . . ,βm– are such that b(·) is a
p.f. This class of distributions includes, as particular cases, the shifted geometric, shifted
or truncated negative binomial, and linear combinations of these; see Li [] for more ex-
amples. Let pm(z) =

∏m
i=( – qiz) and p∗

m–(z) =
∏m

i=( – qi) +
∑m

j= βj(z – )j. Then (.)

becomes b̂(z) = zp∗
m–(z)

pm(z) .
Applying definition (.), it follows that

χ̂ (z) =
∞∑

y=

(zp)yb(y) = b̂(pz).

On the other hand, we can rewrite generalized Lundberg’s equation (.) as

ĥ,v(z) – ĥ,v(z) =
(
zc – vp

)(
zc – vp

)
– v( – p)

(
zc – vp

)
b̂(z)

– v
[
( – p)

(
zc – vp

)
– ( – p)

(
zc – vp

)]
χ̂ (z)

= . (.)

We further denote qm(z) = pm(pz) and q∗
m–(z) = p∗

m–(pz). Then (.) can be rewritten as

(
zc – vp

)(
zc – vp

)
– v( – p)

(
zc – vp

)zp∗
m–(z)

pm(z)

– v
[
( – p)

(
zc – vp

)
– ( – p)

(
zc – vp

)]pzq∗
m–(z)

qm(z)
= 

or, equivalently,

(
zc – vp

)(
zc – vp

)
pm(z)qm(z) – v( – p)

(
zc – vp

)
zp∗

m–(z)qm(z)

– vp
[
( – p)

(
zc – vp

)
– ( – p)

(
zc – vp

)]
zq∗

m–(z)pm(z) = . (.)

It is obvious that the left side of equation (.) is a polynomial of degree c + m in z
with leading coefficient α = pm


∏m

i= q
i , which implies that there are c + m roots in total.

According to Lemmas  and , exactly c roots are located in the unit circle C , denoted
by z, z, . . . , zc as before. Therefore, we conclude that the remaining m roots must lie in
the region {z : |z| > }, denoted by ρ,ρ, . . . ,ρm. Since the left side of (.) is equivalent to
pm(z)qm(z)[ĥ,v(z) – ĥ,v(z)], equation (.) can be reexpressed as

pm(z)qm(z)
[
ĥ,v(z) – ĥ,v(z)

]
= αpo

m(z)qo
m(z)

[
ĥ,v(z) – ĥ,v(z)

]

= α

c∏

i=

(z – zi)
m∏

l=

(z – ρl), (.)
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where po
m(z) =

∏m
i=(z – 

qi
) and qo

m(z) =
∏m

i=(z – 
pqi

) are both polynomials of degree m
in z with the leading coefficient . Substituting (.) into (.), we have

m̂(z) = v
po

m(z)qo
m(z)

∏m
l=(z – ρl)

η̂(z) = v
[

 +
S(z)
D(z)

]
η̂(z), (.)

where S(z) = po
m(z)qo

m(z) –
∏m

l=(z – ρl) is a polynomial of degree m –  or less, and D(z) =
∏m

l=(z – ρl) is a polynomial of degree m. Further, if ρ,ρ, . . . ,ρm are distinct, then ĝ(z) .=
S(z)
D(z) can be obtained by partial fractions as

ĝ(z) =
m∑

i=

σi

ρi – z
, (.)

where

σi =

∏m
j=( 

qj
– ρi)

∏m
j=( 

pqj
– ρi)

∏m
j=,j �=i(ρj – ρi)

, i = , , . . . , m.

Thus, inverting the generating function of (.) gives

g(y) =
m∑

i=

σiρ
–(y+)
i , y ∈ N. (.)

Utilizing (.), we can invert the generating function in (.) to

m(u) = v

[
η(u) +

u∑

i=

g(u – i)η(i)

]
.

Similarly, from (.) we obtain

m(u) = v

[
η(u) +

u∑

i=

g(u – i)η(i)

]
.

4.2 The generating function of the time to ruin with geometric distribution
In this section, we consider the generating function of the time to ruin, which is one of
important quantities in risk analysis. Let the penalty function ω(x, x) =  for all x ∈ N

and x ∈N
+. Then the Gerber-Shiu function (.) reduces to

ϕi(u) = E
{

vTi I(Ti < ∞)|U() = u
}

, u ∈N, i = , .

We assume that the claim sizes {Xi, i = , , . . .} follow geometric distribution with p.f.
b(y) = ( – q)qy–, y ∈N

+, and the generating function b̂(z) = z(–q)
–zq . By (.) and (.) some

simple algebras lead to

χ̂ (z) =
zp( – q)
 – pqz

, ξ̂ (z) =
z( – q)( – p)

( – qz)( – pqz)
. (.)
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Implementing the expressions into (.), generalized Lundberg’s equation (.) becomes

(
zc – vp

)(
zc – vp

)
– v( – p)

(
zc – vp

)zp( – q)
 – pqz

– v( – p)
(
zc – vp

) z( – q)( – p)
( – qz)( – pqz)

= ,

which can be further rearranged to the following equation without changing the roots:

(
zc – vp

)(
zc – vp

)(
z –


pq

)(
z –


q

)
+

v( – q)( – p)
q

(
z –


q

)(
zc – vp

)

+
v( – p)( – q)( – p)z(zc – vp)

qp
= . (.)

As discussed in Section ., there are two roots lying in the complex plane {z : |z| > },
denoted by ρ, ρ. Henceforth, we assume that ρ �= ρ. The other c roots are in the unit
circle C , still denoted by zi, i = , , . . . , c. Moreover, we have

(
z –


pq

)(
z –


q

)[
ĥ,v(z) – ĥ,v(z)

]
=

c∏

i=

(z – zi)(z – ρ)(z – ρ). (.)

On the other hand, substituting (.) into the expression of η̂(z) finally proves that

η̂(z) = –
[

κ

z – 
q

+
κ

z – 
pq

]
, (.)

where the constants κ and κ are determined respectively by

κ = ( – p)
c∑

j=

zc
j – vp

π ′(zj)(qzj – )
,

κ =
v( – q)

q

c–∑

u=

δ(u)
c∑

j=

zu
j

π ′(zj)(pqzj – )
.

Inserting (.) and (.) into (.), we obtain

ϕ̂(z) = –
v[κ(z – 

pq ) + κ(z – 
q )]

(z – ρ)(z – ρ)
. (.)

Using partial fractions, we rewrite (.) as

ϕ̂(z) =
∑

i=

λi

ρi – z
, (.)

where

λi =
v[κ(ρi – 

pq ) + κ(ρi – 
q )]

ρi – ρj
, i, j = , , i �= j.
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Finally, the inversion of (.) yields

ϕ(u) =
∑

i=

λiρ
–(u+)
i . (.)

As for ϕ(u), direct calculations yield

ϕ̂(z) = –
v[ι(z – 

pq ) – ιz + ι]
(z – ρ)(z – ρ)

,

where the constants ιi, i = , , , are given by

ι = ( – p)
c∑

j=

zc
j – vp

π ′(zj)(qzj – )
,

ι = v( – q)( – p)
c–∑

u=

δ(u)
c∑

j=

zu+
j

π ′(zj)(qzj – )(pqzj – )
,

ι =
v( – q)( – p)

qp

c–∑

u=

δ(u)
c∑

j=

zu
j

π ′(zj)(qzj – )(pqzj – )
.

Consequently, ϕ(u) can be obtained by partial fractions as

ϕ(u) =
∑

i=

σiρ
–(u+)
i , (.)

where

σi =
v[ι(ρi – 

pq ) – ιρi + ι]
ρi – ρj

, i, j = , , i �= j.

Example In this example, we assume that the thresholds {Qi} and claim sizes {Xi} both
follow geometric distributions with parameters p = . and q = .. Let c = , p = .,
p = ., v = .. It is easy to check that the positive loading condition is fulfilled. General-
ized Lundberg’s equation has four roots: z = ., z = ., ρ = ., ρ = ..
Furthermore, we use (.) and (.) to calculate the exact values for ϕi(u):

ϕ(u) = . × .–(u+) – . × .–(u+),

ϕ(u) = . × .–(u+) – . × .–(u+).

Figure  describes the behavior of ϕi(u), i = , , with respect to initial surplus u. As ex-
pected, ϕi(u) decreases as the initial surplus u increases. Moreover, ϕ(u) is always smaller
than ϕ(u).

5 Conclusions
We study a discrete-time ruin model with general premium rate and dependence struc-
ture, in which the distribution of the time until the next claim depends on the amount
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Figure 1 The generating function of the time to
ruin: ϕ1(u) (dashed line) and ϕ2(u) (solid line).

of the previous claim. Some analytic techniques are applied to study the Gerber-Shiu ex-
pected discounted penalty function. In particular, we show that the Gerber-Shiu function
satisfies a defective renewal equation. Explicit expressions for the Gerber-Shiu function
are obtained with discrete Km-family claim sizes and geometric thresholds. The model in
this paper can be further extended. For instance, suppose that the premium charged varies
depending on the possible change in the distribution of interclaim time. Then the related
ruin problems can be solved for this modified model.
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