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Abstract
In this paper, we develop and analyze a discontinuous Galerkin (DG) method for the
two-dimensional nonlinear Zakharov-Kuznetsov (ZK) equation. The DG method could
be applied without introducing any auxiliary variables or rewriting the original
equation into a larger system. Stability and an error estimate are discussed carefully.
Finally, a numerical example for the nonlinear problem is given to show that the
scheme attains the optimal (k + 1)th order of accuracy for piecewise Qk polynomials
of degree k when k ≥ 2.
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1 Introduction
The Zakharov-Kuznetsov (ZK) equation is a generalization of the Korteweg-de Vries
(KdV) equation. It was obtained by Zakharov and Kuznetsov [] to describe the behavior
of weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and hot isother-
mal electrons in the presence of a uniform magnetic field. If a magnetic field is directed
along the x-axis, the ZK equation in renormalized variables [] takes the form

ut + auux + ∇ux = , (.)

where ∇ = ∂
x + ∂

y + ∂
z is the isotropic Laplacian. The ZK equation is given by

ut + auux + (uxx + uyy)x =  (.)

and

ut + auux + (uxx + uyy + uzz)x = , (.)

in two- and three-dimensional spaces, respectively. Several properties of this equation, in-
cluding the existence and stability of solitary wave solutions, have been extensively studied
in the literature (see [, ] and references therein).

Many numerical schemes have been proposed for some well-known one-dimensional
equations, however, little numerical analysis has been published for the multi-dimensional
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cases. Few numerical methods have been proposed for solving the ZK equation. Xu and
Shu [] discussed a local discontinuous Galerkin (LDG) method for the ZK equation,
which is different from the DG method in our paper. Ren et al. [] proposed an implicit
fully discrete LDG method for the fractional Zakharov-Kuznetsov equation and proved
the stability and convergence. In [], Cheng and Shu presented a new DG method for solv-
ing some kinds of time dependent partial differential equations in one dimension. The
method could be used to solve the problems without introducing any auxiliary variables
or rewriting the original equation into a larger system.

For the sake of simplicity, we will only consider the problem in two dimension on a
rectangular domain, � = [a, b] × [c, d]. However, the method in our paper could easily be
generalized to higher dimensions.

In this paper, we will present and analyze a DG method for the ZK equation:

ut + f (u)x + uxxx + uxyy = , (.)

with an initial condition

u(x, y, ) = u(x, y), (.)

and periodic boundary conditions. Here f (u) is a nonlinear function.
The rest of this paper is as follows. In Section , some notations and auxiliary results

are introduced, which will be used later in this paper. In Section , the DG method for
ZK equation is presented, and a stability error estimate is discussed in Section . Some
numerical experiments are given to illustrate the accuracy and capability of the method
in Section . Finally some concluding remarks and comments for future work are given in
Section .

2 Notations
2.1 Basic notations
For the sake of simplicity, a rectangular mesh is assumed to cover the computational do-
main [a, b] × [c, d],

Ii,j =
{

(x, y) : xi– 


≤ x ≤ xi+ 


, yj– 


≤ y ≤ yj+ 


}
,

for i = , . . . , Nx, j = , . . . , Ny, where

a = x 


< x 


< · · · < xNx+ 


= b

and

c = y 


< y 


< · · · < yNy+ 


= d

are discretizations in x over [a, b] and y over [c, d], respectively. The center of the element
in the x-direction is xi = (xi–/ + xi+/)/; the center of the element in the y-direction is
yj = (yj–/ + yj+/)/. We define Ii and Jj by Ii = [xi– 


, xi+ 


], Jj = [yj– 


, yj+ 


] for i = , . . . , Nx,

j = , . . . , Ny. We have Ii,j = Ii × Jj.
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We denote by u+
i+ 

 ,y
and u–

i+ 
 ,y

the values of u at xi+/, and by u+
x,j+/ and u–

x,j+/ the
values of u at yj+/, from the top cell Ii × Jj+ and from the bottom cell Ii × Jj, respectively.

Denote the cell lengths

�xi = xi+ 


– xi– 


,  ≤ i ≤ Nx, �yj = yj+ 


– yj– 


,  ≤ j ≤ Ny,

and h = max(max≤i≤Nx �xi, max≤j≤Ny �yj).
Assume the mesh is regular, namely there is a constant c >  independent of h such that

�xi ≥ ch,  ≤ i ≤ Nx, �yj ≥ ch,  ≤ j ≤ Ny.

Define the space V k
h as the space of tensor product piecewise polynomials of degree at

most k in each variable on every element

V k
h =

{
v : v ∈ Qk(Ii × Jj),∀(x, y) ∈ Ii × Jj, i = , . . . , Nx, j = , . . . , Ny

}
. (.)

In this paper we use C to denote a positive constant, which may have a different value in
a different occurrence. For any integer s ≥ , let Hs(�) represent the well-known Sobolev
space equipped with the norm ‖ · ‖s. Let the scalar inner product on L be denoted by (·, ·),
and the associated norm by ‖ · ‖. Furthermore, let ‖ · ‖∞ represent the norm on L∞ [].

2.2 Projection
In order to give an error estimates for two-dimensional problems in Cartesian meshes, we
will give the projection in one dimension, which has been used in [, , ]. When k ≥ ,
we could choose a projection P such that, for any u, Pu satisfies

∫

Ii

uv dx =
∫

Ii

Puv dx,

for any v ∈ V k–
h and

Pu+ = u+, (Pu)+
x = u+

x , (Pu)–
xx = u–

xx,

at all xi+ 


.
Denote by η = u – Pu the projection error. It is easy to show []

‖η‖ + h‖η‖∞ + h

 ‖η‖τh ≤ Chk+,

where C is a positive constant that depends on k and ‖u‖k+ of the function u, τh denotes
the set of boundary points of all elements Ii.

Next we give the projection in two dimensions. On a rectangle [a, b] × [c, d], define

Pω = Px ⊗Pyω, (.)

where the subscripts indicate the application of the one dimensional operators P . Some
properties for the projection P are listed thus:

∫

Ii

∫

Jj

(
Pω(x, y) – ω(x, y)

)
v(x, y) dy dx = , (.)
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for any v(x, y) ∈ (Pk–(Ii) ⊗ Pk(Jj)) ∪ (Pk(Ii) ⊗ Pk–(Jj)). Also

∫

Jj

(
Pω

(
x+

i– 


, y
)

– ω(xi– 


, y)
)
v
(
x+

i– 


, y
)

dy = , ∀v ∈ Qk(Ii ⊗ Jj),

∫

Jj

((
Pω

(
x+

i– 


, y
))

x –
(
ω(xi– 


, y)

)
x

)
v
(
x+

i– 


, y
)

dy = , ∀v ∈ Qk(Ii ⊗ Jj),

∫

Jj

((
Pω

(
x–

i+ 


, y
))

xx –
(
ω(xi+ 


, y)

)
xx

)
v
(
x–

i+ 


, y
)

dy = , ∀v ∈ Qk(Ii ⊗ Jj),

(.)

and
∫

Ii

(
Pω

(
x, y+

j– 


)
– ω(x, yj– 


)
)
v
(
x, y+

j– 


)
dx = , ∀v ∈ Qk(Ii ⊗ Jj),

∫

Jj

((
Pω

(
x+

i– 


, y
))

y –
(
ω(xi– 


, y)

)
y

)
v
(
x+

i– 


, y
)

dy = , ∀v ∈ Qk(Ii ⊗ Jj),

∫

Ii

((
Pω

(
x, y–

j+ 


))
xy –

(
ω(x, yj+ 


)
)

xy

)
v
(
x, y+

j+ 


)
dx = , ∀v ∈ Qk(Ii ⊗ Jj).

(.)

Similar to the one-dimensional case, there are some important approximation results
for the projection (.),

‖η‖ + h‖η‖∞ + h

 ‖η‖τh ≤ Chk+, (.)

where η = Pω – ω. τh denotes the set of boundary points of all elements Ii × Jj, and we
define

‖η‖τh =
( ∑

≤i≤Nx

∫ d

c

((
η+

i+ 
 ,y

) +
(
η–

i+ 
 ,y

))dy

+
∑

≤j≤Ny

∫ b

a

((
η+

x,j+ 


) +
(
η–

x,j+ 


))dx
) 


.

3 DG scheme
In this section we define the discontinuous Galerkin method for equation (.): find uh ∈
V k

h , such that for all test functions vh ∈ V k
h ,

∫

Jj

∫

Ii

(uh)tvh dx dy –
∫

Jj

∫

Ii

f (uh)(vh)x dx dy –
∫

Jj

∫

Ii

uh(vh)xxx dx dy

–
∫

Jj

∫

Ii

uh(vh)xyy dx dy +
∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)–)

i+ 
 ,y dy

–
∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)+)

i– 
 ,y dy +

∫

Jj

(
(ûh)xxv–

h
)

i+ 
 ,y dy

–
∫

Jj

(
(ûh)xxv+

h
)

i– 
 ,y dy –

∫

Jj

(
(ûh)x(vh)–

x
)

i+ 
 ,y dy

+
∫

Jj

(
(ûh)x(vh)+

x
)

i– 
 ,y dy +

∫

Jj

(
ûh(vh)–

xx
)

i+ 
 ,y dy
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–
∫

Jj

(
ûh(vh)+

xx
)

i– 
 ,y dy +

∫

Ii

(
(uh)xyv–

h
)

x,j+ 


dx

–
∫

Ii

(
(uh)xyv+

h
)

x,j– 


dx –
∫

Jj

(
(uh)y(vh)–

y
)

i+ 
 ,y dy

+
∫

Jj

(
(uh)y(vh)+

y
)

i– 
 ,y dy +

∫

Ii

(
uh(vh)–

xy
)

x,j+ 


dx

–
∫

Ii

(
uh(vh)+

xy
)

x,j– 


dx = . (.)

The flux f̂ (w–, w+) is a monotone flux. Some examples of monotone fluxes can be found
in []. In this paper we could use the Lax-Friedriches flux,

f̂ LF(
w–, w+)

=


(
f
(
w–)

+ f
(
w+)

– α
(
w+ – w–))

,

α = max
inf u≤w≤sup u

∣∣f ′(w)
∣∣.

The other ‘hat’ terms in (.) are the boundary terms that emerge from integration by
parts. In order to ensure the stability, we could take the simple choices such that

ûh = u+
h , (ûh)x = (uh)+

x , (ûh)xx = (uh)–
xx,

uh = u+
h , (uh)y = (uh)+

y , (uh)xy = (uh)–
xy,

(.)

or

ûh = u–
h , (ûh)x = (ûh)+

x , (ûh)xx = (ûh)+
xx,

uh = u–
h , (uh)y = (uh)+

y , (uh)xy = (uh)+
xy.

(.)

It is crucial that we take (ûh)x = (uh)+
x , (uh)y = (uh)+

y and the pair of fluxes ûh, (ûh)xx from
the opposite directions; likewise for the pair uh and (uh)xy.

Equation (.) defines the DG method in integral form. To describe the algebraic prob-
lem to which the equation leads, let {ϕs

i θ
m
j } be a tensor product local basis function system

for Qk(Ii × Jj), where {ϕs
i }k

s= and {θm
j }k

m= are bases for the subspaces Pk(Ii) and Pk(Jj), re-
spectively. Let

uh(x, y, t) =
k∑

s=

k∑

m=

αsm
ij (t)ϕs

i (x)θm
j (y), (x, y) ∈ Ii,j. (.)

If in (.) we choose vh = ϕ
q
i θ r

j ,  ≤ q ≤ k,  ≤ r ≤ k, then we can obtain

k∑

s=

k∑

m=

∫

Ii

ϕs
i ϕ

q
i dx

∫

Jj

θm
j θ r

j dy
dαsm

ij (t)
dt

= Fqr
ij (vh), (.)

where Fqr
ij (vh) consists of terms from the left hand side of equation (.) except the first

term.
We use the third order explicit TVD Runge-Kutta method in time direction []. The

definition of the algorithm is now complete.
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4 Stability analysis
Theorem . The solution uh of the DG scheme (.) satisfies the following stability result:

∥∥uh(t)
∥∥ ≤ ∥∥uh()

∥∥. (.)

Proof We introduce a short-hand notation:

Bij(uh, vh) =
∫

Jj

∫

Ii

(uh)tvh dx dy –
∫

Jj

∫

Ii

f (uh)(vh)x dx dy

–
∫

Jj

∫

Ii

uh(vh)xxx dx dy –
∫

Jj

∫

Ii

uh(vh)xyy dx dy

+
∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)–)

i+ 
 ,y dy –

∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)+)

i– 
 ,y dy

+
∫

Jj

(
(uh)–

xxv–
h
)

i+ 
 ,y dy –

∫

Jj

(
(uh)–

xxv+
h
)

i– 
 ,y dy

–
∫

Jj

(
(uh)+

x (vh)–
x
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

x (vh)+
x
)

i– 
 ,y dy

+
∫

Jj

(
u+

h(vh)–
xx

)
i+ 

 ,y dy –
∫

Jj

(
u+

h(vh)+
xx

)
i– 

 ,y dy

+
∫

Ii

(
(uh)–

xyv–
h
)

x,j+ 


dx –
∫

Ii

(
(uh)–

xyv+
h
)

x,j– 


dx

–
∫

Jj

(
(uh)+

y (vh)–
y
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

y (vh)+
y
)

i– 
 ,y dy

+
∫

Ii

(
u+

h(vh)–
xy

)
x,j+ 


dx –

∫

Ii

(
u+

h(vh)+
xy

)
x,j– 


dx

=
∫

Jj

∫

Ii

(uh)tvh dx dy + E
ij(uh, vh) + E

ij(uh, vh) + E
ij(uh, vh), (.)

where

E
ij(uh, vh) = –

∫

Jj

∫

Ii

f (uh)(vh)x dx dy +
∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)–)

i+ 
 ,y dy

–
∫

Jj

(
f̂
(
u–

h , u+
h
)
(vh)+)

i– 
 ,y dy, (.)

E
ij(uh, vh) = –

∫

Jj

∫

Ii

uh(vh)xxx dx dy

+
∫

Jj

(
(uh)–

xxv–
h
)

i+ 
 ,y dy –

∫

Jj

(
(uh)–

xxv+
h
)

i– 
 ,y dy

–
∫

Jj

(
(uh)+

x (vh)–
x
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

x (vh)+
x
)

i– 
 ,y dy

+
∫

Jj

(
u+

h(vh)–
xx

)
i+ 

 ,y dy –
∫

Jj

(
u+

h(vh)+
xx

)
i– 

 ,y dy, (.)

E
ij(uh, vh) = –

∫

Jj

∫

Ii

uh(vh)xyy dx dy
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+
∫

Ii

(
(uh)–

xyv–
h
)

x,j+ 


dx –
∫

Ii

(
(uh)–

xyv+
h
)

x,j– 


dx

–
∫

Jj

(
(uh)+

y (vh)–
y
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

y (vh)+
y
)

i– 
 ,y dy

+
∫

Ii

(
u+

h(vh)–
xy

)
x,j+ 


dx –

∫

Ii

(
u+

h(vh)+
xy

)
x,j– 


dx. (.)

We will prove Theorem . by analyzing the above three terms E
ij, E

ij, E
ij. Take vh = uh

in the scheme (.), and denote F(u) =
∫

f (u) du, then we have

E
ij(uh, uh) = –

∫

Jj

(
F
(
(uh)–

i+ 
 ,y

)
– F

(
(uh)+

i– 
 ,y

))
dy

+
∫

Jj

((
f̂
(
u–

h , u+
h
)
(uh)–)

i+ 
 ,y –

(
f̂
(
u–

h , u+
h
)
(uh)+)

i– 
 ,y

)
dy

=
∫

Jj

(̃Fi+ 
 ,y – F̃i– 

 ,y + �i– 
 ,y) dy, (.)

where

F̃i+ 
 ,y = –F

(
(uh)–

i+ 
 ,y

)
+

(
f̂
(
u–

h , u+
h
)
(uh)–)

i+ 
 ,y,

�i– 
 ,y = –F

(
(uh)–

i– 
 ,y

)
+

(
f̂
(
u–

h , u+
h
)
(uh)–)

i– 
 ,y (.)

+ F
(
(uh)+

i– 
 ,y

)
–

(
f̂
(
u–

h , u+
h
)
(uh)+)

i– 
 ,y.

It is easy to obtain

� = –F
(
(uh)–

i– 
 ,y

)
+

(
f̂
(
u–

h , u+
h
)
(uh)–)

i– 
 ,y

+ F
(
(uh)+

i– 
 ,y

)
–

(
f̂
(
u–

h , u+
h
)
(uh)+)

i– 
 ,y

=
(
F ′(ξ ) – f̂

)(
u+

h – u–
h
)

≥ , (.)

here we drop the subscript i – 
 , y for simplicity because all quantities are evaluated in

�i– 
 ,y. The mean value theorem is applied and ξ is a value between u– and u+, and we

have used the fact F ′(ξ ) = f (ξ ) and the monotonicity of the flux function f̂ to obtain in-
equality (.).

For the term E
ij, we obtain

E
ij(uh, uh) =

∫

Jj

∫

Ii

(uh)x(uh)xx dx dy

+
∫

Jj

(
u+

h(uh)–
xx

)
i+ 

 ,y dy –
∫

Jj

(
(uh)–

xxu+
h
)

i– 
 ,y dy

–
∫

Jj

(
(uh)+

x (uh)–
x
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

x (uh)+
x
)

i– 
 ,y dy
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=
∫

Jj



(
(uh)–

x
)

i+ 
 ,y dy –

∫

Jj



(
(uh)+

x
)

i– 
 ,y dy

+
∫

Jj

(
u+

h(uh)–
xx

)
i+ 

 ,y dy –
∫

Jj

(
(uh)–

xxu+
h
)

i– 
 ,y dy

–
∫

Jj

(
(uh)+

x (uh)–
x
)

i+ 
 ,y dy +

∫

Jj

(
(uh)+

x (uh)+
x
)

i– 
 ,y dy

=
∫

Jj

Hi+ 
 ,y dy –

∫

Jj

Hi– 
 ,y dy +

∫

Jj

i– 
 ,y dy, (.)

where

Hi+ 
 ,y =

(


(
(uh)–

x
) + u+

h(uh)–
xx – (uh)+

x (uh)–
x

)

i+ 
 ,y

,

i– 
 ,y =

(


(
(uh)–

x
) –



(
(uh)+

x
) – (uh)+

x (uh)–
x + (uh)+

x (uh)+
x

)

i– 
 ,y

(.)

=


[
(uh)x

]
i– 

 ,y.

Summing over i, j in (.), we have

∑

i,j

E
ij(uh, uh) =

∫ d

c

∑

i



[
(uh)x

]
i– 

 ,y dy ≥ . (.)

Now we consider the term E
ij. By a similar argument to that used for E

ij, we can obtain

∑

i,j

E
ij(uh, vh) =

∫ d

c

∑

i



[
(uh)y

]
i– 

 ,y dy ≥ . (.)

Summing over i, j in (.), we have




d
dt

∫ d

c

∫ b

a
u

h dx dy +
∫ d

c

∑

i

(


([

(uh)x
] +

[
(uh)y

]) + �

)

i– 
 ,y

dy = , (.)

there is no boundary term left because of the periodic boundary condition. Now, combin-
ing (.), (.), and (.), we complete the proof. �

Next we state an error estimate for our scheme (.) for the linear case f (u) = u. We
obtain the following theorem.

Theorem . Let u be the exact solution of the problem (.), and uh be the numerical
solution of scheme (.). If we use V k

h space with k ≥ , then we have the error estimate

∥
∥uh(t) – u(t)

∥∥ ≤ Chk+,

where the constant C depends on k, t, ‖u‖.
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Proof Using the notation in (.), the DG scheme (.) could be written as

Bi,j(uh, vh) = , (.)

for all vh ∈ V k
h . Note that the scheme (.) is satisfied when the numerical solutions uh are

replaced by the exact solutions u; we have

Bi,j(u; vh) = , (.)

for all vh ∈ V k
h . Then the error equation is obtained,

Bi,j(u – uh; vh) = , (.)

for all vh ∈ V k
h . We denote

eh = Pu – uh, εh = u – Pu, (.)

and we take the test function vh = eh, then

Bi,j(eh; eh) = –Bi,j(εh; eh). (.)

For the left side of (.), from the stability result (.) we have

∑

i,j

Bi,j(eh; eh) ≥ 


d
dt

∫ d

c

∫ b

a
e

h dx dy. (.)

To the right side of (.), we write out all the terms

Bij(εh; eh) =
∫

Jj

∫

Ii

(εh)teh dx dy –
∫

Jj

∫

Ii

εh(eh)x dx dy

–
∫

Jj

∫

Ii

εh(eh)xxx dx dy

–
∫

Jj

∫

Ii

εh(eh)xyy dx dy –
∫

Jj

(
ε+

h (eh)–)
i+ 

 ,y dy

+
∫

Jj

(
ε+

h (eh)+)
i– 

 ,y dy +
∫

Jj

(
(εh)–

xxe–
h
)

i+ 
 ,y dy

–
∫

Jj

(
(εh)–

xxe+
h
)

i– 
 ,y dy –

∫

Jj

(
(εh)+

x (eh)–
x
)

i+ 
 ,y dy

+
∫

Jj

(
(εh)+

x (eh)+
x
)

i– 
 ,y dy +

∫

Jj

(
ε+

h (eh)–
xx

)
i+ 

 ,y dy

–
∫

Jj

(
ε+

h (eh)+
xx

)
i– 

 ,y dy +
∫

Ii

(
(εh)–

xye–
h
)

x,j+ 


dx

–
∫

Ii

(
(εh)–

xye+
h
)

x,j– 


dx –
∫

Jj

(
(εh)+

y (eh)–
y
)

i+ 
 ,y dy
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+
∫

Jj

(
(εh)+

y (eh)+
y
)

i– 
 ,y dy +

∫

Ii

(
ε+

h (eh)–
xy

)
x,j+ 


dx

–
∫

Ii

(
ε+

h (eh)+
xy

)
x,j– 


dx. (.)

Note that by the properties of the projection P
–, we know that the right terms except

the first one in (.) are zeros, so (.) becomes

–Bij(εh; eh) = –
∫

Ii

∫

Jj

(εh)teh dx dy

≤ 


(∫

Ii

∫

Jj

(
(εh)t

) dx dy +
∫

Ii

∫

Jj

(eh) dx dy
)

. (.)

Now we plug (.) and (.) into the equality (.), sum over i, j, and use the approx-
imate result (.), and we have

d
dt

∫ d

c

∫ b

a
(eh) dx dy ≤

∫ d

c

∫ b

a
(eh) dx dy + Chk+. (.)

From Gronwall’s inequality and the fact that the initial error is

∥∥u(·, ) – uh(·, )
∥∥ ≤ Chk+, (.)

the approximate result (.) finally gives the error estimate.
Then Theorem . follows for k ≥ . �

5 Numerical results
In this example we show the numerical results for the equation

ut + uux + ε(uxxx + uxyy) = ; (.)

the steady progressive wave solution is of the form

u(x, y, t) = c sech
(

.
√

c
ε

(
(x – ct) cos θ + y sin θ

)
)

, (.)

where θ is an inclined angle with respect to the x-axis. We choose the constants c = .,
ε = .. We use the third order Runge-Kutta method [] and the time-space restriction
is taken as �t = CFL h. The optimal CFL number can be obtained by a standard von
Neumann analysis. Here we simply choose a CFL number by numerical experiments to
make the scheme stable. All the computations were performed in double precision. We
can see in Tables  and  that the method with Qk elements gives a (k + )th order of
accuracy for the uniform meshes when k ≥ , for Q and Q, the scheme is not consis-
tent.

6 Concluding remarks
In the paper a discontinuous Galerkin (DG) method for the two-dimensional nonlinear
Zakharov-Kuznetsov (ZK) equation is presented and analyzed. Compared to the LDG
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Table 1 Accuracy test for equation (5.1)

N × N L2-error Order L1-error Order

Q2 20× 20 3.032018840302996E-004 - 2.779219730679066E-003 -
30× 30 9.038730179467316E-005 2.98 7.946304825147322E-004 3.09
40× 40 3.841265719078744E-005 2.97 3.349696193814798E-004 3.00
50× 50 1.986670810126657E-005 2.95 1.738770541364282E-004 2.94

Q3 20× 20 2.722203359313328E-005 - 2.741631230523309E-004 -
30× 30 5.748716715063882E-006 3.84 5.293369829707573E-005 4.06
40× 40 1.907211474086055E-006 3.84 1.725162974740285E-005 3.90
50× 50 8.897496837295630E-007 3.42 7.876941867550543E-006 3.51

Periodic boundary condition in both x- and y-directions in [–10, 10]× [–10, 10]. Uniform meshes with N× N cells at final time
T = 0.001 and θ = 0.

Table 2 Accuracy test for equation (5.1)

N × N L2-error Order L1-error Order

Q2 10× 10 4.681719705684662E-002 - 0.938563113113571 -
20× 20 8.590188004653063E-003 2.45 0.149004060977931 2.66
30× 30 2.801917125628173E-003 2.76 4.693715377978912E-002 2.85
40× 40 1.226912433407160E-003 2.87 2.020192920070046E-002 2.93
50× 50 6.382984939905879E-004 2.93 1.042627582635964E-002 2.96

Q3 10× 10 1.951379082541397E-002 - 0.376702045788276 -
20× 20 2.041593075668467E-003 3.26 3.563208065971012E-002 3.40
30× 30 4.512659070942643E-004 3.72 7.677136067626609E-003 3.79
40× 40 1.481541022305029E-004 3.87 2.498721760169104E-003 3.90
50× 50 6.281947408186389E-005 3.85 1.051975293917244E-003 3.88

Periodic boundary condition in both x- and y-directions in [–30, 30]× [–30, 30]. Uniform meshes with N× N cells at final time
T = 0.0001 and θ = π /6.

method, stability and an error estimate is proved. Numerical examples are given to illus-
trate the accuracy and capability of the methods. In the future, we will develop this class of
DG method for more general PDEs in multi-dimensions, and on nonrectangular regions.
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