
Han et al. Advances in Difference Equations  (2016) 2016:199 
DOI 10.1186/s13662-016-0889-0

R E S E A R C H Open Access

Permanence and global attractivity of a
discrete pollination mutualism in
plant-pollinator system with feedback
controls
Rongyu Han1, Xiangdong Xie2 and Fengde Chen2*

*Correspondence:
huanght0523@163.com
2Department of Mathematics,
Ningde Normal University, Ningde,
Fujian 352300, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we propose a discrete pollination mutualism in a plant-pollinator system
with the Beddington-DeAngelis functional response and feedback controls. By
applying the comparison theorem of a difference equation and constructing some
suitable Lyapunov functions, sufficient conditions are obtained for the permanence
and the extinction of the system. Moreover, under some suitable conditions, we show
that the solution of the system is globally attractive. The paper ends by some
numerical simulations and a brief discussion.
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1 Introduction
In theoretical ecology, there are several famous functional responses in the ecosystem,
which we refer to as Holling type-I, type-II, type-III, type-IV, Monod-Haldane type, and
Hassel-Verley type functional response etc. Some authors studied the ecosystem with dif-
ferent types of functional responses. Beddington [] and DeAngelis et al. [] first pro-
posed a predator dependent functional response (known as the B-D functional response).
After that, a lot of scholars did work on the ecosystems with the Beddington-DeAngelis
functional response. Chen and You [] studied the permanence, extinction, and periodic
solution of the periodic predator-prey system with a Beddington-DeAngelis functional re-
sponse and stage structure for prey. Xiao [] analyzed the existence and uniqueness of the
positive equilibrium and its global asymptotic stability by using the qualitative methods of
ordinary differential equation. In [], the author focused on the uniform persistence, local
stability, and global stability for a Beddington-DeAngelis type stage structures predator-
prey model. Furthermore, Chen et al. [] with the help of a fluctuation lemma obtained a
set of new conditions on the global asymptotic stability of the boundary solution.

In the ecological system, we know that it is more appropriate to use a discrete dynamic
model to describe these systems when the populations have a short life or non-overlapping
generations. Recently, Wu [, ] studied the permanence and global stability of a discrete
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competition feedback-control system with a Beddington-DeAngelis functional response,
moreover, she generalized it to n species,

x(t + ) = x(t) exp

{
r(t) – a(t)x(t) –

c(t)x(t)
 + x(t) + n(t)x(t)

– b(t)u(t)
}

,

x(t + ) = x(t) exp

{
r(t) – a(t)x(t) –

c(t)x(t)
 + x(t) + n(t)x(t)

– b(t)u(t)
}

,

�u(t) = d(t) – p(t)u(t) + q(t)x(t),

�u(t) = d(t) – p(t)u(t) + q(t)x(t).

(.)

Li et al. [] proposed a discrete predator-prey systems with a Beddington-DeAngelis func-
tional response and feedback controls as follows:

x(k + ) = x(k) exp

{
a(k) – b(k)x(k) –

c(k)y(k)
α(k) + β(k)x(k) + γ (k)y(k)

– e(k)u(k)
}

,

y(k + ) = y(k) exp

{
–d(k) +

f (k)x(k)
α(k) + β(k)x(k) + γ (k)y(k)

– e(k)u(k)
}

,

�u(k) = –η(k)u(k) + q(k)x(k),

�u(k) = –η(k)u(k) + q(k)y(k).

(.)

By applying the comparison theorem of a difference equation, they obtained sufficient
conditions to the permanence of the system.

Recently, Wang et al. [] studied the interactions between pollinators, nectar robbers,
defensive plants and non-defensive plants. Among them, the plant-pollinator system is
described by a cooperative model with the Beddington-DeAngelis functional response,

dx
dt

= x
(

r – dx +
αy

 + ax + by

)
,

dy
dt

= y
(

–r +
αx

 + ax + by

)
,

(.)

where x and y denote population densities of non-defensive plants and pollinators, re-
spectively. r represents the intrinsic growth rate of the plants and r/d is their carrying
capacity in the absence of visitors. r denotes the pollinators’ per capita mortality rate.
Since the Beddington-DeAngelis functional response represents a positive effect of the
pollinators on the plants, α can be regarded as the plants’ efficiency in translating the
plant-pollinator interactions into fitness. Similarly, α represents the corresponding value
for the pollinators. The authors analyzed the global stability of the positive equilibrium of
the system.

On the other hand, as was pointed out by Huo and Li [], ecosystems in the real world
are continuously disrupted by unpredictable forces which can result in changes in the bi-
ological parameters. For having a more accurate description of such a system, scholars
introduced the feedback control into the ecosystems. Moreover, discrete time models,
governed by difference equations, are more appropriate than the continuous ones. The
above phenomena motivated us to propose and study the discrete non-autonomous pol-
lination mutualism in a plant-pollinator system with a Beddington-DeAngelis functional
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response and feedback controls as follows:

x(n + ) = x(n) exp

{
r(n) – d(n)x(n) +

α(n)x(n)
 + a(n)x(n) + b(n)x(n)

– e(n)u(n)
}

,

x(n + ) = x(n) exp

{
–r(n) +

α(n)x(n)
 + a(n)x(n) + b(n)x(n)

– e(n)u(n)
}

,

�u(n) = –η(n)u(n) + q(n)x(n),

�u(n) = –η(n)u(n) + q(n)x(n),

(.)

where xi(n) (i = , ) is the density of xi species at the nth generation and ui(n) (i = , )
is the feedback-control variable. The coefficients ri(n), d(n), a(n), b(n), αij(n), ei(n), ηi(n),
qi(n) (i, j = , , i �= j) are all bounded nonnegative sequences.

Throughout this paper, we use the following notations for any bounded sequence {f (n)}:

f u = sup
n∈N

f (n), f l = inf
n∈N

f (n),

and assume that  < ηl
i ≤ ηu

i <  (i = , ).
According to the biological background of system (.), we only consider the solution of

the system (.) with the following initial conditions:

xi() > ; ui() > , i = , .

It is easy to prove that the solution of the system (.) which satisfies the initial condition
is positive.

We mention here that, as far as the system (.) is concerned, whether the system is
to persist is a question that we need to solve. Furthermore whether the feedback-control
variables have influence on the extinction and the stability of the system or not is an in-
teresting problem. The aim of this paper is to solve the above questions.

The remainder of the paper is organized as follows: in Section , we introduce some
useful lemmas and obtain the sufficient conditions to guarantee the permanence and the
extinction of system (.). In Section , a set of sufficient conditions which ensure the
stability of the system are obtained. In Section , we give some examples to illustrate our
results, and we end this paper by a brief discussion.

2 Permanence
In this section, we establish a permanence result for system (.). First, let us state several
lemmas which will be useful in proving the main results.

Now let us consider the first order difference equation

y(n + ) = Ay(n) + B, n = , , . . . , (.)

where A and B are positive constants.

Lemma . [] Assume that |A| < , for any initial value y(), there exists a unique solu-
tion y(n) of (.) which can be expressed as follows:

y(n) = An(y() – y∗) + y∗, (.)
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where y∗ = B/( – A). Thus, for any solution y(n) of system (.),

lim
n→+∞ y(n) = y∗. (.)

Lemma . [] Let n ∈ N+
n = {n, n + , . . . , n + l, . . .}, r ≥ . For any fixed n, g(n, r) is a

nondecreasing function with respect to r, and for n ≥ n, the following inequalities hold:

y(n + ) ≤ g
(
n, y(n)

)
, u(n + ) ≥ g

(
n, u(n)

)
. (.)

If y(n) ≤ u(n), then y(n) ≤ u(n) for all n ≥ n.

Now let us consider the following single species discrete model:

N(n + ) = N(n) exp
(
a(n) – b(n)N(n)

)
, (.)

where a(n) and b(n) are strictly positive sequences of real numbers defined for n ∈ N =
{, , , . . .} and  < al ≤ au,  < bl ≤ bu. We have the following lemma.

Lemma . Any solution of system (.) with initial condition N() >  satisfies

m ≤ lim inf
n→+∞ N(n) ≤ lim sup

n→+∞
N(n) ≤ M, (.)

where

M =

bl exp

(
au – 

)
, m =

al

bu exp
(
al – buM

)
. (.)

Lemma . [] Let x(n) and b(n) be nonnegative sequences defined on N and c ≥  is a
constant. If

x(n) ≤ c +
n–∑
s=

b(s)x(s), for n ∈ N , (.)

then

x(n) ≤ c
n–∏
s=

[
 + b(s)

]
, for n ∈ N . (.)

Lemma . [] Assume that A >  and y() > , and further suppose that

y(n + ) ≤ Ay(n) + B(n), n = , , . . . .

Then, for any integer k ≤ n,

y(n) ≤ Aky(n – k) +
k–∑
i=

AiB(n – i – ).
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Proposition . Assume that

–rl
 +

αu


al >  (.)

holds, then

lim sup
n→+∞

xi(n) ≤ Mi, lim sup
n→+∞

ui(n) ≤ Wi, i = , ,

where

M =

dl


exp

{
ru

 +
αu


bl – 

}
,

M = exp

{

(

–rl
 +

αu


al

)}
,

Wi =
ru

i Mi

ηl
i

(i = , ).

Proof Let (x(n), x(n), u(n), u(n)) be any positive solution of system (.), it follows from
the first equation of system (.) that

x(n + ) ≤ x(n) exp

{
r(n) – d(n)x(n) +

α(n)
b(n)

}
.

By applying Lemmas . and ., we have

lim sup
n→+∞

x(n) ≤ 
dl


exp

{
ru

 +
αu


bl – 

}
def= M. (.)

Let x(n) = exp{v(n)}, then

v(n + ) ≤ v(n) +
(

–rl
 +

αu


al

)

=
n∑

s=

c(s)v(s) +
(

–rl
 +

αu


al

)
, (.)

where

c(s) =

{
,  ≤ s ≤ n – ,
, s = n.

Condition (.) shows that Lemma . could be applied to (.), it immediately follows
that

v(n + ) ≤ 
(

–rl
 +

αu


al

)
.

This is

lim sup
n→+∞

x(n) ≤ exp

{

(

–rl
 +

αu


al

)}
def= M. (.)
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For any small enough positive constant ε, it follows from (.) and (.) that there exists
a large enough N such that

xi(n) ≤ Miε , ∀n ≥ N, i = , . (.)

From the third and fourth equations of the system (.) and (.), we can obtain

u(n + ) ≤ (
 – ηl


)
u(n) + qu

 Mε ,

u(n + ) ≤ (
 – ηl


)
u(n) + qu

Mε .

By applying Lemmas . and ., it immediately follows that

lim sup
n→+∞

u(n) ≤ qu
 Mε

ηl


,

lim sup
n→+∞

u(n) ≤ qu
Mε

ηl


.

Setting ε →  in the above inequalities leads to

lim sup
n→+∞

u(n) ≤ qu
 M

ηl


def= W,

lim sup
n→+∞

u(n) ≤ qu
M

ηl


def= W.

This completes the proof of Proposition .. �

Theorem . In addition to (.), assume further that

–ru
 +

αl
m

 + aum
– eu

 W > , (.)

then the system (.) is permanent.

Proof By applying Proposition ., it is easy to see that, to end the proof of Theorem .,
it is enough to show that under the conditions of Theorem .,

lim inf
n→+∞ xi(n) ≥ mi, lim inf

n→+∞ ui(n) ≥ wi, i = , .

From Proposition ., we know that for the above ε, there exists a N > N such that

xi(n) ≤ Miε , ui(n) ≤ Wiε , i = ,  for all n > N. (.)

From the first equation of system (.) and (.), we have

x(n + ) ≥ x(n) exp
{

rl
 – du

 Mε – eu
 Wε

}
≥ x(n) exp

{
–du

 Mε – eu
 Wε

}
def= x(n) exp{Dε}
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for all n > N, where Dε = –du
 Mε – eu

 Wε . So for n ≥ k we have

x(n – k) ≤ x(n) exp{–Dεk}.

From the third equation of system (.), we have

u(n + ) ≤ (
 – ηl


)
u(n) + qu

 x(n)

def= Au(n) + B(n),

where A =  – ηl
, B = qu

 x(n). Then Lemma . implies that, for any n ≥ k,

u(n) ≤ Aku(n – k) +
k–∑
i=

AiB(n – i – )

= Aku(n – k) +
k–∑
i=

Aiqu
 x(n – i – )

≤ Aku(n – k) + qu
 x(n)

k–∑
i=

Ai exp
{

–Dε(i + )
}

.

Note that

 ≤ Aku(n – k) ≤ AkWε → , k → +∞.

We can choose N = max{N, ln P
ln A }+, where P = ru


eu

 Wε
. As n > N, we have rl

 –eu
 AN Wε >

, then we get

u(n) ≤ AN u(n – N) + qu
 x(n)

N–∑
i=

Ai exp
{

–Dε(i + )
}

≤ AN Wε + qu
 x(n)

N–∑
i=

Ai exp
{

–Dε(i + )
}

def= AN Wε + Gεx(n),

where Gε = qu

∑N–

i= Ai exp{–Dε(i + )}.
Considering the first equation of system (.), we have

x(n + ) ≥ x(n) exp
{

rl
 – du

 x(n) – eu
 u(n)

}
≥ x(n) exp

{
rl

 – eu

(
AN Wε + Gεx(n)

)
– du

 x(n)
}

= x(n) exp
{

rl
 – eu

 AN Wε –
(
eu

 Gε + du

)
x(n)

}
def= x(n) exp

{
Eε – Eεx(n)

}
,

where Eε = rl
 – eu

 AN Wε , Eε = eu
 Gε + du

 .
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By applying Lemmas . and ., it immediately follows that

lim inf
n→+∞ x(n) ≥ Eε

Eε

exp{Eε – EεM}. (.)

Setting ε →  in (.) leads to

lim inf
n→+∞ x(n) ≥ E

E
exp{E – EM} def= m. (.)

Then we assume that ε < 
 m, from (.) we know that there exists a large enough N > N

such that

x(n) ≥ mε , ∀n ≥ T. (.)

From the second equation of system (.), (.), and (.), we have

x(n + ) = x(n) exp

{
–r(n) +

α(n)
a(n)

–
α(n)
a(n)

×
(

 + b(n)x(n)
 + a(n)x(n) + b(n)x(n)

)
– e(n)u(n)

}

≥ x(n) exp

{
–r(n) +

α(n)
a(n)

–
α(n)

a(n)( + a(n)mε)

– e(n)Wε –
α(n)b(n)

a(n)( + a(n)mε)
x(n)

}

= x(n) exp

{
–r(n) +

α(n)mε

 + a(n)mε
– e(n)Wε

–
α(n)b(n)

a(n)( + a(n)mε)
x(n)

}
(.)

for all n > N.
By applying Lemmas . and ., it immediately follows that

lim inf
n→+∞ x(n) ≥ [( αl

mε
+aumε

) – ru
 – eu

Wε](al( + almε))
αu

bu

× exp

{
αl

mε

 + aumε
– ru

 – eu
Wε –

αu
bu

al( + almε)
M

}
.

Setting ε → , we have

lim inf
n→+∞ x(n) ≥ [( αl

m
+aum

) – ru
 – eu

W](al( + alm))
αu

bu

× exp

{
αl

m

 + aum
– ru

 – eu
W –

αu
bu

al( + alm)
M

}
def= m. (.)

Without loss of generality, we may assume that ε < (/) min{m, m}. It follows from (.)
and (.) that there exists a large enough N > N, such that

xi ≥ miε , i = , ,∀n ≥ N. (.)
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From the third and fourth equations of the system (.) and (.), we have

u(n + ) ≥ (
 – ηu


)
u(n) + ql

mε ,

u(n + ) ≥ (
 – ηu


)
u(n) + ql

mε .

By applying Lemmas . and ., it immediately follows that

lim inf
n→+∞ u(n) ≥ ql

mε

ηu


,

lim inf
n→+∞ u(n) ≥ ql

mε

ηu


.

Setting ε →  in the above inequalities leads to

lim inf
n→+∞ u(n) ≥ ql

m

ηu


def= w,

lim inf
n→+∞ u(n) ≥ ql

m

ηu


def= w.

This completes the proof. �

Theorem . Assume that the inequality

rl
 >

αu


al (.)

holds. Let (x(n), x(n), u(n), u(n)) be any positive solution of system (.), then x(n) → ,
u(n) →  as n → +∞.

Proof Equation (.) is equivalent to the following inequality:

–rl
 +

αu


al < . (.)

From (.), there exists a δ >  such that

–rl
 +

αu


al < –δ < . (.)

Let (x(n), x(n), u(n), u(n)) be any positive solution of system (.). For any q ∈ N , ac-
cording to the second equation of system (.), we obtain

ln
x(q + )

x(q)
= –r(q) +

α(q)x(q)
 + a(q)x(q) + b(q)x(q)

– e(q)u(q)

≤ r(q) +
α(q)x(q)

 + a(q)x(q) + b(q)x(q)

≤ –rl
 +

αu


al < –δ < .
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Summating both sides of the above inequalities from  to n – , we obtain

ln
x(n)
x()

< –δn, (.)

then

x(n) < x() exp{–δn}. (.)

From (.), x(n) →  as n → +∞.
Further, consider the fourth equation of system (.). Applying Lemma . in [], we

easily obtain u(n) →  as n → +∞. This completes the proof of Theorem .. �

Theorem . Assume that (.) holds, and further assume that

ηl
 > eu

 ,

min

[
dl

,


M
– du



]
> qu

 ,
(.)

then, for any two positive solutions (x(n), x(n), u(n), u(n)) and (x∗
 (n), x∗

(n), u∗
 (n), u∗

(n))
of the system, we have

lim
n→+∞

(
x(n) – x∗

 (n)
)

= , lim
n→+∞

(
u(n) – u∗

 (n)
)

= .

Proof By conditions (.), there exist a positive constant ε and δ such that

ηl
 – eu

 > δ,

min

[
dl

,


Mε
– du



]
– qu

 > δ.
(.)

From Theorems . and ., for the above ε, there exists N > N such that

miε ≤ x(n), x∗
 (n) ≤ Miε , x(n) ≤ ε.

Using the mean value theorem, one has

ln x(n) – ln x∗
 (n) =


θ (n)

(
x(n) – x∗

 (n)
)
, (.)

where θ (n) is between x(n) and x∗
 (n).

Now we define

V(n) =
∣∣ln x(n) – ln x∗

 (n)
∣∣, V(n) =

∣∣u(n) – u∗
 (n)

∣∣.
From the first equation of the system, we have

�V(n) =
∣∣ln x(n + ) – ln x∗

 (n + )
∣∣ –

∣∣ln x(n) – ln x∗
 (n)

∣∣
≤ ∣∣ln x(n) – ln x∗

 (n) – d(n)
(
x(n) – x∗

 (n)
)∣∣
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–
∣∣ln x(n) – ln x∗

 (n)
∣∣ + α(n)

∣∣∣∣ x(n)
 + a(n)x(n) + b(n)x(n)

–
x∗

(n)
 + a(n)x∗

 (n) + b(n)x∗
(n)

∣∣∣∣ + e(n)
∣∣u(n) – u∗

 (n)
∣∣

≤ –
(


θ (n)

–
∣∣∣∣ 
θ (n)

– d(n)
∣∣∣∣
)∣∣x(n) – x∗

 (n)
∣∣

+ eu

∣∣u(n) – u∗

 (n)
∣∣ + αu


x(n) + x∗

(n)
 + almε + blε

. (.)

From the third equation of the system, we have

�V(n) =
∣∣u(n + ) – u∗

 (n + )
∣∣ –

∣∣u(n) – u∗
 (n)

∣∣
≤ –ηl


∣∣u(n) – u∗

 (n)
∣∣ + qu


∣∣x(n) – x∗

 (n)
∣∣. (.)

Now we define a Lyapunov function as follows:

V (n) = V(n) + V(n).

From (.) and (.), we have

�V (n) ≤ –
{

min

[
dl

,


Mε
– du



]
– qu



}∣∣x(n) – x∗
 (n)

∣∣ –
{
ηl

 – eu

}

× ∣∣u(n) – u∗
 (n)

∣∣ + αu


x(n) + x∗
(n)

 + almε + blε

≤ –δ
(∣∣x(n) – x∗

 (n)
∣∣ +

∣∣u(n) – u∗
 (n)

∣∣) + αu


x(n) + x∗
(n)

 + almε + blε
.

Summating both sides of the above inequalities from N to n, we have

n∑
p=N

(
V (p + ) – V (p)

) ≤ –δ

n∑
p=N

(∣∣x(n) – x∗
 (n)

∣∣ +
∣∣u(n) – u∗

 (n)
∣∣)

+
αu


 + almε + blε

n∑
p=N

(
x(n) + x∗

(n)
)
.

Hence

V (n + ) + δ

n∑
p=N

(∣∣x(n) – x∗
 (n)

∣∣ +
∣∣u(n) – u∗

 (n)
∣∣)

≤ V (N) +
αu


 + almε + blε

n∑
p=N

(
x(n) + x∗

(n)
)
.

From Theorem ., we have
∑+∞

n= x(n) < +∞ and
∑+∞

n= x∗
(n) < +∞. We notice that V (N)

is bounded. So from the above inequalities, we have

n∑
p=N

(∣∣x(n) – x∗
 (n)

∣∣ +
∣∣u(n) – u∗

 (n)
∣∣) ≤ +∞.
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Therefore

+∞∑
p=N

(∣∣x(n) – x∗
 (n)

∣∣ +
∣∣u(n) – u∗

 (n)
∣∣) ≤ +∞.

This means that

lim
n→+∞

(∣∣x(n) – x∗
 (n)

∣∣ +
∣∣u(n) – u∗

 (n)
∣∣) = .

Consequently

lim
n→+∞

(
x(n) – x∗

 (n)
)

= ,

lim
n→+∞

(
u(n) – u∗

 (n)
)

= .

This completes the proof of Theorem .. �

3 Global attractivity
In this section, we will consider the stability of the system (.).

Theorem . In addition to the conditions of Theorem ., assume that the following con-
dition holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ = max{| – dl
m – alαl

mm
�(n,M,m) |, | – du

 M – auαu
MM

�(n,m,M) |}
+ αu

[ M
�(n,m,m) + auMM

�(n,M,m) ] + eu
 < ,

χ = max{| – blαl
mm

�(n,m,M) |, | – buαu
MM

�(n,M,m) |}
+ αu

[ M
�(n,m,m) + buMM

�(n,m,M) ] + eu
 < ,

χ =  – ηl
 + qu

 M < ,
χ =  – ηl

 + qu
M < ,

(.)

where mi, Mi, i = , , are defined as before and

�
(
n, x(n), x(n)

)
=

[
 + a(n)x(n) + b(n)x(n)

][
 + a(n)x∗

 (n) + b(n)x∗
(n)

]
,

then the solution (x(n), x(n), u(n), u(n)) of the system (.) is globally attractive.

Proof Let (x(n), x(n), u(n), u(n)) and (x∗
 (n), x∗

(n), u∗
 (n), u∗

(n)) be any two positive so-
lutions of the system (.), let

Wi(n) =
∣∣ln xi(n) – ln x∗

i (n)
∣∣, Vi(n) =

∣∣ui(n) – u∗
i (n)

∣∣, i = , .

So from the first equation of the system, we have

W(n + ) = sgn
(
x(n) – x∗

 (n)
){

ln x(n) + r(n) – d(n)x(n)

+
α(n)x(n)

 + a(n)x(n) + b(n)x(n)
– e(n)u(n) – ln x∗

 (n)



Han et al. Advances in Difference Equations  (2016) 2016:199 Page 13 of 17

–
[

r(n) – d(n)x∗
 (n) +

α(n)x∗
(n)

 + a(n)x∗
 (n) + b(n)x∗

(n)
– e(n)u∗

 (n)
]}

≤ ∣∣(ln x(n) – ln x∗
 (n)

)
– d(n)

(
x(n) – x∗

 (n)
)∣∣ + eu

 V(n)

+ αu
 sgn

(
x(n) – x∗

 (n)
) ×

{
x(n)

 + a(n)x(n) + b(n)x(n)

–
x∗

(n)
 + a(n)x∗

 (n) + b(n)x∗
(n)

}
. (.)

In a similar way, we get

W(n + ) ≤ ∣∣ln x(n) – ln x∗
(n)

∣∣ + eu
V(n) + αu

 sgn
(
x(n) – x∗

(n)
)

×
{

x(n)
 + a(n)x(n) + b(n)x(n)

–
x∗

 (n)
 + a(n)x∗

 (n) + b(n)x∗
(n)

}
. (.)

Also, one has

V(n + ) ≤ (
 – ηl


)
V(n) + qu


∣∣x(n) – x∗

 (n)
∣∣,

V(n + ) ≤ (
 – ηl


)
V(n) + qu


∣∣x(n) – x∗

(n)
∣∣. (.)

We have

∣∣xi(n) – x∗
i (n)

∣∣ =
∣∣exp

(
ln xi(n)

)
– exp

(
ln x∗

i (n)
)∣∣

= exp
(
ξi(n)

)∣∣ln xi(n) – ln x∗
i (n)

∣∣
= exp

(
ξi(n)

)
Wi, i = , ,

where ξi(n) between ln xi(n) and ln x∗
i (n).

As follows from the above equation, we have

W(n + ) ≤ ∣∣(ln x(n) – ln x∗
 (n)

)
– d(n)

(
x(n) – x∗

 (n)
)∣∣ + eu

 V(n)

+ αu


|x(n) – x∗
(n)|

�(n, x(n), x(n))
+ auαu

x∗
 (n)

|x(n) – x∗
(n)|

�(n, x(n), x(n))

– a(n)α(n)x∗
(n)

|x(n) – x∗
 (n)|

�(n, x(n), x(n))

≤ ∣∣ – d(n) exp
(
ξ(n)

)∣∣W(n) + eu
 V(n)

+ αu


exp(ξ(n))W(n)
�(n, x(n), x(n))

+ auαu
x∗

 (n)
exp(ξ(n))W(n)
�(n, x(n), x(n))

– a(n)α(n)x∗
(n)

exp(ξ(n))W(n)
�(n, x(n), x(n))

,

W(n + ) ≤ W(n) + buαu
x∗

(n)
exp(ξ(n))W(n)
�(n, x(n), x(n))

+ eu
V(n)

+ αu


exp(ξ(n))W(n)
�(n, x(n), x(n))

– b(n)α(n)x∗
 (n)

exp(ξ(n))W(n)
�(n, x(n), x(n))

,

V(n + ) ≤ (
 – ηl


)
V(n) + qu

 exp
(
ξ(n)

)
W,

V(n + ) ≤ (
 – ηl


)
V(n) + qu

 exp
(
ξ(n)

)
W.

(.)
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By (.), we can choose a ε >  such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χε
 = max{| – dl

mε – alαl
mεmε

�(n,Mε ,mε) |, | – du
 Mε – auαu

MεMε

�(n,mε ,Mε) |}
+ αu

[ Mε

�(n,mε ,mε) + auMεMε

�(n,Mε ,mε) ] + eu
 < ,

χε
 = max{| – blαl

mεmε

�(n,mε ,Mε) |, | – buαu
MεMε

�(n,Mε ,mε) |}
+ αu

[ Mε
�(n,mε ,mε) + buMεMε

�(n,mε ,Mε) ] + eu
 < ,

χε
 =  – ηl

 + qu
 Mε < ,

χε
 =  – ηl

 + qu
Mε < .

(.)

In view of Theorem ., there exists N > N such that

miε ≤ xi(n), x∗
i (n) ≤ Miε ,

wiε ≤ ui(n), u∗
i (n) ≤ Wiε ,

miε ≤ exp
(
ξi(n)

) ≤ Miε , i = , .

It follows from (.) that

W(n + ) ≤ max

{∣∣∣∣ – dl
mε –

alαl
mεmε

�(n, Mε , mε)

∣∣∣∣,
∣∣∣∣ – du

 Mε –
auαu

MεMε

�(n, mε , Mε)

∣∣∣∣
}

× W(n) + αu


[
Mε

�(n, mε , mε)
+

auMεMε

�(n, Mε , mε)

]
W(n) + eu

 (n)V(n),

W(n + ) ≤ max

{∣∣∣∣ –
blαl

mεmε

�(n, mε , Mε)

∣∣∣∣,
∣∣∣∣ –

buαu
MεMε

�(n, Mε , mε)

∣∣∣∣
}

W(n)

+ αu


[
Mε

�(n, mε , mε)
+

buMεMε

�(n, mε , Mε)

]
W(n) + eu

(n)V(n),

V(n + ) ≤ (
 – ηl

(n)
)
V(n) + qu

 (n)(M + ε)W(n),

V(n + ) ≤ (
 – ηl

(n)
)
V(n) + qu

(n)(M + ε)W(n).

(.)

Let χ = max{χε
 ,χε

 ,χε
 ,χε

}, then  < χ < . It follows from (.) that

max
{

W(n + ), W(n + ), V(n + ), V(n + )
}

≤ χ max
{

W(n), W(n), V(n), V(n)
}

for n > N. Then we have

max
{

W(n + ), W(n + ), V(n + ), V(n + )
}

≤ χn–N max
{

W(n), W(n), V(n), V(n)
}

.

Thus

lim
n→+∞ Wi(n) = , lim

n→+∞ Vi(n) = , i = , .

This completes the proof. �
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4 Examples
In the section, we present some examples showing the feasibility of our main results.

Example . Consider the following system:

x(n + ) = x(n) exp

{
 – .x(n) +

(. + . cos(n))x(n)
 + x(n) + x(n)

– .u(n)
}

,

x(n + ) = x(n) exp

{
–. +

(. + . sin(n))x(n)
 + x(n) + x(n)

– .u(n)
}

,

�u(n) = –.u(n) + .x(n),

�u(n) = –.u(n) + .x(n).

(.)

Through a simple computation, we have

–rl
 +

αu


al =  > .

So Proposition . holds, moreover,

–ru
 +

αl
m

 + aum
– eu

 W ≈ . > .

Therefore the conditions of Theorem . hold. Then the system (.) has permanence.
Numeric simulation (Figure ) also supports this finding.

Example . Consider the following system:

x(n + ) = x(n) exp

{
. + . cos(n) – .x(n)

+
(. + . cos(n))x(n)

 + x(n) + x(n)
– . cos(n)u(n)

}
,

Figure 1 Dynamics behavior of the solution (x1(n), x2(n), u1(n), u2(n)) to the system (4.1) with the
initial conditions (x1(0), x2(0), u1(0), u2(0)) = (1.4, 0.2, 1.2, 0.9), (3.2, 2.1, 4.6, 2.5), and (5.8, 3.9, 0.8, 4.2),
respectively.
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Figure 2 Dynamics behavior of the solution (x1(n), x2(n), u1(n), u2(n)) of the system (4.2) with the
initial conditions (x1(0), x2(0), u1(0), u2(0)) = (0.05, 0.07, 0.01, 0.04), (0.06, 0.045, 0.032, 0.021), and
(0.04, 0.028, 0.042, 0.008), respectively.

x(n + ) = x(n) exp

{
–. +

. sin(n)x(n)
 + x(n) + x(n)

– . cos(n)u(n)
}

, (.)

�u(n) = –.u(n) + .x(n),

�u(n) = –.u(n) + .x(n).

Through a simple computation, we have

rl
 = . > . =

αu


al ,

ηl
 = . > . = eu

 ,

min

[
dl

,


M
– du



]
= . > . = qu

 .

Therefore the conditions of Theorems . and . hold. Then the species x is extinct and
the species x has global stability.

Numeric simulation (Figure ) also supports this finding.

5 Conclusion
In this paper, we proposed a discrete non-autonomous plant-pollinator system with the
Beddington-DeAngelis functional response and feedback controls. As we see it, plants
can build a cooperative interaction with pollinators by providing a reward for the polli-
nators’ services. From Theorem ., we discover that when α(n) is large enough, then
(.) must hold, that is, the system (.) has an upper bound. We know that α(n) rep-
resents the pollinators’ efficiency in translating plant-pollinator interactions into fitness.
In other words, when the efficiency of the pollinators is large enough, the system has an
upper bound. What is more, when the coefficient e(n) is small enough, then the system
has permanence. That is, when the interference of the plant is small, the system is to per-
sist. From Theorem ., it is obvious that when r(n) is large enough, x(n) will contribute
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to extinction. That is, if the mortality is large enough, then the population will go to ex-
tinction. From Theorem ., we known that when e(n) is small enough, then the partial
species is globally stable. That is, if the feedback control is small enough, the population
may remain stable. Wang et al. [] have shown that the system (.) is globally stable, and
our work shows that the feedback controls have no influence on the attractivity of the sys-
tem. The obtained results may be helpful to maintain the plant-pollinator cooperation and
provide insight in the mechanisms by which pollination mutualism could persist and we
have global attractivity, which may be helpful for understanding the complexity of these
systems.
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