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Abstract
In this manuscript we present a regular dissipative fractional operator associated with
a fractional boundary value problem. In particular, we present two main dissipative
boundary value problems and one of them contains the spectral parameter in the
boundary conditions. To construct the associated dissipative operator we present a
direct sum Hilbert space.

1 Introduction
As is well known Sturm-Liouville problems play an important role in many scientific prob-
lems. Second order Sturm-Liouville equations are of the form

–
(
p(x)y′)′ + q(x)y = λw(x)y, –∞ < a < b < ∞,

where p, q, and w are real-valued functions such that p–, q, and w are locally integrable
functions on a given interval and w >  for almost all x. However, this classical equation
can be generalized to fractional differential equation [] with the help of left- and right-
sided Riemann-Liouville integrals of order α (Reα > ) as follows [–]:

(
Iα

a+ y
)
(x) =


�(α)

∫ x

a
(x – s)α–y(s) ds, x > a,

(
Iα

b– y
)
(x) =


�(α)

∫ b

x
(s – x)α–y(s) ds, x < b,

where � denotes the gamma function. Then the left-sided and right-sided Riemann-
Liouville derivatives of order α are defined as

(
Dα

a+ y
)
(x) = Dm(

Im–α
a+ y

)
(x), x > a,

(
Dα

b– y
)
(x) = (–D)m(

Im–α
b– y

)
(x), x < b,

where Reα ∈ (m – , m), and

(cDα
a+ y

)
(x) =

(
Im–α

a+ Dmy
)
(x), x > a,

(cDα
b– y

)
(x) =

(
Im–α

b– (–D)my
)
(x), x < b.

Here, secondary ones are called the left- and right-sided Caputo derivatives of order α.
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Fractional calculus is one of the most useful tools to investigate the hidden properties of
dynamical systems. During the last few decades a lot of developments were done in both
theoretical and the applied view points [–], namely, some important results from clas-
sical analysis were generalized to the fractional case and fractional calculus was success-
fully applied to real problems which appear in science and engineering. One of the most
challenging hot topics in fractional calculus is to find real world application in physics. We
recall that an one-dimensional dissipative Schrödinger-type operators together with their
dilations and eigenfunction expansions was discussed in [] and it was motivated by the
problems appearing in semiconductor physics (also see [, ]).

It is well known that [] a linear operator A acting on a Hilbert space H is said to be
dissipative if the imaginary part of the corresponding inner product is nonnegative, that is,

Im(Af , f ) ≥ , f ∈ D(A),

where D(A) is the domain of the operator A. To investigate the spectral properties of the
boundary value problems it is useful to understand the nature of the associated opera-
tor. To be more precise, we should note that if an operator associated with the boundary
value problem is Hermitian (selfadjoint) then all eigenvalues of the problem are real. On
the other side, an important class of nonselfadjoint operators consists of dissipative op-
erators. For ordinary differential operator generated by an ordinary differential equation
and associated boundary conditions (singular) dissipative operators have been studied in
many works [–]. However, in fractional calculus it seems that there is no work in this
field. In this paper our main aim is to construct a regular dissipative fractional operator
associated with a fractional boundary value problem.

Finally, in this paper we denote by L
wα

[a, b] the Hilbert space consisting of all functions y
such that

∫ b

a
|y|wc dx < ∞

with the inner product

(y, z)L
wc

=
∫ b

a
yzwc dx.

2 Boundary value problem
As in [], in this paper we consider the following fractional Sturm-Liouville differential
expression:

Lα,x :=C Dα
b–

(
p(x)Dα

a+
)

+ q(x),  < α ≤ ,

on the interval [a, b]. Here we assume that p and q are real-valued functions having finite
values at each point on [a, b] and p(x) �= . Now we shall handle the following boundary
value problem:

Lα,xy = λwα(x), (.)

cosβI–α
a+ y(a) + sinβp(a)Dα

a+ y(a) = , (.)

I–α
a+ y(b) – hp(b)Dα

a+ y(b) = , (.)
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where wα(x) is the real-valued function such that wα(x) >  on [a, b], β is a real number
and h is a complex number such that h = h + ih with h > .

Let L be an operator with domain D(L), which consists of those functions y such that
cDα

b– (p(x)Dα
a+ y) is meaningful satisfying (.), (.) and


wα(x)

(Lα,xy) ∈ L
wα

[a, b]

with the rule

Ly =


wα(x)
(Lα,xy), y ∈ D(L).

Then

Ly = λy, y ∈ D(L)

coincides with the problem (.)-(.). Then we have the following.

Theorem . The operator L is dissipative in L
wα

[a, b].

Proof For y ∈ D(L) we have

(λ – λ)wα(x)yy = Lα,xyy – Lα,xyy

and using (.) and (.) we obtain

(Ly, y)L
wc

– (y,Ly)L
wc

= I–α
a+ y(b)p(b)Dα

a+ y(b) – p(b)Dα
a+ y(b)I–α

a+ y(b)

– I–α
a+ y(a)p(a)Dα

a+ y(a) + p(a)Dα
a+ y(a)I–α

a+ y(a)

= i Im h
∣∣p(b)Dα

a+ y(b)
∣∣,

which implies that L is dissipative in L
wα

[a, b]. �

Then we arrive at the following corollary ([], p.).

Corollary . Let λ be an eigenvalue of the operator L. Then Imλ ≥ .

For the special case of α we have additional results [, , –].

Corollary . For α =  the boundary value problem (.)-(.) reduces to

–
(
p(x)y′)′ + q(x)y = λw(x)y, (.)

cosβy(a) + sinβp(a)y′(a) = , (.)

y(b) – hp(b)y′(b) = . (.)

Let λ = λ be an eigenvalue of the problem (.)-(.). Then Imλ > . Moreover, the mul-
tiplicity of λ is finite. The set of all eigenvalues are countable. All root vectors (eigen- and
associated vectors) of the problem (.)-(.) span the Hilbert space L

w[a, b].
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3 Eigenparameter dependent boundary value problem
The second problem is as follows:

Lα,xy = λwα(x)y, (.)

γI–α
a+ y(a) – γp(a)Dα

a+ y(a) = λ
(
γ ′

 I–α
a+ y(a) – γ ′

p(a)Dα
a+ y(a)

)
, (.)

I–α
a+ y(b) – hp(b)Dα

a+ y(b) = , (.)

where wα(x) is the real-valued function such that wα(x) >  on [a, b], γ, γ, γ ′
 , γ ′

 are real
numbers such that γ := γ ′

γ – γγ
′
 >  and h is a complex number such that h = h + ih

with h > .
Let H = L

w[a, b] ⊕C be the Hilbert space with the inner product

〈Y , Z〉H = (y, z)L
wc

+

γ

yz,

where

Y =

(
y(x)
y

)

, Z =

(
z(x)
z

)

∈ H ,

where y = γ ′
 I–α

a+ y(a) – γ ′
p(a)Dα

a+ y(a).
We construct the set D(Lλ) consisting of all functions Y =

(y(x)
y

)
such that y ∈ L

w[a, b]
satisfies the condition (.) with the rule

LλY =

(


wα (x) (Lα,xy)
γI–α

a+ y(a) – γp(a)Dα
a+ y(a)

)

.

Then the problem (.)-(.) coincides with the problem

LλY = λY .

We have the following.

Theorem . The operator Lλ is dissipative in H .

Proof For Y ∈ D(Lλ) we obtain

〈LλY , Y 〉H – 〈Y ,LλY 〉H = i Im h
∣
∣p(b)Dα

a+ y(b)
∣
∣.

Since Y ∈ D(Lλ) we see that Lλ is dissipative in H . �

Corollary . Let λ be an eigenvalue of the operator Lλ. Then Imλ ≥ . For the special
case of α we have additional results [–].

Corollary . For α =  the boundary value problem (.)-(.) reduces to

–
(
p(x)y′)′ + q(x)y = λw(x)y, (.)

γy(a) – γp(a)y′(a) = λ
(
γ ′

 y(a) – γ ′
p(a)y′(a)

)
, (.)

y(b) – hp(b)y′(b) = . (.)
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Let λ = λ be an eigenvalue of the problem (.)-(.). Then Imλ > . Moreover, the mul-
tiplicity of λ is finite. The set of all eigenvalues are countable. All root vectors (eigen- and
associated vectors) of the problem (.)-(.) span the Hilbert space L

w[a, b] ⊕C.

4 Conclusion
It is well known that the dissipative operators arise in several real world applications and
even naturally in mathematics. In this manuscript we considered new operators, namely
they are both dissipative and of fractional calculus type. The generalization proposed in
this manuscript will extend considerably the possibility to extract new features from the
dynamics of complex systems involving non-local effects. Bearing this in mind we dis-
cussed first of all the boundary value problem (.)-(.) and we showed that the corre-
sponding fractional operator L is dissipative in L

w[a, b]. After that we investigated the
boundary value problem (.)-(.) and we proved that the corresponding operator Lλ is
dissipative in L

w[a, b] ⊕C.
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