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Abstract
In this paper, we study the existence of classical solutions for a second-order
impulsive differential equation with non-separated periodic boundary conditions. By
using the variational method and critical point theory, we give some new criteria to
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1 Introduction
Many dynamical systems have an impulsive dynamical behavior due to abrupt changes
at certain instants during the evolution process. The mathematical description of these
phenomena leads to the impulsive differential equations. Recent developments in this field
have been motivated by many applied problems, such as control theory [, ], population
dynamic [], medicine [–], and some physics or mechanics problems []. In the last few
years, a great deal of work has been done in the study of the existence of solutions for
impulsive boundary value problems. Some classical tools or techniques have been used to
study such problems in the literature, such as coincidence degree theory of Mawhin [],
the method of upper and lower solutions with the monotone iterative technique [–],
and some fixed point theorems in cones [–]. For some general and recent work on the
theory of impulsive differential equation, we refer the interested reader to [–].

In this paper, we are concerned with the existence of solutions for the following bound-
ary value problem (BVP) with impulses:

–
(
p(t)u′(t)

)′ = f
(
t, u(t)

)
, t �= tk , t ∈ J , (.a)

�
(
u[](tk)

)
= Ik

(
u(tk)

)
, k = , , . . . , m, (.b)

u() = u(T), u[]() = u[](T). (.c)

Here T be a fixed positive number, u[](t) = p(t)u′(t) denotes the quasi-derivative of u(t).
Condition (.c) is called a non-separated periodic boundary value condition for (.a).
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We assume throughout, and without further mention, that the following conditions
hold.

(H) Let J = [, T], and  = t < t < t < · · · < tm < tm+ = T , f ∈ C(J ×R
+,R+), Ik ∈ C(R,R),

R
+ = [, +∞). �(u[](tk)) = u[](t+

k ) – u[](t–
k ), where u[](t+

k ) (respectively, u[](t–
k )) denotes

the right limit (respectively left limit) of u[](t) at t = tk .
(H) The function f (t, u) is measurable in t ∈ [, T] for each u ∈R, continuous in u ∈R

for a.e. t ∈ [, T] (Caratheodory function), and there exist a(t) ∈ C(R+,R+) and a Lebesgue
measurable function b(t) ≥  such that b(t) ∈ L(, T ;R+) and |f (t, u)| ≤ a(|u|)b(t), for all
u ∈ R and a.e. t ∈ [, T]. We have

∫ T




p(t)

dt < ∞, p(t) >  on [, T].

A function u(t) defined on J– = J\{t, t, . . . , tm} is called a classical solution of BVP (.a)-
(.c) if its first derivative u′(t) exists for each t ∈ J–, p(t)u′(t) is absolutely continuous on
each closed subinterval of J–, there exist finite values u[](t±

k ), the impulse conditions (.b),
and the boundary conditions (.c) are satisfied, and equation (.a) is satisfied almost
everywhere on J–.

For the case of Ik =  (k = , , . . . , m), problem (.a)-(.c) is related to a non-separated
periodic boundary value problem of ODE. More precisely, Atici and Guseinov [] con-
sidered the following non-separated periodic boundary value problem:

{
–[p(x)y′]′ + q(x)y = f (x, y),  ≤ x ≤ ω,
y() = y(ω), y[]() = y[](ω).

(.)

The authors proved the existence of a positive and twin positive solutions to BVP (.) by
applying a fixed point theorem for the completely continuous operators in cones.

Based upon the properties of the Green’s function obtained in [], Graef and Kong []
extended and improved the work of [] by using topological degree theory. They derived
new criteria for the existence of non-trivial solutions, positive solutions, and negative so-
lutions of problem (.) when f is a sign-changing function and not necessarily bounded
from below even over [,ω] ×R

+.
Very recently, by introducing a variational framework for a class of second-order non-

linear differential equations with non-separated periodic boundary value conditions, Han
[] obtained some results on the existence of non-trivial, positive, and negative solutions
of problem (.), where the nonlinearities are unbounded and satisfy Ahmad-Lazer-Paul
type conditions. The problem (.) in the case of p ≡ , the usual periodic boundary value
problem, has been extensively investigated; see [, ] for some results.

For the impulsive case of (.), Huseynov [, ] considered the following problem:

⎧
⎪⎨

⎪⎩

–[p(x)y′(x)]′ + q(x)y(x) = h(x), x ∈ [a, c) ∪ (c, b],
y(c–) = dy(c+), y[](c–) = dy[](c+),
y(a) = y(b), y[](a) = y[](b).

(.)

In [], Huseynov investigated the Green’s function of the boundary value problem (.),
sufficient conditions that ensure the positiveness of the Green’s function are established.
The author also investigated nonlinear second-order differential equations subject to lin-
ear impulse conditions and non-separated periodic boundary conditions in [].
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Motivated by the above facts, in this paper, our aim is to study the existence of solutions
for the impulsive boundary value problem (.a)-(.c). To the best of our knowledge, there
has so far been no paper concerning the non-separated boundary value problem with im-
pulses via variational methods. In addition, this paper is a generalization of [], in which
impulsive effects are not involved. For some general and recent work on the critical point
theory and variational methods, we refer the reader to [–]. It is a novel approach to
apply variational methods to the impulsive boundary value problem.

Throughout this paper, we will use the following notations: Lq(, T) is the usual Banach
space with norm ‖u‖q = (

∫ T
 |u|q dt)/q, ‖u‖∞ = maxt∈[,T] |u(t)|, and ‖u‖p, = (

∫ T
 pu dt)/.

C, C, C, . . . denote the positive (possibly different) constants.

2 Preliminaries
In this sections, we recall some basic facts which will be used in the proofs of our main
results. In order to apply the critical point theory, we construct a variational structure.
With this variational structure, we can reduce the problem of finding solutions of (.a)-
(.c) to that of seeking the critical points of a corresponding functional.

Let W ,
p,T be the Sobolev space

W ,
p,T =

{
u ∈ AC[, T]|u() = u(T),

√
pu′ ∈ L(, T)

}

with the norm

‖u‖ =
(∫ T


p(t)

∣
∣u′(t)

∣
∣ dt +

∫ T


u(t) dt

)/

.

Certainly, W ,
p,T is also a Hilbert space with the inner product induced by its norm. For

more details, see [].
In the meantime, according to Proposition . in [], the problem

{
–(p(t)u′(t))′ = μu,
u() = u(T), u[]() = u[](T)

has a sequence of eigenvalues,  = μ < μ < · · · < μn < · · · , and corresponding eigen-
functions, ψn (n = , , , . . .), where we can choose ψ(t) ≡  in [, T]. It is obvious that
ψn (n = , , . . .) are mutually orthogonal in L(, T). Set W = span{} ⊂ W ,

p,T and W̃ =
span{ψ,ψ, . . .} ⊂ W ,

p,T , then W ,
p,T = W ⊕ W̃ . Accordingly, for every u ∈ W ,

p;T , u = u + ũ.
As in the proof of Proposition . in [], we have

μ

∫ T


u dt ≤

∫ T


p
∣
∣u′∣∣ dt, ∀u ∈ W̃ .

From Theorem . in [], we have the inequality

‖̃u‖∞ ≤ C
(∫ T


p̃u′ dt

)/

, ∀u ∈ W ,
p,T .

The above two important inequalities can be simply rewritten as follows:

‖̃u‖∞ ≤ C
∥∥̃u′∥∥

p,, ∀u ∈ W ,
p,T , (.)
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‖̃u‖
 ≤ 

μ

∥∥̃u′∥∥
p,, ∀u ∈ W̃ . (.)

Proposition . ([], Proposition .) Suppose that the condition (H) holds, then W ,
p,T

is compactly imbedded in C[, T].

For u ∈ W ,
p,T , we set

J(u) =



∫ T


pu′ dt –

∫ T


F(t, u) dt +

m∑

k=

∫ u(tk )


Ik(s) ds,

where

F(t, u) =
∫ u


f (t, s) ds.

In view of the condition (H), we can prove that J(u) is well defined and is C on W ,
p,T .

Furthermore, we have

(
J ′(u), v

)
=

∫ T


pu′v′ dt –

∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk),

for all u, v ∈ W ,
p,T . The proofs can be given as in the corresponding results in [, ].

Definition . u ∈ W ,
p,T is a weak solution of problem (.a)-(.c), if

∫ T


pu′v′ dt –

∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk) = ,

for all v ∈ W ,
p,T .

By Definition ., the weak solutions of problems (.a)-(.c) correspond to the critical
points of J .

Theorem . If u ∈ W ,
p,T is a critical point of the functional J , then u is a classical solution

of (.a)-(.c).

Proof Let u ∈ W ,
p,T be a critical point of the functional J . It shows that

∫ T


pu′v′ dt –

∫ T


f (t, u) dt +

m∑

k=

Ik
(
u(tk)

)
v(tk) = 

holds for any v ∈ W ,
p,T . By integrating by parts, we have

 =
m∑

k=

∫ tk+

tk

pu′v′ dt –
∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk)

=
m∑

k=

[
pu′v|tk+

t+
k

]
–

∫ T



(
pu′)′v dt –

∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk)
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= p(t)u′(t)v(t) – p()u′()v()

+ p(t)u′(t)v(t) – p
(
t+

)
u′(t+


)
v
(
t+

)

+ · · ·

+ p(T)u′(T)v(T) – p
(
t+
m
)
u′(t+

m
)
v
(
t+
m
)

–
∫ T



(
pu′)′v dt

–
∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk). (.)

In view of v ∈ W ,
p,T and Proposition ., it follows that v(tk) = v(t+

k ). Equation (.) implies

–
m∑

k=

�
(
p(tk)u′(tk)

)
v(tk) + p(T)u′(T)v(T) – p()u′()v()

–
∫ T



(
pu′)′v dt –

∫ T


f (t, u)v dt +

m∑

k=

Ik
(
u(tk)

)
v(tk) =  (.)

holds for all v ∈ W ,
p,T . Without loss of generality, we assume that v ∈ C∞

 (tk , tk+) satisfying
v(t) ≡ , t ∈ [, tk] ∪ [tk+, T], then substituting v into (.) we get

∫ tk+

tk

[
–
(
pu′)′ – f (t, u)

]
v dt = ,

which means

–
(
p(t)u′(t)

)′ – f
(
t, u(t)

)
= , t ∈ (tk , tk+).

Thus u satisfies equation (.a). So (.) becomes

m∑

k=

[
Ik

(
u(tk)

)
– �

(
p(tk)u′(tk)

)]
v(tk) + p(T)u′(T)v(T) – p()u′()v() = . (.)

Now we will show that u satisfies the impulsive condition (.b). If not, without loss of
generality, we assume that there exists k ∈ {, , . . . , m} such that

Ik
(
u(tk)

)
– �

(
p(tk)u′(tk)

) �= . (.)

Set v(t) =
∏m+

j=,j �=k(t – tj) = t(t – t) · · · (t – tk–)(t – tk+) · · · (t – T), combining (.) we get

m∑

k=

[
Ik

(
u(tk)

)
– �

(
p(tk)u′(tk)

)]
v(tk) + p(T)u′(T)v(T) – p()u′()v()

=
[
Ik

(
u(tk)

)
– �

(
p(tk)u′(tk)

)]
v(tk) �= ,

which contradicts (.). So u satisfies the impulsive condition (.b). From the above, we
can obtain

p(T)u′(T)v(T) – p()u′()v() = .
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Notice that v ∈ W ,
p,T and v() = v(T), so

p(T)u′(T) = p()u′().

Hence u satisfies the non-separated periodic boundary condition (.c). Therefore, u is a
classical solution of problem (.a)-(.c). �

Definition . ([], P) Let X be a real Banach space and I ∈ C(X, R). I is said to satisfy
the P.S. condition on X if any sequence {xn} ⊆ X for which I(xn) is bounded and I ′(xn) → 
as n → ∞ possesses a convergent subsequence in X.

Theorem . ([], Theorem .) Let X be a Banach space and let � ∈ C(X,R). Assume
that X splits into a direct sum of closed subspaces X = X– ⊕ X+ with

dim X– < ∞

and

sup
S–

R

� < inf
X+

�,

where S–
R = {u ∈ X– : ‖u‖ = R}. Let

B–
R =

{
u ∈ X– : ‖u‖ = R

}
, M =

{
h ∈ C

(
B–

R, X
)

: h(s) = s if s ∈ S–
R
}

,

and

c = inf
h∈M

max
s∈B–

R
�

(
h(s)

)
.

Then, if � satisfies the P.S. condition, c is a critical value of �.

3 Main results
Theorem . Assume the following conditions are satisfied:

(H) There exist g, h ∈ L[, T] and constant α ∈ [, ) such that

∣
∣f (t, u)

∣
∣ ≤ g(t)|u|α + h(t)

for all u ∈R, and a.e. t ∈ [, T].
(H) |u|–α

∫ T
 F(t, u) dt → –∞, as |u| → ∞.

(H) For any k ∈ {, , . . . , m}, Ik(u)u ≥ , ∀u ∈R.
Then problem (.a)-(.c) has at least one weak solution that minimizes the function J .

Proof It follows from (H) and (.) that

∣
∣∣
∣

∫ T



(
F(t, u) – F(t, u)

)
dt

∣
∣∣
∣ =

∣
∣∣
∣

∫ T



(∫ 


f (t, u + s̃u)̃u ds

)
dt

∣
∣∣
∣

≤
∫ T


dt

∫ 



∣
∣f (t, u + s̃u)

∣
∣|̃u|ds
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≤
∫ T


dt

∫ 



[
g(t)|u + s̃u|α + h(t)

]|̃u|ds

≤
∫ T



[
g(t)α

(|u|α + |̃u|α)
+ h(t)

]|̃u|dt

≤
∫ T



(
g(t)α|u|α |̃u| + g(t)α |̃u|α+ + h(t)|̃u|)dt

≤ α|u|α ‖̃u‖∞‖g‖ + α ‖̃u‖α+
∞ ‖g‖ + ‖̃u‖∞‖h‖

≤ ‖g‖α|u|αC
∥
∥̃u′∥∥

p, + α‖g‖
∥
∥̃u′∥∥α+

p, + ‖h‖C
∥
∥̃u′∥∥

p,

≤ 


∥
∥̃u′∥∥

p, + C|u|α + C
∥
∥̃u′∥∥α+

p, + C
∥
∥̃u′∥∥

p,.

By (H), we have

φ(u) =
m∑

k=

∫ u(tk )


Ik(s) ds ≥ 

for all u ∈ W ,
p,T .

Therefore, we obtain

J(u) =



∫ T


pu′ dt –

∫ T


F(t, u) dt +

m∑

k=

∫ u(tk )


Ik(s) ds

≥ 


∫ T


pu′ dt –

∫ T



(
F(t, u) – F(t, u)

)
dt –

∫ T


F(t, u) dt

≥ 

∥
∥̃u′∥∥

p, –



∥
∥̃u′∥∥

p, – C|u|α – C
∥
∥̃u′∥∥α+

p, – C
∥
∥̃u′∥∥

p, –
∫ T


F(t, u) dt

≥ 


∥∥̃u′∥∥
p, – |u|α

(
|u|–α

∫ T


F(t, u) dt + C

)
– C

∥∥̃u′∥∥α+
p, – C

∥∥̃u′∥∥
p, (.)

for all u ∈ W ,
p,T . As ‖u‖ → ∞ if and only if (‖̃u′‖

p, + |u|)/ → ∞, (.) and condition
(H) imply that

J(u) → +∞ as ‖u‖ → ∞.

Similar to the Lemma . in [], it is easy to prove that J is weakly lower semi-continues.
By Theorem . in [], J has a minimum point on W ,

p,T , which is a critical point of J . Hence
problem (.a)-(.c) has at least one weak solution. �

Theorem . Assume (H), (H), and the following condition (H) holds:
(H) lim inf|x|→∞ |x|β ∫ x

 Ik(s) ds > –m for some β ∈ (, α) and constant m > ,
k ∈ {, , . . . , m}.

Then problem (.a)-(.c) has at least one weak solution.

Proof Obviously, (H) implies that there exists M such that ∀x ∈R

∫ x


Ik(s) ds ≥ –m|x|β – M. (.)
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From Theorem ., we obtain

∣
∣∣
∣

∫ T



(∫ 


f (t, u + s̃u)̃u ds

)
dt

∣
∣∣
∣ ≤ 


∥∥̃u′∥∥

p, + C|u|α + C
∥∥̃u′∥∥α+

p, + C
∥∥̃u′∥∥

p,. (.)

By (.) we have

m∑

k=

∣∣u(tk)
∣∣β ≤ m‖u‖β

∞ = m‖u + ũ‖β
∞ ≤ βm

(|u|β + |̃u|β)

≤ βm|u|β + βmC
∥∥̃u′∥∥β

p,.

Also

J(u) =



∫ T


p
(
u′) dt –

∫ T


F(t, u) dt +

m∑

k=

∫ u(tk )


Ik(s) ds

=



∫ T


p
(
u′) dt –

∫ T



(
F(t, u) – F(t, u)

)
dt –

∫ T


F(t, u) dt +

m∑

k=

∫ u(tk )


Ik(s) ds.

Substituting (.) and (.) into the above equation, we have

J(u) ≥ 

∥
∥̃u′∥∥

p, –



∥
∥̃u′∥∥

p, – C|u|α – C
∥
∥̃u′∥∥α+

p, – C
∥
∥̃u′∥∥

p,

–
m∑

k=

m
∣∣u(tk)

∣∣β – mM –
∫ T


F(t, u) dt

=



∥
∥̃u′∥∥

p, – C|u|α – C
∥
∥̃u′∥∥α+

p, – C
∥
∥̃u′∥∥

p, – C|u|β –
∥
∥̃u′∥∥β

p,

–
∫ T


F(t, u) dt + C

≥ 


∥∥̃u′∥∥
p, – |u|α

[
|u|–α

∫ T


F(t, u) dt +

C|u|β
|u|α

+ C

]

– C
∥
∥̃u′∥∥α+

p, – C
∥
∥̃u′∥∥

p, + C.

Since β ∈ (, α), the above inequality and (H) imply that

J(u) → +∞, as ‖u‖ → ∞.

So J has a minimum point on W ,
p,T , which is a critical point of J . Hence problem (.a)-

(.c) has at least one solution. �

Theorem . Suppose that the condition (H) of Theorem . hold. Assume the following:
(H) There exist ak , bk > , and γ ∈ (,α) such that

∣∣Ik(s)
∣∣ ≤ ak + bk|s|γ ,

for every s ∈R, k ∈ {, , . . . , m}.
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(H) For any k ∈ {, , . . . , m}, Ik(s)s ≤ , ∀s ∈R.
(H) |u|–α

∫ T
 F(t, u) dt → +∞, as |u| → +∞.

Then problem (.a)-(.c) has at least one weak solution.

First of all, we prove the following lemma.

Lemma . Suppose that the conditions of Theorem . hold, then J satisfies the P.S. con-
dition.

Proof Let {un} ⊂ W ,
p,T be a P.S. sequence for J , that is, {J(un)} is bounded, J ′(un) →  as

n → ∞. It follows from (H) and (.) that

∣∣
∣∣

∫ T


f (t, un )̃un dt

∣∣
∣∣ ≤

∫ T



∣
∣f (t, un)

∣
∣|̃un|dt

≤
∫ T



(
g(t)|un|α + h(t)

)|̃un|dt

≤
∫ T


g(t)|un|α |̃un|dt +

∫ T


h(t)|̃un|dt

≤ ‖un‖α
∞‖̃un‖∞‖g‖ + ‖̃un‖∞‖h‖

≤ ‖un + ũn‖α
∞‖̃un‖∞‖g‖ + ‖̃un‖∞‖h‖

≤ α
(|u|α + ‖̃un‖α

∞
)‖̃un‖∞‖g‖ + ‖̃un‖∞‖h‖

≤ α|u|α ‖̃un‖∞‖g‖ + α ‖̃un‖α+
∞ ‖g‖ + ‖̃un‖∞‖h‖

≤ α|un|α‖g‖C
∥
∥̃u′

n
∥
∥

p, + α‖g‖Cα+∥∥̃u′
n
∥
∥α+

p, + CC
∥
∥̃u′

n
∥
∥

p,

≤ 


∥
∥̃u′

n
∥
∥

p, + C|un|α + C
∥
∥̃u′

n
∥
∥α+

p, + C
∥
∥̃u′

n
∥
∥

p,.

Therefore

〈
J ′(un), ũn

〉
=

∫ T


pu′

nũ′
n dt –

∫ T


f (t, un )̃un dt +

m∑

k=

Ik
(
un(tk)

)
ũn(tk)

≥ 


∥
∥̃u′

n
∥
∥

p, – C|un|α – C
∥
∥̃u′

n
∥
∥α+

p, – C
∥
∥̃u′

n
∥
∥

p, +
m∑

k=

Ik
(
un(tk)

)
ũn(tk)

≥ 


∥∥̃u′
n
∥∥

p, – C|un|α – C
∥∥̃u′

n
∥∥α+

p, – C
∥∥̃u′

n
∥∥

p,

–
m∑

k=

(
ak + bk

∣
∣un(tk)

∣
∣γ )∣∣̃un(tk)

∣
∣.

Let a = max{ai}, b = max{bi}, one has

〈
J ′(un), ũn

〉 ≥ 


∥∥̃u′
n
∥∥

p, – C|un|α – C
∥∥̃u′

n
∥∥α+

p, – C
∥∥̃u′

n
∥∥

p,

– am‖̃un‖∞ – b
m∑

k=


(|un|γ + ‖̃un‖γ

∞
)‖̃un‖∞
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≥ 


∥∥̃u′
n
∥∥

p, – C|un|α – C
∥∥̃u′

n
∥∥α+

p, – C
∥∥̃u′

n
∥∥

p, – amC
∥∥̃u′

n
∥∥

p,

– mb|un|γ ‖̃un‖∞ – bmC
∥∥̃u′

n
∥∥γ +

p, .

By Yang inequality and (.), the following inequality holds:

|un|γ ‖̃un‖∞ ≤ (|un|γ )α/γ

α/γ
+

‖̃un‖
γ

α–γ∞
α

α–γ

.

From the above, we have

‖̃un‖ ≥ 〈
J ′(un), ũn

〉 ≥ 


∥
∥̃u′

n
∥
∥

p, – C|un|α – C
∥
∥̃u′

n
∥
∥α+

p, – C
∥
∥̃u′

n
∥
∥

p,

– amC
∥∥̃u′

n
∥∥

p, – bm
∥∥̃u′

n
∥∥γ +

p, – C|un|α – C
∥∥̃u′

n
∥∥

α
α–γ

p, .

On the other hand, in view of (.), we have

∥∥̃u′
n
∥∥

p, ≤ ‖̃un‖ =
∫ T


p
(
ũ′

n
) dt +

∫ T


(̃un) dt

≤
∫ T


p
(
ũ′

n
) dt +


μ

∫ T


p
(
ũ′

n
) dt =

(
 +


μ

)∥∥̃u′
n
∥∥

p,. (.)

So,

C
∥∥̃u′

n
∥∥

p, ≥ 


∥∥̃u′
n
∥∥

p, – (C + C)|un|α – C
∥∥̃u′

n
∥∥α+

p, – amC
∥∥̃u′

n
∥∥

p,,

which means

C|un|α ≥ ‖̃u′
n‖p, – C. (.)

Like in the proof of Theorem ., we have

∣∣
∣∣

∫ T



[
F(t, un) – F(t, un)

]
dt

∣∣
∣∣ ≤ 


∥
∥̃u′

n
∥
∥

p, + C|un|α + C
∥
∥̃u′

n
∥
∥α+

p, + C
∥
∥̃u′

n
∥
∥

p,. (.)

By the boundedness of {J(un)}, (H), (.), and (.), there exists a constant C such that

C ≤ J(un) =



∫ T


p
(
u′

n
) dt –

∫ T


F(t, un) dt +

m∑

k=

∫ un(tk )


Ik(s) ds

≤ 

∥∥̃u′

n
∥∥

p, –
∫ T



[
F(t, un) – F(t, un)

]
dt –

∫ T


F(t, un) dt

≤ 


∥
∥̃u′

n
∥
∥

p, + C|un|α + C
∥
∥̃u′

n
∥
∥α+

p, + C
∥
∥̃u′

n
∥
∥

p, –
∫ T


F(t, u) dt

≤ |un|α

(
–|un|α

∫ T


F(t, un) dt + C

)
. (.)
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It follows from (.) and (H) that {|un|} is bounded. Hence {un} is bounded in W ,
p,T by

(.). Therefore, there exists a subsequence of un (for simplicity denoted again by {un})
such that

un ⇀ u in W ,
p,T . (.)

By Proposition ., one has

un → u in C[, T]. (.)

On the other hand, we have

〈
J ′(un) – J ′(u), un – u

〉
=

∫ T


p
(
u′

n – u′) dt –
∫ T



(
f (t, un) – f (t, u)

)
(un – u) dt

+
m∑

k=

(
Ik

(
un(tk)

)
– Ik

(
u(tk)

))(
un(tk) – u(tk)

)
. (.)

From (.)-(.), (H), and the continuity of Ik , it follows that un → u in W ,
p,T . Thus, J sat-

isfies the P.S. condition. �

Now, we prove Theorem ..

Proof From Section , we know W ,
p,T = W ⊕ W̃ . We show that

J(u) → +∞ as u ∈ W̃ ,‖u‖ → ∞. (.)

If u ∈ W̃ , then u = . Like in the proof of Theorem ., we have
∣
∣∣∣

∫ T



[
F(t, u) – F(t, )

]
dt

∣
∣∣∣ ≤ 


∥∥u′∥∥

p, + C
∥∥u′∥∥α+

p, + C
∥∥u′∥∥

p,. (.)

By (H) and (.) we find

ψ(u) :=
m∑

k=

∫ u(tk )


Ik(s) ds ≤

m∑

k=

∫ u(tk )



(
ak + bk|s|γ

)
ds

≤ am‖u‖∞ + b
m∑

k=

‖u‖γ +
∞

≤ amC
∥
∥u′∥∥

p, + b
m∑

k=

∥
∥u′∥∥γ +

p, , (.)

for all u ∈ W̃ . It follows from (.) and (.) that

J(u) =



∫ T


pu′ dt –

∫ T



[
F(t, u) – F(t, )

]
dt –

∫ T


F(t, ) dt + ψ(u)

≥ 


∥∥u′∥∥
p, – C

∥∥u′∥∥α+
p, – C

∥∥u′∥∥
p, – C

∥∥u′∥∥
p, – C

m∑

k=

∥∥u′∥∥γ +
p, (.)

for all u ∈ W̃ . Hence, (.) follows from (.) and (.).
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On the other hand, by (H), we obtain

ψ(u) ≤  (.)

for all u ∈ W ,
p,T . Hence, by (.) and (H), one has

J(u) = –
∫ T


F(t, u) dt + ψ(u)

≤ |u|α

[
–|u|–α

∫ T


F(t, u) dt

]
→ –∞

as |u| → ∞ in R. By Theorem . and Lemma ., problem (.a)-(.c) has at least one
weak solution. �
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