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Abstract

Recently, Caputo and Fabrizio proposed a new derivative with fractional order
without singular kernel. The derivative has several interesting properties that are
useful for modeling in many branches of sciences. For instance, the derivative is able
to describe substance heterogeneities and configurations with different scales. In
order to accommodate researchers dealing with numerical analysis, we propose a
numerical approximation in time and space. We modified the advection dispersion
equation by replacing the time derivative with the new fractional derivative. We solve
numerically the modified equation using the proposed numerical approximation. The
stability and convergence analysis of the numerical scheme were presented together
with some simulations.

Keywords: Caputo-Fabrizio derivative; numerical approximation; advection
diffusion equation; stability analysis

1 Introduction

In the last decade, many physical problems have been modeled using the concept of
noninteger-order derivative. These derivatives of fractional order range from Riemann-
Liouville via Caputo to Caputo-Fabrizio [1, 2]. We can find in the literature many analytical
approaches to deal with differential equations with fractional equations [3—10]. Most of
these techniques are dealing with linear fractional differential equations. However, most
fractional differential equations describing real-world problems are highly complicated
and cannot sometime be handled via analytical methods. In order to solve these problems
in many cases, researchers rely on the use of numerical methods because these problems
have initial conditions, boundary condition, and source terms that turn hard to find an
analytical solution.

Several numerical approaches in connection with derivatives of fractional order describ-
ing real-world problems alter essentially in the many in which the derivative of fractional
order is tailored [11-24]. Approximation representation of a derivative of fractional order
has a highly complicated formula compared to those of integer order because fractional
derivatives are nonlocal, and therefore the calculation at a particular point requires knowl-
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edge of the function further out of the region close to that point. Accordingly, finite dif-
ference approximations of derivatives of fractional order engage a quantity of points that
alters according to how faraway we are from the border line [12-14].

The most recent derivative of fractional order was proposed by Caputo and Fabrizio [1],
who demonstrated that the new-fangled derivative encompasses extra encouraging prop-
erties in comparison with the old version. They demonstrated, for example, that it can de-
pict substance heterogeneities and configurations with different scales, which obviously
cannot be overseeing with the prominent local theories and also the well-known fractional
derivative. An additional application is in the investigation of the macroscopic behaviors
of some materials, associated with nonlocal communications between atoms, which are
recognized to be important of the properties of material. We present the definition of the
Caputo fractional derivative.

Definition 1 The Caputo derivative of fractional order old editor of a function f is given
as

X dn
oD% (f)) = ﬁ /0 (x— gyt s (f®)dt, n-l<a<n. 1)

Definition 2 Let f € H(a,b), b > a, o € [0,1]. Then the new Caputo fractional derivative
is defined as

gFD‘;‘(f(t)):[lw_(Og / f’(x)exp[_af_;z]dx, )

where M(«) is a normalization function such that M(0) = M(1) = 1 [1]. However, if the
function does not belong to H'(a, b) then, the derivative can be redefined as

o

SEDE(F(0)) = f(z) f (F® -f(x))exp[-alt_;z]dx. 3)

The aim of this paper is to propose a numerical approximation of the space and time
Caputo-Fabrizio derivative of fractional order that will be used by researchers in the field
of numerical analysis.

2 Caputo-Fabrizio approximations
In this section, we derive a numerical approximation based upon the definition of newly
proposed derivative of fractional order [4],

" M) (', t—x
(C):FDt (f(t)) = -« /0 f (x) exp|:—01 mj| dx. (4)
For some positive integer N, the grid size in time for finite difference technique is defined
by
1
k=—.
N

The grid points in the time interval [0, T'] are labeled ¢, = nk, n=0,1,2,..., TN. The value
of the function f at the grid point is f; = f(¢;).
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A discrete approximation to the Caputo-Fabrizio derivative of fractional order can be

obtained by simple quadrature formula as follows:

SEDE(£(2,)) = M(“) f f(x)exp[ }dx (5)

This equation can be modified using the first-order approximation to

M(Ol) <fk+1 fk (At)) exp|:—a i’ _z} dx. (6)

CF DD(

Before integration we obtain the following expression

M(a) [ —f ik by —x
1o Jzﬂ:( A + O(At)) /(/—l)k exp [—a - :| dx, 7)
M n j+1 j
o D (f(t)) = (ia) Z(f Atf mt))“'/,k:
j=1
where
di = exp|:—oz k (m—j+ 1)] - exp|:—a k (n —j):|. (8)
l-«o l-«
We finally have that
M n i+l _ gf M n
() - M 3 (P s M Y deotan, ©)
j=1 j=1

Theorem 1 Let f(x) be a function in C*[a, b), and let the order of the fractional derivative
be 0 < a < 1. Then the first-order approximation of the Caputo-Fabrizio derivative at a

point t, is

n j+1
SEDE(F(2,)) = M(i“) Z(f e ') i+ O((AD?). (10)

N\ A

Proof From equation (8) we have

n i+1 _ £
ot (r60) - Mo S (B Y

j=1

o

k
(n /+1)j| —exp[ (a(n—j)j|>O(At).

However,

n

Z(exp[_a

j-1

k (n —j+1)] —exp|:—oz
-

£ —j)]) - exp[—a
—a

k (n):| -1. (11)
-
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Now the approximation of the exponential function can be obtained as

k

k
exp |:—a I—a (n)j| ~l-a T (n). (12)

Then replacing the above in equation (11), we obtain
n

Z(exp[—al fa(n —j+ 1)] —exp|:—a1 fa(n —j)]) R —al fa(n). (13)

j=1

Then equation (11) becomes

. M(@) (= f M(a)k
SED2(F(t) = . ,21:( ~ )d,»,k+ l_a(n)O(At). (14)

We therefore obtain the requested result

N M(a) [ -f
S Dz () = = Z(f Atf ) dix + O((A)?). (15)
j=1
This completes the proof. O

We now conclude that the first-order approximation method for the computation of the
Caputo-Fabrizio derivative of time fractional order is given as

M(e) n fj+1 _fj
§oE () === 3 bk 1o
@ ‘3 At
We next propose the first order for the space fractional order.
For some positive integer N, the grid sizes in time for finite difference technique is de-

fined by

The grid points in the time interval [0, X] are labeled x; = mi, m=0,1,2,...,XM.
The value of the function f at the grid point is fik = f (i, ti). We have

. M)
CJTl-a) Jo

Xm N2
a%}f/(y, t;) exp [—azw] dy. 17)

gFD(tx (f(xm’ ti)) 1-a)?

Now employing the Crank-Nicolson approximation for the first-order derivative, the
above equation is converted to

M Xm k+l _ rk+ly _ gk _ fk
SEDE (f (o 1)) = (@) ( i i) ~ Ui =fi) +

ﬁ(l—a) 0 4Ax

)2
x exp[—az%] dy. (18)

O(At))



Atangana and Algahtani Advances in Difference Equations (2016) 2016:156

The latter equation can be converted to

M Mmookl | pkely ek gk
SFD;‘ (f(xm; ti)) = ﬁ(ia—)a) Z{ el =/ 4)Ax(fl+l = ’ O(i)}
I=1

g (irm — y)z]
2
X-/(l—l)iexp[ 1-a) “ )

where the integral part is given as

li : 2
(im—y) ]
exp| —a’—=—|d
/(;—l)i p[ (1-a)? )

(l—a)ﬁ{ [
=—Jerf
20

(mi—li)lfa] —erf|:(mi—li+i)1

g e
-

so that equation (15) becomes

6" D (F Goms 14)

_ M(a) [ it =D - 0 AR :
“1-a 121:{ 4Ax O(l)}

x (lz‘a“) {erf[(m - 1)%] _ erf[(m —1+1) li} } 1)

From the above we obtain

6" D (F Goms 1)

e $ A=A - Gy 1) (- 0vE

l-o o 4 Ax 2«
X {erfl:(m—l)a—i]—erf[(m—l+1) o :|”
l-« l-«a
+O(i)% Z{erf[(m—l)%]—erf|:(m—l+l)%“. (22)

I=1

Theorem 2 Let f(x,t) be a function in C*([a,b] x [0, T)), and let the order of the frac-
tional derivative be 0 < a < 1. Then the first-order approximation of the Caputo-Fabrizio

derivative at a point (x,,,t,) is

CF o«
D oy b
4 (f oo 1)) = P A

m k+1 _ rk+1y _
M(Ol Z{ I+1 ﬁ_ ) (ﬁ+1 ﬁ 1 } y +R(a,i, [), (23)
=1

where

dy) = {erf[(m - 1)%} - erf|:(m —l+ 1)%] } | R, i, )| <M

Page 5 of 13
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Proof From equation (23) we have that

o' DS (f e 1))

) U ) s ) e

20 o 4 Ax -
—erf|:(m—l+l)%]”
M) & ai ai
+ O(l)wlzzl{erf[(m—l)m} —erf|:(m—l+1)1_a:|}.
We put
Ra,i]) = O(i)AZ(:‘) Z{erf[(m - 1)%] - erf[(m e 1)%} } (24)

=1

Then taking the norm to both sides, we have

) M) & —ai —ai
R, 3,0 = |O®) o ;{erf[(m—l)m] —erf|:(m—l+1)1_ai|} , (25)
. ~M(x) —ai
||R(a, i, l)|| = ” O(l)w <erf[m1 — ]) H
This completes the proof. d

Then, the first-order approximation method for the computation of Caputo-Fabrizio
derivative of space fractional order is given as

CF yo _ M) . /f{l _fﬁl) - (leil _fllil)
o D (1) = 2 121:{ 4Ax

X {erf[(m—l)%] —erfl:(m—l+l)%:|”. (26)

3 Application to some well-known equations

In this section, we present a numerical solution of the time fractional advection diffusion
equation in heterogeneous medium. The fractional derivative used here is of the Caputo-
Fabrizio type.

The reason of this modification is that the fractional derivatives are recollection opera-
tional which recurrently distinguish indulgence of force or damage in the passable as in the
case of inelastic media or reconsideration of the porosity in the thinning out in permeable
media and supplementary in comprehensive they are in traditional values throughout the
subsequent theory of hydrology. They are accredited not merely for the motivation that
they match appropriately a variety of noticeable actuality, nevertheless, additionally for the
motive that they own the well-designed alongside with scrupulous property that although
the order of differentiation is integer, they match by means of the traditional derivative of
that order. On the other hand, this chattel is not pertinent to the effect they characterize in
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the physical observable fact and conjectures if using other differential operators, probably
simpler nevertheless devoid of this property, one may get similar responds of fractional
order derivative. Therefore, in order to well replicate the flow of the particles via porous
media in different scale in the medium, we replace the ordinary derivative in time with the
scale time derivative proposed by Caputo and Fabrizio. The equation under consideration

here is

pu aDP(x, t) 2 92P(x,t) Q1)
¢, Ox ¢, ¢,

§E DY (P(x, 1)) + (27)

In equation (27), four terms represents transient, advection, and source terms, respec-
tively, P(x, £) is the particle, heat, pollution, or other physical quantities; c is the specific of
heat, particles, or other physical quantities; ¢ is the porosity that is the ratio of the liquid
volume to the total volume of the medium via which the flow is taken place, p, A are the
mass density and thermal conductivity, respectively, and, finally, Q(x, £) is the source term.
Now substituting equation (26) into (27), we obtain

M(er) &5 P - pt o ak ak
> > o= - (erf((;—k)m>—erf<(] k+1); a))

k=1

- g (B 20 ) 4 (020l L))

-l ) (- ) - 29
Cp 2¢,

For simplicity, let us put

M(a) b A ou
) = ) c= .
20t 2h%c, 4hc,

Rearranging, we obtain the following recursive formula:

j
(ady; + 26)P" = (adi; -2 P+ aZ (P - P d%,j
k-1

+b{(PL+ P + (P

i+1 i+1

L4 +Q

2¢,

+ PZ ) - {(Pﬂ - P;j) + (1)§+1 - PZ:—I)}
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4 Stability analysis of the numerical scheme

We present in this section the stability analysis of the Crank-Nicolson scheme for time
fractional advection diffusion equation. For this, we let ei = Pj - p’l with 17/; the approximate
solution at the point (x;,4) (i=1,2,...,N,j=1,2,3,...,M) and, as usual, & = [e{,...,e’&]T.
The error committed while solving the time fractional advection diffusion equation with

the Crank-Nicolson scheme is

(adg; +2b)e" = (ady; - 2b)é, +aZ (&'~ )ay,
k=1

+b{ (e +€1) + (e + €0} -l (€ - €) + (€l —€0)]}

i+1 i+1

L )
+7Q]i+ +Q;.

%, (31)

Here, we assume that
¢, = f(j) exp(zaij), (32)

where o is the real spatial wave number [4]. However, substituting equation (32) into equa-

tion (31), we obtain, for j = 0,

(adzyo + 4b sin® <%i>>/(l) = (ad,‘:,o — 4bsin? (%))j(O), (33)

and for j > 0, we have

(ad}z"j +4bsin® (%))f(]) = <adﬁyi — 4bsin? (%))f(l -1)

j-1
—ay fG-Dd+fG+ D)y, (34)
I=1
Theorem 3 Assume that f (k) satisfies equations (33) and (34). Then, for all k > 0,

IF()| < [£(0)]. (35)

Proof We shall prove this theorem by employing the recursive method on the natural

number j. Then, when j = 0, we have equation (34), and we reformulate it as follows:

(ad, — 4b sin?(Z))

270 <1 (36)
(adyf, + 4bsin? (3)

fQ@) ‘

o

This implies

[F] < |F(0)].
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The property is verified for j = 0. Let us assume that this property is also satisfied for any
j > 1. We shall verify that the property holds also for j + 1:

(adg,, +4b sin2< ))/(,+1) = <adk] — 4bsin ( ))f(, aZf(,-l)dg, (37)

Now taking the norms of both sides of equation (37), we obtain

ady; +4bsin® < >‘[f(1+1)’

(adg,—zwsm( ))’[f(/ Z[f(/ n)dg,. (38)

Nonetheless, we recall that the property holds up to j. Thus, we transform the above equa-

tion into

adg,j+4bsin2< )’[f(]+1)| <ad,‘jj—4bsm( ))’[f(o)| Z[f(o)|d,‘f,l.
I=1

Rearranging, we obtain

ady; + 4bsin” (%) ‘ [ +1)|

< { <ad,‘; — 4bsin? <%l))

It is important to recall that

+ {erf[g} —erf[%]”[f(oﬂ. (39)

lerflx]| <1, erf[ m“i] —erf[ o } <o0. (40)
l-«o l-«
Therefore,
FG+DI _ \(ady; - 4bsin*(%)| +{erf[’%f] —erf[%]}‘ -
fo) — ad,‘é+4bsm (%) -
Then,
[f(+1)]
1 41
ol = ()

The property also holds for j + 1. According to the inductive technique, the property is
satisfied for any natural number. This completes the proof of Theorem 3. Theorem 3 shows
that the Crank-Nicolson scheme is stable for the advection diffusion equation with the
time fractional Caputo-Fabrizio derivative. 0

5 Convergence analysis of the numerical solution

Let us suppose that, at the point (x;, ), the exact solution of our considered equation
is P(x;,t) (i =1,2,3,...,N; j =1,2,3,4,...,M). We assume that the difference between
the exact solution and the approximate solution at that particular point is provided by
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8{ = P(x;, t) — Pi The transpose matrix associated with the matrix 85 =P(xi, b)) — Pi (i=
0,1,2,3,...,N;j=0,1,2,3,4,...,M) is s, 8’2, s SQ,)T. However, the row 8° is zero because
it represents the initial condition. The recursive relation in connection with the Crank-
Nicolson scheme for the time fractional advection diffusion equation is given as

Q -
(adfy +2b)8} + (c = b) (8}, +8,) — T =R} forj=0, (42)
0
- )
(ad;?fj + 2b)5£+1 - (adffj + 2b)8{ +(c-b) ((Sﬂ + éﬂ) +(c-D) (8;;1 + 8{_1) - %
P

j-1
=-a Z (Sﬁ_ldffl + R?l forj> 0.
I=1

The remainder term of the approximation for using the Crank-Nicolson scheme to solve
the modified advection diffusion equation is given in this case as

j
Ri-ﬂ =aP(x;,tin)d;; +a Z b(xi, ti-)d}; — b{ (P(Xis1, t41) — 2P(%i, ta1) + P(%i1, %j1))
-1

+ (P(xis1, 55) = 2P, ) + Ploxi1,%)) | + c{ (P(%ia1, 1) + Plict, %141))

Q/;H_Q/;.

+ (P(xia1, ) + P(xic,%7)) } = o
P

(43)

Now using the full approximation and considering the remaining terms, we obtain the
following relation:

R’;l <D(2k + hz). (44)

Theorem 4 The Crank-Nicolson scheme for the advection diffusion equation with time
fractional Caputo-Fabrizio derivative converges, and there exists a positive constant D such
that

|P(xi ) - P| < D(2k + B*)  forall (i=0,1,2,...,M,j=1,2,3,...,N). (45)

1

6 Numerical simulation for different values of alpha

In this section, using the new numerical scheme, we present the numerical simulation of
the advection diffusion equation with the Caputo-Fabrizio derivative of fractional order
for different values of alpha. We chose in this case Q(x,t) = sin[x + 7], P(x,0) = cos[x],
P(0,t) = cos|t], P(x,10) =0, u = 0.1, ¢, = 0.9, ¢ = 3, A = 0.75. The numerical simulations
are depicted in Figures 1, 2, 3, and 4. It is worth noting that each figure represents the
flow at scale alpha. It is very important to realize that fractional differentiation is able to
control the variabilities of the plume movement within the geological formations. The pol-
lution does not only move within a homogeneous medium but also within heterogeneous
one; therefore, the plume paths cannot be predicted by the classical advection dispersion
equation. In these figures, we can see that the proportionally of the density of pollution
within the geological formation is not the same everywhere due to the heterogeneity, and
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1.0

\V;
[
Q"’ pe N4
Solution 0_5
0.0 \ ’
0

Figure 1 Numerical simulation at scale alpha = 0.15.

Distance

Distance

Figure 2 Numerical simulation at scale alpha = 0.55.

this is better described via the concept of fractional differentiation with nonsingular ker-
nel.

7 Conclusions

We have proposed in this work the numerical approximation of the newly proposed
derivative of fractional order in order to fit this derivative in the scope of numerical inves-
tigations. The new derivative is easy to use even numerically and display important char-
acteristics that cannot be observed in the commonly used fractional derivatives. In order
to test the possible application of the new numerical approximation of the new Caputo-
Fabrizio derivative of fractional order, we presented a model of advection diffusion equa-
tion with the time fractional of the new derivative. We solved this equation numerically
using the Crank-Nicolson technique. We showed the stability analysis together with some
numerical simulations for different values of alpha.
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Solution 05

Distance

Figure 3 Numerical simulation at scale alpha = 0.85.

5 Distance

Figure 4 Numerical simulation at scale alpha = 0.95.
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