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Abstract
We propose and justify difference schemes for the approximation of the first and pure
second derivatives of a solution of the Dirichlet problem in a rectangular
parallelepiped. The boundary values on the faces of the parallelepiped are supposed
to have six derivatives satisfying the Hölder condition, to be continuous on the edges,
and to have second- and fourth-order derivatives satisfying the compatibility
conditions resulting from the Laplace equation. We prove that the solutions of the
proposed difference schemes converge uniformly on the cubic grid of order O(h4),
where h is a grid step. Numerical experiments are presented to illustrate and support
the analysis made.
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1 Introduction
A highly accurate method is one of the powerful tools reducing the number of unknowns,
which is the main problem in the numerical solution of differential equations, to get rea-
sonable results. This becomes more valuable in D problems when we are looking for the
derivatives of the unknown solution by the finite difference or finite element methods for
a small discretization parameter h.

The derivative problem was investigated in [], in which it was proved that the high-
order difference derivatives uniformly converge to the corresponding derivatives of the
solution for the D Laplace equation in any strictly interior subdomain with the same
order h as in the given domain. The uniform convergence of the difference derivatives
over the whole grid domain to the corresponding derivatives of the solution for the D
Laplace equation with order O(h) was proved in []. In [], for the first and pure second
derivatives of the solution for the D Laplace equation, special finite difference problems
were investigated. It is proved that the solution of these problems converge to the exact
derivatives with order O(h).
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In [], for the D Laplace equation, the convergence of order O(h) of the difference
derivatives to the corresponding first-order derivatives of the exact solution is proved. It
was assumed that the boundary values have the third derivatives on the faces and sat-
isfy the Hölder condition. Furthermore, they are continuous on the edges, and their sec-
ond derivatives satisfy the compatibility condition that is implied by the Laplace equation.
Whereas in [], when the boundary values on the faces of a parallelepiped are supposed
to have the fourth derivatives satisfying the Hölder condition, the constructed difference
schemes converge with order O(h) to the first and pure second derivatives of the exact
solution.

In this paper, we consider the Dirichlet problem for the Laplace equation on a rectangu-
lar parallelepiped. We assume that the boundary values on the faces have the sixth-order
derivatives satisfying the Hölder condition, and the second- and fourth-order derivatives
satisfy some compatibility conditions on the edges. We construct three different schemes
on a cubic grid with mesh size h, whose solutions separately approximate the solution
of the Dirichlet problem with order O(h| ln h|) and its first and pure second derivatives
with order O(h). We show that, for the same boundary functions, if we use fifth-order
numerical differentiation formulae to construct the finite-difference problem for the first
derivatives, then the accuracy can be increased up to O(h| ln h|). Finally, numerical ex-
periments are given to support the theoretical results.

2 The Dirichlet problem on a rectangular parallelepiped
Let R = {(x, x, x) :  < xi < ai, i = , , } be an open rectangular parallelepiped, �j (j =
, , . . . , ) be its faces including the edges such that �j for j = , ,  (for j = , , ) belong
to the plane xj =  (to the plane xj– = aj–), let � =

⋃
j= �j be the boundary of R, and let

γμν = �μ ∩ �ν be the edges of the parallelepiped R. We say that f ∈ Ck,λ(D) if f has kth
derivatives on D satisfying the Hölder condition with exponent λ ∈ (, ).

We consider the boundary value problem

�u =  on R, u = ϕj on �j, j = , , . . . , , (.)

where � ≡ ∂/∂x
 + ∂/∂x

 + ∂/∂x
, and ϕj are given functions. Assume that

ϕj ∈ C,λ(�j),  < λ < , j = , , . . . , , (.)

ϕμ = ϕν on γμν , (.)

∂ϕμ

∂t
μ

+
∂ϕν

∂t
ν

+
∂ϕμ

∂t
μν

=  on γμν , (.)

∂ϕμ

∂t
μ

+
∂ϕμ

∂t
μ ∂t

μν

=
∂ϕν

∂t
ν

+
∂ϕν

∂t
ν ∂t

νμ

on γμν , (.)

where  ≤ μ < ν ≤ , ν – μ �= , tμν is an element in γμν , and tμ and tν are elements of the
normal to γμν on the face �μ and �ν , respectively.

Lemma . The solution u of problem (.) is from C,λ(R).

The proof of Lemma . follows from Theorem . in [].
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Lemma . We have the inequality

max
≤p≤

max
≤q≤–p

sup
(x,x,x)∈R

∣
∣
∣
∣

∂u
∂xp

 ∂xq
 ∂x–p–q



∣
∣
∣
∣ ≤ c < ∞, (.)

where u is the solution of problem (.).

Proof From Lemma . it follows that the functions ∂u
∂x


, ∂u

∂x


, and ∂u
∂x


are continuous on R.

We put w = ∂u
∂x


. The function w is harmonic in R and is the solution of the problem

�w =  on R, w = 	j on �j, j = , , . . . , ,

where

	τ =
∂ϕτ

∂x


+
∂ϕτ

∂x


+ 
∂ϕτ

∂x
 ∂x


, τ = , ,

	ν =
∂ϕν

∂x


, ν = , , , .

From conditions (.)-(.) it follows that

	j ∈ C,λ(�j),  < λ < , j = , , . . . , ,

	μ = 	ν on γμν ,  ≤ μ < ν ≤ ,ν – μ �= .

Hence, by Theorem . in [] we have

sup
(x,x,x)∈R

∣
∣
∣
∣
∂u
∂x



∣
∣
∣
∣ = sup

(x,x,x)∈R

∣
∣
∣
∣
∂w
∂x



∣
∣
∣
∣ < ∞, (.)

sup
(x,x,x)∈R

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣ = sup

(x,x,x)∈R

∣
∣
∣
∣
∂w
∂x



∣
∣
∣
∣ < ∞, (.)

sup
(x,x,x)∈R

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣ = sup

(x,x,x)∈R

∣
∣
∣
∣
∂w
∂x



∣
∣
∣
∣ < ∞. (.)

Similarly, it is proved that

sup
(x,x,x)∈R

{∣
∣
∣
∣
∂u
∂x



∣
∣
∣
∣,

∣
∣
∣
∣
∂u
∂x



∣
∣
∣
∣,

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣,

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣,

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣,

∣
∣
∣
∣

∂u
∂x

 ∂x


∣
∣
∣
∣

}

< ∞. (.)

From (.)-(.) estimate (.) follows. �

Lemma . Let ρ(x, x, x) be the distance from the current point of the open paral-
lelepiped R to its boundary, and let ∂/∂l ≡ α∂/∂x + α∂/∂x + α∂/∂x, α

 + α
 + α

 = .
Then we have the inequality

∣
∣
∣
∣
∂u(x, x, x)

∂l

∣
∣
∣
∣ ≤ cρ–(x, x, x), (x, x, x) ∈ R, (.)

where c is a constant independent of the direction of differentiation ∂/∂l, and u is a solution
of problem (.).
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Proof Since the sixth-order derivatives of the solution u of the form ∂/∂xp
 ∂xq

 ∂x–p–q
 ,

p+q+ s = , are harmonic and by Lemma . are bounded in R, any eighth-order derivative
can be obtained by twice differentiating some of these derivatives, on the basis of Lemma 
from [] (see Chapter , Section ), we have

max
≤μ≤

max
≤ν≤–μ

∣
∣
∣
∣

∂u(x, x, x)
∂xμ

 ∂xυ
 ∂x–μ–υ



∣
∣
∣
∣ ≤ cρ

–(x, x, x), (x, x, x) ∈ R. (.)

Inequality (.) follows from inequality (.). �

Let h >  and ai/h ≥ , i = , , . We assign Rh, a cubic grid on R, with step h, obtained
by the planes xi = , h, h, . . . , i = , , . Let Dh be the set of nodes of this grid, Rh = R ∩ Dh,
�jh = �j ∩ Dh, and �h = �h ∪ �h ∪ · · · ∪ �h.

Let the operator 
 be defined as follows (see []):


u(x, x, x) =




(


∑

p= ()
up + 

∑

q= ()
up +

∑

r= ()
ur

)

, (x, x, x) ∈ R, (.)

where the sum
∑

(k) is taken over the grid nodes that are at a distance of
√

kh from the
point (x, x, x), and up, uq, and ur are the values of u at the corresponding grid points.

We consider the following finite difference approximations of problem (.):

uh = 
uh on Rh, uh = ϕj on �jh, j = , , . . . , . (.)

By the maximum principle (see [], Chapter ), problem (.) has a unique solution.
In what follows and for simplicity, we denote by c, c, c, . . . constants that are indepen-

dent of h and the nearest factor, and the identical notation will be used for various con-
stants.

Let Rkh be the set of nodes of the grid Rh whose distance from � is kh. It is obvious that
 ≤ k ≤ N(h), where

N(h) =
[
min{a, a, a}/(h)

]
. (.)

We define, for  ≤ k ≤ N(h),

f k
h =

⎧
⎨

⎩

, (x, x, x) ∈ Rkh,

, (x, x, x) ∈ Rh\Rkh.

Lemma . The solution of the system

vk
h = 
vk

h + f k
h on Rh, vk

h =  on �h,

satisfies the inequality

max
(x,x,x)∈Rh

vk
h ≤ k,  ≤ k ≤ N(h).

Proof For the proof, see Lemma  in []. �
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Lemma . Let u be a solution of problem (.). Then

max
(x,x,x)∈Rkh

|
u – u| ≤ c
h

k , k = , , . . . , N(h). (.)

Proof Let (x, x, x) be a point of Rh, and let

R =
{

(x, x, x) : |xi – xi| < h, i = , , 
}

(.)

be an elementary cube, some faces of which lie on the boundary of the rectangular par-
allelepiped R. On the vertices of R and on the center of its faces and edges. there lie the
nodes of which the function values are used to evaluate 
u(x, x, x). We represent
a solution of problem (.) in some neighborhood of x = (x, x, x) ∈ Rh by Taylor’s
formula

u(x, x, x) = p(x, x, x; x) + r(x, x, x; x), (.)

where p(x, x, x) is the seventh-order Taylor polynomial, and r(x, x, x) is the remain-
der term. Taking into account that the function u is harmonic, we have


p(x, x, x; x) = u(x, x, x). (.)

Now, we estimate r at the nodes of the operator 
. We take a node (x + h, x, x + h),
which is one of the twenty six nodes of 
, and consider the function

ũ(s) = u
(

x +
s√


, x, x +
s√


)

, –
√

h ≤ s ≤ √
h, (.)

of single variable s, which is the arc length along the straight line through the points (x –
h, x, x – h) and (x + h, x, x + h). By Lemma . we have

∣
∣
∣
∣
dũ(s)

ds

∣
∣
∣
∣ ≤ c(

√
h – s)–,  ≤ s <

√
h. (.)

We represent the function (.) around the point s =  by Taylor’s formula

ũ(s) = p̃(s) + r̃(s),

where p̃(s) ≡ p(x + s√
 , x, x + s√

 ) is the seventh-order Taylor polynomial of the vari-
able s, and

r̃(s) ≡ r

(

x +
s√


, x, x +
s√


; x

)

, |s| <
√

h, (.)

is the remainder term. By the continuity of r̃(s) on the interval [–
√

h,
√

h] and estimate
(.) we obtain

r(x + h, x, xh; x)

= lim
ε→+

r̃(
√

h – ε)
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≤ lim
ε→+

[

c

!

∫ √
h–ε


(
√

h – ε – t)(
√

h – t)– dt
]

≤ ch,  < ε ≤
√

h


, (.)

where c is a constant independent of the choice of (x, x, x) ∈ Rkh.
Estimate (.) is obtained analogously for the remaining twenty five nodes on the closed

cube (.). Since the norm of the operator 
 in the uniform metric is equal to one, by
(.) we have

∣
∣
r(x, x, x)

∣
∣ ≤ ch. (.)

From (.), (.), and (.) we obtain

∣
∣
u(x, x, x) – u(x, x, x)

∣
∣ ≤ ch

for any (x, x, x) ∈ Rh.
Now, let (x, x, x) be a point of Rkh for  ≤ k ≤ N(h). By Lemma . for any k,  ≤

k ≤ N(h), we obtain

∣
∣
r(x, x, x)

∣
∣ ≤ c

h

k , (.)

where c is a constant independent of k,  ≤ k ≤ N(h), and the choice of (x, x, x) ∈ Rkh.
From (.), (.), and (.) estimate (.) follows. �

Lemma . Assume that the boundary functions ϕj, j = , , . . . , , satisfy conditions (.)-
(.). Then

max
Rh

|uh – u| ≤ ch( + | ln h|), (.)

where uh is the solution of the finite difference problem (.), and u is the exact solution of
problem (.).

Proof Let

εh = uh – u on Rh. (.)

By (.) and (.) the error function satisfies the system of equations

εh = 
εh + (
u – u) on Rh, εh =  on �h. (.)

We represent a solution of system (.) as follows:

εh =
N(h)∑

k=

εk
h, (.)
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where εk
h ,  ≤ k ≤ N(h), with N(h) defined by (.), is a solution of the system

εk
h = 
εk

h + νk on Rh, εk
h =  on �h, (.)

where

νk =

⎧
⎨

⎩


u – u on Rkh,

 on Rh\Rkh.

Then for the solution of (.) by applying Lemmas . and . we have

max
(x,x,x)∈Rh

∣
∣εk

h
∣
∣ ≤ c

h

k
,  ≤ k ≤ N(h). (.)

By (.), (.), and (.) we obtain

max
(x,x,x)∈Rh

|uh – u| ≤ ch( + | ln h|). �

Let ω be a solution of the problem

�ω =  on R, ω = ψj on �j, j = , , . . . , , (.)

where ψj, j = , , . . . , , are given functions, and

ψj ∈ C,λ(�j),  < λ < , j = , , . . . , , (.)

ψμ = ψν on γμν , (.)

∂ψμ

∂t
μ

+
∂ψν

∂t
ν

+
∂ψμ

∂t
μν

=  on γμν . (.)

Lemma . We have the estimate

max
Rh

|ωh – ω| ≤ ch, (.)

where ω is the exact solution of problem (.), and ωh is the exact solution of the finite
difference problem

ωh = 
ωh on Rh, ωh = ψj on �jh, j = , , . . . , . (.)

Proof It follows from Lemma . in [] that

max
≤p≤q

max
≤q≤–p

sup
(x,x,x)∈R

∣
∣
∣
∣

∂ω(x, x, x)
∂xp

 ∂xq
 ∂x–p–q



∣
∣
∣
∣ < ∞,

where u is the solution of problem (.). Then, instead of inequality (.), we have

max
≤μ≤

max
≤ν≤–μ

∣
∣
∣
∣

∂ω(x, x, x)
∂xμ

 ∂xν
 ∂x–μ–ν



∣
∣
∣
∣ ≤ cρ–(x, x, x), (x, x, x) ∈ R, (.)

where ρ(x, x, x) is the distance from (x, x, x) ∈ R to the boundary �.
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By estimate (.) and Taylor’s formula, by analogy with the proof of Lemma . we have

max
(x,x,x)∈Rkh

|
ω – ω| ≤ c
h

k , k = , , . . . , N(h).

We put

εh = ωh – ω on Rh ∪ �h.

Then, as in the proof of Lemma ., we obtain

max
Rh

|ωh – ω| ≤ ch
N(h)∑

k=


k ≤ ch. �

3 Approximation of the first derivative
Let v = ∂u

∂x
, and let �j = ∂u

∂x
on �j, j = , , . . . , , and consider the boundary value problem

�v =  on R, v = �j on �j, j = , , . . . , , (.)

where u is a solution of the boundary value problem (.).
We define the following operators �νh, ν = , , . . . , :

�h(uh) =


h
(
–ϕ(x, x) + uh(h, x, x) – uh(h, x, x)

+ uh(h, x, x) – uh(h, x, x)
)

on �h
 , (.)

�h(uh) =


h
(
ϕ(x, x) – uh(a – h, x, x) + uh(a – h, x, x)

– uh(a – h, x, x) + uh(a – h, x, x)
)

on �h
, (.)

�ph(uh) =
∂ϕp

∂x
on �h

p , p = , , , , (.)

where uh is the solution of finite difference problem (.).

Lemma . We have the inequality

∣
∣�kh(uh) – �kh(u)

∣
∣ ≤ ch( + | ln h|), k = , , (.)

where uh is the solution of problem (.), and u is the solution of problem (.).

Proof It is obvious that �ph(uh) – �ph(u) =  for p = , , , . For k = , by (.) and
Lemma . we have

∣
∣�h(uh) – �h(u)

∣
∣ ≤ 

h
(


∣
∣uh(h, x, x) – u(h, x, x)

∣
∣

+ 
∣
∣uh(h, x, x) – u(h, x, x)

∣
∣

+ 
∣
∣uh(h, x, x) – u(h, x, x)

∣
∣
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+ 
∣
∣uh(h, x, x) – u(h, x, x)

∣
∣
)

≤ ch( + | ln h|).

The same inequality is also true when k = . �

Lemma . We have the inequality

max
(x,x,x)∈�h

k

∣
∣�kh(uh) – �k

∣
∣ ≤ ch, k = , , (.)

where �kh, k = , , are defined by (.), (.), and �k = ∂u
∂x

on �k , k = , .

Proof From Lemma . it follows that u ∈ C,(R). Then, at the end points (,νh,ωh) ∈ �h


and (a,νh,ωh) ∈ �h
 of each line segment

{
(x, x, x) :  ≤ x ≤ a,  < x = νh < a,  < x = ωh < a

}
,

expressions (.) and (.) give the fourth-order approximation of ∂u
∂x

, respectively. From
the truncation error formulas (see []) it follows that

max
(x,x,x)∈�h

k

∣
∣�(u) – �k

∣
∣ ≤ ch, k = , . (.)

By Lemma . and estimate (.), (.) follows. �

We consider the finite difference boundary value problem

vh = 
vh on Rh, vh = �jh on �h
j , j = , , . . . , , (.)

where 	jh, j = , , . . . , , are defined by (.)-(.).

Theorem . We have the estimate

max
(x,x,x)∈Rh

∣
∣
∣
∣vh –

∂u
∂x

∣
∣
∣
∣ ≤ ch, (.)

where u is the solution of problem (.), and vh is the solution of the finite difference problem
(.).

Proof Let

εh = vh – v on Rh, (.)

where v = ∂u
∂x

. From (.) and (.) we have

εh = 
εh + (
v – v) on Rh,

εh = �kh(uh) – v on �h
k , k = , , εh =  on �h

p , p = , , , .
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We represent

εh = ε
h + ε

h, (.)

where

ε
h = 
ε

h on Rh, (.)

ε
h = �kh(uh) – v on �h

k , k = , , ε
h =  on �h

p , p = , , , ; (.)

ε
h = 
ε

h + (
v – v) on Rh, ε
h =  on �h

j , j = , , . . . , . (.)

By Lemma . and by the maximum principle, for the solution of system (.)-(.), we
have

max
(x,x,x)∈Rh

∣
∣ε

h
∣
∣ ≤ max

q=,
max

(x,x,x)∈�h
q

∣
∣�qh(uh) – v

∣
∣ ≤ ch. (.)

The solution ε
h of system (.) is the error of the approximate solution obtained by the

finite difference method for problem (.) when on the boundary nodes �jh, the approx-
imate values are defined as the exact values of the functions �j in (.). It is obvious that
�j, j = , , . . . , , satisfy the conditions

�j ∈ C,λ(�j),  < λ < , j = , , . . . , , (.)

�μ = �ν on γμν , (.)

∂
μ�

∂t
μ

+
∂
ν �

∂t
ν

+
∂
μ�

∂t
μν

=  on γμν . (.)

Since the function v = ∂u
∂x

is harmonic on R with the boundary functions 	j, j = , , . . . , ,
by (.)- (.) and Lemma . we obtain

max
(x,x,x)∈Rh

∣
∣ε

h
∣
∣ ≤ ch. (.)

By (.), (.), and (.), inequality (.) follows. �

Remark  By Lemma . the sixth-order pure derivatives are bounded in R. Therefore,
if we replace formulae (.) and (.) by the fifth-order forward and backward numerical
differentiation formulae (see Chapter  in []), then by analogy with the proof of estimate
(.) we obtain

max
(x,x,x)∈Rh

∣
∣
∣
∣vh –

∂u
∂x

∣
∣
∣
∣ ≤ ch( + | ln h|).

4 Approximation of the pure second derivatives
We denote by ω = ∂u

∂x


. The function ω is harmonic on R, by Lemma . is continuous on

R, and is a solution of the following Dirichlet problem:

�ω =  on R, ω = χj on �j, j = , , . . . , , (.)
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where

χτ =
∂ϕτ

∂x


, τ = , , , , (.)

χν = –
(

∂ϕν

∂x


+
∂ϕν

∂x


)

, ν = , . (.)

Let ωh be the solution of the finite difference problem

ωh = 
ωh on Rh, ωh = χj on �h
j , j = , , . . . , , (.)

where χj, j = , , . . . , , are the functions determined by (.) and (.).

Theorem . We have the estimate

max
Rh

|ωh – ω| ≤ ch, (.)

where ω = ∂u
∂x


, u is the solution of problem (.), and ωh is the solution of the finite difference

problem (.).

Proof By the continuity of the function ω on R, from (.)-(.) and (.), (.) it follows
that

χj ∈ C,λ(�j),  < λ < , j = , , . . . , , (.)

χμ = χν on γμν , (.)

∂χμ

∂t
μ

+
∂χν

∂t
ν

+
∂χμ

∂t
μν

=  on γμν . (.)

The boundary functions χj, j = , , . . . , , in (.) by (.)-(.) satisfy all conditions of
Lemma ., from which the proof of the error estimate (.) follows. �

5 Numerical results
Let R = {(x, x, x) :  < xi < , i = , , }, and let � be the boundary of R. We consider the
following problem:

�u =  on R, u = ϕ(x, x, x) on �j, j = , , . . . , , (.)

where

θ = arctan

(
x

x

)

,

ϕ(x, x, x) =
(

x –



)

–
(

x
 + x




)

+
(
x

 + x

) (+ 

 )
 · cos

(

 +




)

θ

is the exact solution of this problem.
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Table 1 Results for the solution
1
h ‖u – uh‖

Rh Em
u

1
8 1.3642E–9 54.95
1
16 2.4828E–11 62.64
1
32 3.9637E–13 63.14
1
64 6.2773E–15 63.77
1
128 9.8437E–17

Table 2 First derivative approximation results with the fourth-order accurate formulae

1
h ‖v – vh‖

Rh Em
v

1
8 1.4993E–2 9.78
1
16 1.5327E–3 12.93
1
32 1.1854E–4 14.50
1
64 8.1771E–6 15.25
1
128 5.3605E–7

Table 3 Second pure derivative approximation results

1
h ‖w – wh‖

Rh Em
w

1
8 9.8243E–7 15.21
1
16 6.4587E–8 16.21
1
32 3.9850E–9 16.36
1
64 2.4361E–10 16.37
1
128 1.4879E–11

Table 4 First derivative approximation results with the fifth-order accurate formulae

1
h ‖v – vh‖

Rh Em
v

1
8 2.0469E–3 22.08
1
16 9.2725E–5 27.35
1
32 3.3903E–6 29.78
1
64 1.1382E–7 30.91
1
128 3.6823E–9

Let U be the exact solution of the continuous problem, and Uh be its approximate values
on Rh. We denote ‖U – Uh‖Rh = maxRh |U – Uh| and Em

U =
‖U–U–m ‖

Rh
‖U–U–(m+) ‖Rh

.
In Tables  and , the maximum errors and the order of convergence of the approxi-

mate solution for different step sizes h are given, which corresponds to order of accuracy
O(h| ln h|). In Tables  and , the results for the first and pure second derivatives of prob-
lem (.) are presented, which correspond to O(h). The results presented in Table  show
that the accuracy is improved by using the fifth-order accurate formulae for the same con-
ditions imposed on the given boundary functions.

6 Conclusion
A highly accurate difference schemes are proposed and investigated under the conditions
imposed on the given boundary values to approximate the solution of the D Laplace equa-
tion and its first and pure second derivatives on a cubic grid. The uniform convergence for
the approximate solution at the rate of O(h| ln h|) and for the first and pure second deriva-
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tives at the rate of O(h) is proved. It is shown that the accuracy for the approximate value
of the first derivatives can be improved up to O(h| ln h|) for the same boundary functions
by using the fifth-order formulae on some faces of the parallelepiped.

The obtained results can be used to justify finding the above-mentioned derivatives of
the solution of D Laplace boundary value problems on domains described as unions or as
intersections of a finite number of rectangular parallelepipeds by the difference method,
using the Schwarz or Schwarz-Neumann iterations (see [–]).
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