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1 Introduction
In this | \per, we investigate the following Schrodinger-Kirchhoff-type problem:

e

o b [oo |Vul* dx) Au + u = k(x)|u|? 2u + ph(x)u  inR3,

1.1
lue H'(R3), (1)

where a, b > 0 are constants, and 2* = 6 is the critical Sobolev exponent in dimension three.
We assume that ¢ and the functions k(x) and /(x) satisfy the following hypotheses:

(1) 0 < < ft, where i is defined by

= inf {/ (a|Vu|2+|u|2)dx:f h(x)|u|2dx=1};
N0} L/R3 R3

ueH(R3

(k1) k(x) >0, Vx € R,
(ky) there exist xo € R%, 01 >0, p >0, and 1 < « < 3 such that k(xp) = max,gs k(x) and

|k(x) — k(x0)| < o1lx —x0|*  for |x — %0 < p1;
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(hy) h(x) > 0 for any x € R® and h(x) € L? (R®);

(hy) there exist o3 > 0 and p, > 0 such that /(x) > o3 |x — x| for |x — x| < 2.

The Kirchhof-type problem is related to the stationary analogue of the equation

utt—<a+b/ |Vu|2dx>Au:f(x,u) in ,
Q

where  is a bounded domain in RV, u denotes the displacement, f(x, u) is the externs/
force, and b is the initial tension, whereas a is related to the intrinsic properties of the sfzing
(such as Young’s modulus). Equations of this type arise in the study of string or m¢' mbrane
vibration and were proposed by Kirchhoff in 1883 (see [1]) to describe the transv, 'sal os-
cillations of a stretched string, particularly, taking into account the subseque. changcin
string length caused by oscillations.

Kirchhoff-type problems are often referred to as being nonlocal bézaus. f the presence
of the integral over the entire domain €2, which provokes someAi.. “hematici.1 difficulties.
Similar nonlocal problems also model several physical and ™ »le_ "iwystems where u
describes a process that depends on the average of itself, for exami, %, the population den-
sity; see [2, 3]. Kirchhoft-type problems have received rir "mttention. Some important
and interesting results can be found in, for example, [4—6}/and the references therein.

The solvability of the following Schrodingex<" whoft-type equation (1.2) has also been
well studied in general dimension by variet. huthos

—<a+b/ |Viu|? dx)Au+ (%, W7t )  inRN. (1.2)
RN

For example, Wu [7] and phany otl. % [8-13], using variational methods, proved the exis-
tence of nontrivial solufions to (1.2) with subcritical nonlinearities. Li and Ye [14] obtained
the existence of a posii_ =2 solution for (1.2) with critical exponents. More recently, Wang
et al. [15] and Ligng and ziang [16] proved the existence and multiplicity of positive so-
lutions of (1.2) with ¢, 7al growth and a small positive parameters.

The prOc. m of iinding sign-changing solutions is a very classical problem. In general,
this pre ter dch more difficult than finding a mere solution. There were several ab-
sttact theG. hsor methods to study sign-changing solutions; see, for example, [17, 18] and
the. ferences therein. In recent years, Zhang and Perera [19] obtained sign-changing so-
lutiony of (1.2) with superlinear or asymptotically linear terms. More recently, Mao and
Zbang [20] use minimax methods and invariant sets of descent flow to prove the exis-
vence of nontrivial solutions and sign-changing solutions for (1.2) without the P.S. condi-
tion. Motivated by the works described, in this paper, our aim is to study the existence of
positive and sign-changing solutions for problem (1.1). The method is inspired by Hirano
and Shioji [21] and Huang et al. [22]; however, their arguments cannot be directly applied
here. To our best knowledge, there are very few works up to now studying sign-changing
solutions for Schrodinger-Kirchhoft-type problem with critical exponent, that is, problem

(1.1). Our main results are as follows.

Theorem 1.1 Assume that (u1), (k1), (kp), and (hy)-(hy) hold. Then, for 1 < B < 3, problem
(1.1) possesses at least one positive solution.
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Theorem 1.2 Assume that (1), (k1), (kz), and (h;)-(hy) hold. Then, for % < B < 3, problem
(1.1) possesses at least one sign-changing solution.

Notation
+ H'(R®) is the Sobolev space equipped with the norm ||u||12_11(R3) = ng (IVul? + |u|?) dx.
+ We define ||ul|* := [p3 (@|Vu|* + |u|?) dx for u € H'(R?). Note that || - || is an equivalent
norm on H(R?).
o Foranyl <s<oo, ||ul|ss := (ng |ul® dx)% denotes the usual norm of the Lebesgue
space L*(R3).
« By D"*(R®) we denote the completion of C5°(R®) with respect to the norm

llac]l Jea |Vl dx.

2 —
DI,Z(RS) .
Jr3 14

+ S denotes the best Sobolev constant defined by S = inf,,cp12(r3)\ (03
(f45 u¥dx)3

« C > 0 denotes various positive constants.

The outline of the paper is given as follows. In Section 2, we’pre_:nt some preliminary
results. In Sections 3 and 4, we give proofs of Theorems 1.1'an 1%, ._" Jectively.

2 The variational framework and preliminary
In this section, we give some preliminary lemmas and the variational setting for (1.1). It

is clear that system (1.1) is the Euler-Lagrang€ eq. ‘%ions of the functional I : H*(R®) — R
defined by

1 b 1 M
Iw) = = ||ul® + = Vu| X - 6 ——/ 2dx. 1
)= 3wl *4(/1{3' s | /[zsk(xnm dr- b [ P s @)
Obviously, I is a well-defined C! fur. lYonal and satisfies
(I’(u),v>: f (aVu ',V)dx+b/ |Vu|2dx/ VuVvdx
J R3 R3

- J/t (k\x)|u|4uv + Mh(x)uv) dx (2.2)

fat v € H* ), It is well known that z € H'(R®) is a critical point of the functional I if and

on._f u is & weak solution of (1.1).

Lemma 2.1 Assume that (hy) holds. Then the function Y, : u € H'(R®) > [os h(x)u® dx is
veakly continuous, and for each v e H'(R?), gy, : u € H'(R®) > [is h(x)uvdx is also weakly
continuous.

The proof of Lemma 2.1 is a direct conclusion of [23], Lemma 2.13.

Lemma 2.2 Assume that (h;) holds. Then the infimum

fui= inf {f (a|Vu|2+|u|2)dx:f h(x)|u|2dx:1}
R3 R3

ueH(R3)\{0}

is achieved.
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Proof The proof of Lemma 2.2 is the same as that of [24], Lemma 2.5. Here we omit it for
simplicity. g

Lemma 2.3 Assume that (k;), (h1), and (1) hold. Then the functional I possesses the fol-
lowing properties.

(1) There exist p,y > 0 such that I(u) > y for ||ull = p.

(2) There exists e € H'(R?) with |le|| > p such that I(e) < 0.

Proof By Lemma 2.2 and the Sobolev inequality we obtain

1 uw 1 u
Iw) > = |lull®* = Cllull® = —=llul® = |ul*( = - —= - Clul*).
2 200 2 2

Set ||| = p small enough such that Cp* < i(l - %). Then we have

I(u) > l(1— i)pz. (2.3)
4 K

Choosing y = i(l - %),02, we complete the proof of (1).
For t > 0 and some 1y € H'(R?) with |luo|| = 1, it follows - Wmu(hy) and (;) that

1 b \ ot
(tuo) < = (|uol|* + —£* f |Vuso | dac ™= [ k6Tuol® dx,
2 4 R3 C @3

which implies that I(tu) < 0 for ¢ > 4 large enc_gh. Hence, we can take an e = #u, for
some # > 0 large enough, and (2) folic . O

Next, we define the Nehar! ma “old N associated with I by
N := {u € HI(RB) {0}:G(u) = 0}, where G(u) = (F(u), u)
Now we state solma.nroperues of N.

Lemma, 27 Assurae that (u,) is satisfied. Then the following conclusions hold.
(DA wal w2 (R3) \ {0}, there exists a unique t(u) > 0 such that t(u)u € N. Moreover,
I(¢(o e = max,>o I(tu).
« 00 < t(n) <1 in the case (I'(u), u) < 0; t(u) > 1 in the case {I'(u),u) > 0.
(3)" %) is a continuous functional with respect to u in H(R3).
(4) t(u) - +o0 as ||u]| — 0.

Proof The proof is similar to that of [22], Lemma 2.4, and is omitted here. g

3 Positive solution
In order to deduce Theorem 1.1, the following lemmas are important. Borrowing an idea
from Lemma 3.6 in [14], we obtain the first result.

Lemma 3.1 Fors,t >0, the system

s+t L
f(t,s)=t-aS()3 =0,
glt,s) =s - bS*(4)3 = 0,
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has a unique solution (ty,so), where A > 0 is a constant. Moreover, if

ft,s)=0,
g(t,5) =0,

3 +avb2S6+4raS3 6 3 1 b253V/ 13S0 +40aS3

then t > o and s > o, where to = abS°+a I;AS +4raS and So = bS®+2)ab$' +b2).?'2 b>5%+420aS .

Lemma 3.2 Assume that (1), (k1), and (hy) hold. Let a sequence {u,} C N be such thd:
u, — u in H'(R3) and I(u,) — ¢, but any subsequence of {u,} does not converge streugly
to u. Then one of the following results holds:
(1) ¢ > I(t()u) in the case u #0 and (I'(u), u) < 0;
(2) ¢>c* in the case u = 0;
(3) ¢>c* inthe case u #0 and (I'(u), u)sz 0;
2

x _ _abS® bs6 (V%5 +4a| k|l 0oS) , . 4 -
where c* = TSRS PRI , and t(u) is defined as in temn. 2.4.
Proof Part of the proof is similar to that of [22], Lemma“5. »or' " wProposition 3.3.

For the reader’s convenience, we only sketch the proof. Since u, " wzin H 1(R3), we have
u, —u — 0. Then by Lemma 2.1 we obtain that

./R3 h(x)|u, — u|>dx — 0. (3.1)
We obtain from the Brézis-Lieb lemp+a [26], (3.2 »dnd u, € N that
c+0(1) = I(u,)
=I(u) + %Ilhy, 2u? + 2 (/st(un — u)|2dx>2

1
——/ DA )% dx + 0(1) (3.2)
A Jps

and
0 =" Un)> Un)
2
= (\F(u), u) + oy —ul® + b(/ |V(un - u)‘2dx>
R3
- / k()| 1y — u)® dx + 0(1). (3.3)
R3

Up to a subsequence, we may assume that there exist /; > 0, i =1, 2, 3, such that

2
oty — > > 1, b( |V(un—u)|2dx) S,
R3
(3.4)

/ k(x) |y — u|® dx — 5.
R3

Since any subsequence of {u,} does not converge strongly to «, we have /; > 0. Set y(¢) =
B2+ 24% — 545 and () = g(£) + ¥ (2). By (3.3) and (3.4) we have 5'(1) = g'(1) + y'(1) = 0,



Xu and Chen Advances in Difference Equations (2016) 2016:176 Page 6 of 14

and ¢ = 1 is the only critical point of 7(¢) in (0, +00), which implies that
n(l) = max n(e). (3.5)

We consider three situations:
(1) u #0 and (I'(u), u) < 0. Then by (3.3) and (3.4) we have

ll+12—13>0. (3/
Then,
)/,(t) = llt + lzts - [3t5 > llt + 12t3 - (11 + lz)tS = (1 - tz)[llt + (ll + lz)tsj > U \57)

for any 0 < ¢ < 1, which implies that

y(t)>y(0)=0 foranyte(0,1). (3.8)
Since (I'(u), u) < 0, by Lemma 2.4 there exists £(u#) > 0 such/c.. 70 < () < 1. Then it fol-
lows from (3.8) that y(£(z)) > 0. Therefore, we obtain frora (3.2) and (3.5) that ¢ = n(1) >

n(t(u)) = g(tw)) + y (t(u)) > [(t(u)u), which izapliec. hat (1) holds.
(2) u=0. Then by (3.2), (3.3), and (3.4) we'_ =

ll+lz—13=0,

1 1 1
Ell + le — Elg =C.

By the definition of S v e see that

1

S 3

|Vt | s = 15(/ k(x)lunlﬁdx) ,
R3 ||KI|QQ R3

) = oS ([ ot a)
Vg, dx | >b——— k(x)|2e,|° dx ) .
Ul TEEAY S

Ther.

1 2
11+12)3 2<ll+12>3
lL>aS and [, >bS .
' (uknoo ? 1Kl

Obviously, if ; > 0, then [y, 5 > 0. It follows from Lemma 3.1 that

1 1
s e~y
€T3t
1 abS? + a\/b286 + 4||k|leaS? 1 bS® +2||k|lccabS? + b*S®\/b3S6 + 4| k| e0aS?
— + _
-3 2|1kl oo 12 2||k]IZ,

abs’ bS° (D2S* + 4alk]|S)?
Allklloe  2401K112, 24|\ k112,

=c". (3.9)
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(3) u #0 and (I'(u),u) > 0. We prove this case in two steps. Firstly, we consider u# # 0
and (I'(«), u) = 0. Then from Lemma 2.3 and Lemma 2.4 we get

I(u) = rrtl%xl(tu) > 0. (3.10)

Since u # 0 and (I'(#), u) = 0, as in (3.9), we obtain that

L L
=n() =I(u) + = + — > c". p’
c=n(1) (u)+3+12>c (3

o/ P+
Secondly, we prove the case u # 0 and (/'(u),u) > 0. Set t** = (%)%, Tl n, y(£)

attains its maximum at £**, that is,

maxy ()

L, B (B+4hl)?
— s
4l; 241 2412

ab$? B3S6  (B2S* + dalk||S)?

> N N A\ (3.12)
dllklloo  240KkI1% 24 k|12,

It follows from Lemma 2.4 that 0 < £** < 1,7 »en I(¢. «) > 0. Therefore, by (3.2), (3.5), and
(3.12) we obtain

c= 77(1) > n(t**) — I(t**l/t) n VU**) 9 ,*.
The proof of Lemma 3.2/ completc d
Lemma 3.3 Ifthe hypc_ eses of Theorem 1.1 hold with 1 < 8 < 3, then

ab$S? b’ (DSt +dallk]oS)?
— + =c",
4l oo DANKIZ 24| |kI%,

C1 <

viere ¢ is' Ened by inf,cn I(1).

Proof " 0 prove this lemma, we borrow an idea employed in [22]. For &, 7 > 0, define w, (x) =
1

— ‘%, where C is a normalizing constant, x is given in (ky), and ¢ € C°(R?),0 < ¢ <

(F+|x—x0|%) 2

1, ¢|p,0) =1, and supp ¢ C B,,(0). Using the method of [25], we obtain

/|Vw8|2dx:1<1+o(g%), /|W5|6dx:1<2+0(8%), (3.13)
R3 R3
and
Kei, s€[2,3),
/Slwglsdx= Ket|lne|, s=3, (3.14)
R

6-s

Ke'®, s€(3,6),
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where Kj, K3, K are positive constants. Moreover, the best Sobolev constant is S = KK, ®.
By (3.13) we have

Jra IVwe|* dx ~

O(e?). 315
TRTyR T +0(e2) (3.15)

By Lemma 2.4, for this w,, there exists a unique £(w,) > 0 such that t(w,)w, € N. Thus, ¢; <
I(¢(w,)w,). Using (2.1), for ¢ > 0, since I(¢w,) — —00 as t — 00, we easily see that I(tw;) has
aunique critical £(w,) > 0 that corresponds to its maximum, that is, I(£, w,) = maxo I (tw
It follows from (1) of Lemma 2.3, I(tw,) — —o0 as t — 00, and the continuity of I thatt,iere
exist two positive constants £y and Ty such that ¢y < £, < Ty. Let I(¢,w,) = F(e)+ G(¢ + H(¢),
where

£2 bt* 246
F(s):d_S/ |Vw, |2 dx + —F(f |ng|2dx) ——8/ k(xo) |wal Mx,
2 R3 4' RS 6 RS
t° £0
Gle) = 2 / ko) we [ dx — € / k() we | dx,
6 R3 6 R3
and
£2 £2
H(e):—E/ |w8|2dx—h/ h(x)|w,|* dx.
2 R3 2 RrR3
Set
at? ,  btYs DAY .
@(t):T/ngwg dx+—4-(jR&'ng, dx —Zfr{gk(xo)lwgl dx.

Note that ®(¢) attains its phaximui. it

bfis IVl 02+ D2 [ 2 )+ 4a( [y [Vwe 2 d)? fis KCo)lwe [0 iy §
th=| —m— .
0 < 2fR3k(x0)|We|6dx >

Then

x> *(6) - 4@@ ' 2f||/flloc - zﬁk':g'msﬁ +0(e?) (316)
for ¢ > "small enough. Then we have

Fe) <c* +0(e?). (3.17)
By (3.36) of [22] we have

G(s) < Ce?3. (3.18)

From (3.38) of [22], (3.14), and the boundedness of . we obtain

t2
e / h(x)|w, |2 dx
2 R3

2
H(a):i/ |we |>dx —
2 R3

< Csb - puce"t. (3.19)
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Since 1 < B < 3, for fixed u > 0, we obtain

Hi(e)

1
£2

— -00 ase— 0. (3.20)

It follows from (3.17), (3.18), and (3.20) that the proof of Lemma 3.3 is complete. O

Proof of Theorem 1.1 By the definition of ¢; there exists a sequence {u,} C N such that
I(u,) = ¢ as n — 00. Then we obtain that

2
ll22,,]12 +b(/3 |Vuy,|2dx) —/3 wh(x)|u,|? dx = /3 k()| ,|® dx. (3.21)
R R R

It follows from (3.21) and Lemma 2.2 that

%(nunnz—ufRSh(x)wanx)+(———)(/ Wra)
3(1- %) o, (322)

which implies the boundedness of {u,} in H(R3) since (,< i < fi. Then there exists a
subsequence of {u,}, still denoted by {u,}, suth tha. , — uin H'(R3). By (2) of Lemma 3.2
and Lemma 3.3 we have u # 0. By the dafinitic_hof £1 1) we get t(u)u € N. So I(t(u)u) > ¢;.
We claim that u, — u in H!(R®). O \erwise, by 1) and (3) of Lemma 3.2, we would get

a +o(1)

v

that ¢; > I(t(u)u) or c; > ¢*. In anyase, . \get ;. contradiction since ¢; < ¢*. Therefore, {u,,}
converges strongly to . Thug;" = N and) (u) = ¢;. By the Lagrange multiplier rule there
exists 6 € R such that I'(z)= 0 G' (1, nd thus

2
0:<I’(u),u):0(’4. "2+/'b</ |Vu|2dx> —6/ k(x)|u|6dx—2u/ h(x)|u|2dx).
R3 R3 R3

Since u e M, we ge¥

= \||u|| ‘“/ (x)|u|2dx)—2b</R3|Vu|2dx)2>,

which/implies that 6 = 0 and  is a nontrivial critical point of the functional I in H'(R3).

T} erefore, the nonzero function u can solve Eq. (1.1), that is,
—(zz + b/ |Vu)? dx) A+ u = k()| ul 2u + phx)u. (3.23)
R3

In (3.23), using u#~ = max{—u, 0} as a test function and integrating by parts, by (k;), (hy),
and (1) we obtain

O=/ a|Vu’|2dx+/ |u’|2dx+b/ |Vu|2dx/ |V1[|2dx
R3 R3 R3 R3

+/ k(x)|u-|2*‘2|u-|2dx+/ juh(x)|u|” dx > 0.
R3 R3
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Then u~ = 0 and u > 0. From Harnack’s inequality [27] we can infer that z > 0 for all x € R3.
Therefore, u is a positive solution of (1.1). The proof is complete by choosing wg =u. O

4 Sign-changing solution

This subsection is devoted to proving the existence of sign-changing solution of Eq. (1.1).
Let N={u=u"—-u € H(R®) : u* € N,u € N}, where u* = max{£u,0}. If u* # 0 and
u~ #0, then u is called a sign-changing function. We define ¢, = inf,, 5 I(u).

Lemma 4.1 Assume that (i11), (ki1)-(ke), and (h1)-(hy) hold. Then for % <B<3,0<c 4

Proof By Lemma 2.4, using first the same argument as in [22] or [28], we have tlat there
are s; > 0 and s, € R such that

1w + Sy, € N. (4.1)
Next, we prove that there exists ¢ > 0 small enough such that

sup I(sywg + spw;) < ¢ + ¢ (4.2)
51>0,s0€R

Obviously, it follows from (2) of Lemma 2.3 that, for any s;\>4 aj.d s, € Rsatisfying ||s; ¢ +
S20e || > p, I(s100 + S2w¢) < 0. We only estimate L. + spwyy for all [[s;wp + sz || < p. By
calculation we see that

I(s1w0 + s20¢) = I(s1000) + Ty + 16 +\13 + 1 % I15 + I, (4.3)
where

asj . bs; 2\ s 6
1-[1:_/ |Vwd" dx + —2 [Vw, | dx ——/ k(xo)|we|” dx,

2 Jrs 4 ./R3 6 Jgs

s§ 55 6
=% [ 2 [ ket

6 R3 6 R3

.
My / k() (Is10]® + [sawe|® — [s100 + sowe |°) i,
R3

9

A us%/ 2
My =" | do — =2 % dx,
1= jR3|W| %= R3h(x)IWI X

2 2
1'15 = Z[(/RJV(SN()O +s2w8)|2dx> - (/R3|V(51w0)|2dx)
2
- (/ |V(sza)g)|2dx> }
R3

and
M = /R3 (aV(s100) V(5200 + (s1000) (S20¢ ) — phi(x)(s1000) (5200, )) dl.

By (3.16) we obtain that

D=

ab$? B3S6  (B2S* + dalk||S)?
sup I[T; =

+ + +0(e2). (4.4)
speR dllklloo  240K112, 24| k||2, =)
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It follows from (3.18) that

[T

I, <Ceg
From the elementary inequality

Is + 17> |s|?+ ]9 = C(Is|*"t + ¢]”'s) foranyg>1,
the fact that wy € HY(R?) N L*®(R3), and from (3.14) we have

I3 < C/R3 /<(x)(|a)o|5wg + wo|w€|5) dx

5 5
< ||/<||oo||wo||oo/3 |we | dox + ||/<||oo||wouoof3 we dx
R R

S

< Cet,
By (3.19) we have
B

1 _B
[, < Ce2 —Cel 2,

and using (3.13), we have
b 2 , 2
Il < —[4(/ |V(51w0)|2dx\l Vel | 7(32a)5)|2dx>
4 R3 J ,R3

) 2
- (/ |V(slwo‘w|‘dx) {[ |V(sZw5)|2dx> :|
R3 ' s

3b 2 3p 2
= Z(l/];3|v(~ \'\)‘Zd’,> + Z<A3|V(52w5)|2dx>

<C+Cgz.

Sinc€ w Vs Tive solution of (1.1), by the Sobolev inequality we obtain

T, = 8152/ k(x)|wo |° we dx—b/ |V(s1a)0)|2dx/ V(s1wg)V (s20,) dx
R RS RS

3 1
5 ) 2 ) p

< ||k||oo||w0noo/ Wedx +b / IV (s1000) [ dx / IV (s2000)|* dx

RS R3 R
< Csé.
It follows from (4.3)-(4.9) that, for 2 < 8 <3,

1 1 _B
I(s1w0 + $20,) < I(siw0) + ¢* + C + Ce® + Ce2 — Cel™2

< I(siwg) +c* =c1 + c*

as ¢ — 0, which implies that (4.2) holds. This finishes the proof of Lemma 4.1.
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(4.5)

(4.6)

(4.7)

(4.8)
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Lemma4.2 Suppose that (i1), (k1)-(ks), and (h)-(hy) hold. Then, for % < B < 3, there exists
w1 € N such that I(w;) = c,.

Proof Let {u,} C N be such that I(u,,) — ¢,. Since u,, € N, we may assume that there exist
constants d; and d, such that I(«};) — d; and I(«,,) — dz and d; + dy = c3. Then

di > a, dy > ¢ (4.10)

Just as the proof of (3.22), we can prove the boundedness of {u;} and {u;}. Going, if ne
essary, to a subsequence, we may assume that  — u* in H'(R®) as n — oo.

We claim u* # 0 and 4~ # 0. Arguing by contradiction, if u* =0 or u™ =0, then/ y (4.10)
and Lemma 3.2,

C1+C*Sd2+d1262,

which contradicts Lemma 4.1. Hence, u* # 0 and u~ # 0. We claiii._hat u — u* strongly
in H'(R?). Indeed, according to Lemma 3.2, we get one of thie' o
(i) {u}} converges strongly to u*;
(il) di > I(E(ut)ut);
(ili) dh >
and we also have one of the following:
(iv) {u;,} converges strongly to u~;
) do > It )u);
(vi) dy > c*.
We will prove that only cases 4) and (1 hold. For example, in cases (i) and (v) or (ii) and
(v), from u* — t(u )u~ € N ol t(e. et — t(w )u~ € N we have

< I(u+ - t(u_)l ) = I(u*) + [(—t(u‘)u‘) <di+dy=cy
e 0w ul =t )u) = 1(t(u")u®) + I(—t(u)u”) <dy + dy = co.

Ady one 6._hetwo inequalities is impossible. In cases (i) and (vi) or (ii) and (vi) or (iii) and
(vi, we have

a+c <I(u')+c* <dy+dy=cy,

a+c < I(t(u*)u*) +c*<di+dy=co,

a+c<ct+c<di+dy=co,
and any one of the three inequalities is a contradiction. Therefore, we prove that only
(i) and (iv) hold. Hence, we obtain that {«;} and {u,} converge strongly to »* and u~,

respectively, and we obtain u*,u~ € N. Denote w; = u* —u~. Then v € N and () =
dl + d2 =Cy. O

Proof of Theorem 1.2 Now we show that w; is a critical point of I in H*(R3). Argu-
ing by contradiction, assume that I'(w;) # 0. For any u# € N, we claim that ||G'(&)| -1 =
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supy 1 (G (), v)| #0. In fact, by the definition of N and Lemma 2.2, for any u € N, we
have

2 2
(G'(u),u) = 2(||u||2—/,L/ h(x)|u|2dx+b(/ |Vu|2dx) )+2b< |Vu|2dx)
R3 R3 R3

- 6/ k()| u|® dx
RS

2
:Z(IIuIIZ—/L/ h(x)|u|2dx+b</ |Vu|2dx) >+2b< |Vu|2dx)
R3 R3 R3
2
—6(||u||2—/L/ h(x)|u|2dx+b(/ |Vu|2dx))
R3 R3
2 /e 2
—4(||u||2—u/ h(x)|u|2dx+b</ |Vu|2dx> )+2"/ Vi, Jx)
R3 R3 R3
2 £
—4[(1—i)||u||2+b</ IVM|2dx> ]+2b(, Dulds) <o,
1% R3 R3 /

2

IA

Then we define

CD(M) :I/(u) _<1/(u)’ G/(I/[) > G/(I/t)

IG@I/IG @]

Choose A € (0, min{||u* ||, ||z~ ||}/3) sucktnat ||¢ NP (u)| < %ll@(wl)ll forany v € N with
[lv—a| <2A.Let x : N — [0,1] be"c vinlehitg mapping such that

0, veNwithiv=_l >22,
x() =
1, veNwith |lv-wy <A,

and for positive ganstant.,, 2t : [0,50] X N — N be the solution of the differential equa-
tion

dn(s,v)
ds

o) —x (n(s,v))®(n(s,v)) for (s,v) € [0,50] x N.

Y(r) =t(A - D)o + o) (A - 1)of +T0r,6(t) =n(se, ¥(7))) for0<t <1

We now give the proof of the fact that I(§(z)) < I(«) for some t € (0,1). Obviously, if T €
(0,3)U(3,1), then we have I(£ (1)) < I (1) < I(wr) and I(£(x)) < I(¢/(x)) < I(@y).

Since t(§* (1)) —t(§ (1)) > —ocas T — 0+0and £(§* (1)) - t( (1)) > +o0as T — 1-0,
there exists 7; € (0,1) such that £(*(1)) = £(€(7)). Thus, &£(r1) € N and I(£(n)) < I(w),
which contradicts to the definition of ¢;. Hence, we get that I'(w;) = 0 and j is a sign-

changing solution of problem (1.1). The proof of Theorem 1.2 is complete. O
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