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Abstract

In this paper, a fractional-order Mackey-Glass equation with constant delay is
considered. The local stability of the fixed points is analyzed. Moreover,

a discretization process is applied to convert the fractional-order delay equation to its
discrete analog. A numerical simulation including Lyapunov exponent, phase
diagrams, bifurcation, and chaos is carried out using Matlab to ensure theoretical
results and to reveal more complex dynamics of the equation after discretization.
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1 Introduction

Delay differential equations (DDEs) arise in the mathematical description of systems
whose time evolution depends explicitly on a past state of the system, as for example in the
case of delayed feedback. Neural systems [1], respiration regulation [2], agricultural com-
modity markets [3], nonlinear optics, and neutrophil populations in the blood [2] are but a
few systems in which delayed feedback leads naturally to a description in terms of a delay
differential equation. We will restrict our attention to systems modeled by evolutionary
delay equations that can be expressed in the form

& () =f(x(2),x(t - 1)), () eR",t>0. (1.1)

Here the ‘state’ of the system at time ¢ is x(£), whose rate of change depends explicitly,
via the function f, on the past state x(¢ — t) where 7 is a fixed time delay. More general
delay equations might be considered: multiple time delays, variable time delays, continu-
ously distributed delays, and higher derivatives all arise in applications and lead to more
complicated evolution equations. Nevertheless, equations of the form (1.1) constitute a
sufficiently broad class of systems to be of practical importance, and they will provide ad-
equate fodder for the types of problems we wish to consider.

DDEs arise in many areas of mathematical modeling: for example, population dynam-
ics (taking into account the gestation times), infectious diseases (accounting for the in-
cubation periods), physiological and pharmaceutical kinetics (modeling, for example, the
body’s reaction to CO,, efc. in circulating blood), chemical kinetics (such as mixing re-
actants), the navigational control of ships and aircraft (with, respectively, large and short
lags), and more general control problems (see for example [4—6]).
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On the other hand, fractional calculus is a generalization of classical differentiation and
integration to arbitrary (non-integer) order [7—9]. Many mathematicians and applied re-
searchers have tried to model real processes using fractional calculus [10-16]. In recent
years differential equations with fractional-order have attracted many researchers because
of their applications in many areas of science and engineering. Analytical and numerical
techniques have been implemented to study such equations. The fractional calculus has
allowed the operations of integration and differentiation to be applied for any fractional
order [17-21].

We recall the basic definitions (Caputo) and properties of fractional-order differentia-

tion and integration.

Definition 1 The fractional integral of order g € R* of the function f(¢), ¢ > 0 is defined
by

t(r_ -1
- [ Lrods

and the fractional derivative of order « € (n —1,n) of f(£), ¢ > 0 is defined by

Dif(t)=1"""D"f(t), D= 1
dt

In addition, the following results are the main features in fractional calculus. Let 8,y €
R*, o €(0,1):

o If L' IV and if f(x) € LY, then IV I0f (x) = I} f (x).

. lim,g_mlff(x) = If (x) uniformly on [a,b], n=1,2,3,..., where Ilf(x) = [ f(s)ds.

 limg_,g Iff(x) = f(x) weakly.

« If f(x) is absolutely continuous on [4, b], then lim, .1 DSf (x) = %.
The Mackey-Glass equation is a nonlinear time delay differential equation, which was
proposed as a model of hematopoiesis, given by

dx_ 0%y
dt  1+x¢

s, 1.2)

where y, ¢, p, T are real parameters, and x, represents the value of the variable x at time (¢ —
7). Depending on the values of the parameters, this equation displays a range of periodic
and chaotic dynamics.

In this work, we will show that considering a fractional-order derivative with delay in
equation (1.2) will exhibit more complex and richer dynamics.

Consider the fractional-order delay Mackey-Glass equation given in the form

t —_
Diay = LU=D ooy te0,T) (1.3)
1+x(t-1)°
with the initial condition
x(0) = xq, (1.4)

where a € (0,1], p € R*, and ¢ > 0. In equation (1.3), we consider delay in the last term.
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2 Discretization process
In this part, we apply the discretization process represented in [22, 23], and [24] for dis-
cretizing the delay fractional-order Mackey Glass equation with piecewise constant argu-

ments given by

D%x(t) = M—x([qr—t), (2.1)

Cl+a([fr-1)

with initial condition (1.4).
The steps of the discretization process are as follows.
Let ¢ € [0,7), then £ € [0,1). That is,

Dx(t) = pxo(=7)

= 71 n xg(_t) - xo(—r), (22)

and the solution of (2.2) is given by

x(t) = xg + I* <M —xo(—f))

1+x§(-7)
pxo(=T) ft-s)!
moe ({ e 0) [ e

=xg + & ( pHo(=7) - (—r))
" Tl +a) 1+x5(-7) 0 )

Let ¢ € [r,2r), then £ € [1,2). That is,

D%x(t) = m —-x1(r-1), telr2r), (2.3)
1+x5(r—r1)

and the solution of (2.3) is given by

px1(r — 1)
1+af(r—r1)

=x1(r) + (7pxl(r_t) —x1(r—r)> /t (-5 ds

1+x5(r—1) I'(a)

(E—r)* ( px1(r—1)
Fl+a)\1+a5(r—1)

%5 () :xl(r)+1f‘< —xl(r—t)>

=x1(r) +

—x1(r— r)).

Repeating the process we can easily get

x(2) = %, (nr) + (& —nr)* < pxy(nr — 1)

F+a) \1+x5(nr—1)

—x,(nr— r)), te [nr, (n+ l)r).

Let t — (n + 1)r, we obtain the discretization

Xp1(m+1) =x, +

(r)” ( PXu(r—1)

TR e s R f)) (2.4)

It is worth to pay attention here that Euler’s discretization method is an approximation for
the derivative while the predictor-corrector method is an approximation for the integral.
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However, our proposed discretization method here is an approximation for the right-hand
side of the system under consideration as is pretty clear from (2.4). Moreover, we have
noticed that when « — 1, the discretization will be Euler’s discretization.

In the following, we will discuss two cases of the delay: Case I: T = r, and Case II: T = 2r.

3 Casel:t=r
In this case we have a second-order difference equation given by

r* PXn-1
= — %1 ). 3.1
Xpel x"+I’(1+a)(1+xC Xn 1) (3.1)

n-1

Existence and stability of fixed points
To find the fixed points of system (3.1), we first split it into two first-order difference

equations as follows:

Xl = 4 r* PYn _
n+1 n F(1+0l) c yn )

(3.2)

Yns1 = Xy

« For all values of the parameter p, system (3.2) has one fixed point, namely, fix; = (0, 0).
« For p > 1, we have an additional fixed point, which is fix, = (Zp — 1,7p — 1).
In order to study the local stability of these fixed points, we need the moduli of the eigen-
values of the Jacobian matrix evaluated at each of the fixed points [25]. The Jacobian matrix
of system (3.2) evaluated at any fixed point (x,y) is obtained by

o ptpy(=c)
J= 1 F(i+ot)( 1+5)2 -1 .
1 0

The eigenvalues associated to the Jacobian matrix are

A =0.540.5y/1+4R(s - 1),

where

re _ptpy(l-c

R= rd+e) 1+ y°)2

The fixed points fix;, fix, of the system equation (3.1) are stable if |A;| <1, i =1,2. In order
to study the qualitative behavior of the solution of system (3.2) we rely on the Jury criteria
given generally by

1. F:=1+T+D>0,

2. TC:=1-T+D>0,

3. H:=1-D>0,
where the trace and determinant of the Jacobian matrix are given, respectively, by

T: Tr(J) = Ju + J22,

D: Det(J) = i — JiaJa.
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Proposition 1 The fixed point fix; is locally asymptotically stable if p < (1 + 2/R), and

losses stability via a flip bifurcation when p > 1 and via a Neimark-Sacker bifurcation when

r*—I'(1+a)
p>—g .

Proof The Jacobian matrix at the first fixed point fix; is obtained by

(1 wEm-D
o )

which has two eigenvalues,

A =0.540.5/1+4R(p - 1).

According to the Jury criteria [26, 27], where T =1, D = ';((l_p ) , the first condition is always

1+a)

satisfied, while the second and third may be violated. That is, the fixed point fix; loses

stability via a flip bifurcation when p > 1, and via a Neimark-Sacker bifurcation when p >
r*—T'(1+a) O

ro

cR
2+cR’

, via a flip bifurcation if p > 1, and via a Neimark-

Proposition 2 The fixed point fix, of system (3.2) is stable if p < and it loses stability

. . . . . ¢R
via a pitchfork bifurcation if p > 55+
cR

cR-1"

Sacker bifurcation if p <

Proof Calculating the Jacobian matrix at the second fixed point fix; of system (3.2) we
obtain

1 r*c(1-p)
] — pl'(l+a) ,
1 0

which has two eigenvalues,

[ aRre(-
hp=05+05 |14 Rl=P)
0

where the trace and determinant of J(fix;) are given, respectively, by

1_
T=1, D:—Rc( p).
o

According to the Jury criteria, the three conditions may be all violated. That is, fix, loses

stability via a pitchfork bifurcation if p > ijR, via a flip bifurcation if p > 1, and via a
Neimark-Sacker bifurcation if p < -<&- O

¢R-1°

4 Casell: T =2r
In this section, we take the delay to be T = 2r in equation (1.3). Applying the discretization
process we end up with a system of third-order difference equations given by

r® PXpn-2
Xl =Xy + —Xn-2 ). 4.1
n+l n F(1+0[) <1+x$’_2 n 2) ( )
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To study the fixed points of system (4.1) we first split it into three first-order difference
equations as follows:

U r® PIn__,
T D1t a) 1+z2 )

Vn+l = Xn» (42)

Zpl = Yn-
In the following, we study the local stability of the fixed points of the system (4.2).

Existence and stability of fixed points
System (4.2) has the following fixed points:
« For all parameter values, there is only one fixed point fixx; = (0,0, 0).
« For p > 1, there is an additional fixed point fixx, = (Yo —1,7p —1,Ip - 1).
By considering a Jacobian matrix for one of these fixed points and calculating their eigen-

values, we can investigate the stability of each fixed point based on the roots of the system
characteristic equation. The Jacobian matrix is given by

1 0 RS-1)
J=11 0 0 ,
0 1 0
_ _ ‘(1-c)
where R = r(;m)’ = p:ffzc)zc

Linearizing the system (4.2) about fixx; yields the following characteristic equation:
PA) =23 -22-R(p-1). (4.3)
Let
ap =1, a; = -1, a, =0, az =—-R(p -1).

From the Jury test, if P(1) > 0, P(~1) < 0, and a3 < 1, |b3| > by, ¢3 > |c3|, where b3 =1 — a3,
by = a1 —azas, by = a, —azay, c3 = b% - b%, and ¢; = b3by — b1 by, then the roots of P(1) satisfy
A <1 and thus fix; is asymptotically stable.

The first condition gives p < 1, while the second condition gives

r* -2« +1)

P> =

The remaining conditions give the following inequalities:
. a3<1:p>1—%,
o |b3|>by= (1-(R-pR)*) > (R- pR),
e 3>l = (1 - (R-pR*)?* = (R-pR)*>(R—pR)* -1+ (R-pR).
Linearizing the system (4.2) about fixx; yields the following characteristic equation:

P\ =23 -2%- @. (4.4)
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Let

R -p)
—

ap = 1, a) = -1, a) = 0, as =

From the Jury test, if P(1) > 0, P(-1) < 0, and a3 < 1, |b3| > by, c3 > |c2|, where b3 =1 — a3,
by = a1 —azay, by = a, —azay, c3 = b —b?, and ¢y = b3by — b1 by, then the roots of P(1.) satisfy
A <1 and thus fix; is asymptotically stable.

We are going to check these conditions at fixx;:

e p1)>0=p>1,

. P(—1)<0:>p<#:(a+1)’

e az3<l=p< #‘Z{Hl),

o 1bal> by = (1+ S p)?) > L,

Thus, any condition may be violated resulting in instability of fixx,.

5 Numerical simulation

In this section, a numerical simulation is carried out with the aid of Matlab to illustrate
our theoretical results and to reveal the more complex dynamics of equation (1.2) in the
two cases 7 = r and t = 2r. In all numerical simulations, we take ¢ = 6, and r = 0.5. First
of all, let us consider system (3.2). Indeed, if one is interested in determining whether a
dynamical system is chaotic or not, often just a few of the largest Lyapunov characteristic
exponents (LCEs) may provide the answer. This actually is so because a positive LCE is
a good indicator for chaos. Since for non-chaotic systems all LCEs are non-positive, the
presence of a positive LCE has often been used to help determine if a system is chaotic
or not. In this paper, we compute the LCEs via the Householder QR-based methods de-
scribed in [28]. For system (3.2), we get when o = 0.95, ¢ = 6, and r = 0.5, LCE1 = 0.3397,
and LCE2 = 0.185 as shown in Figure 1. We vary the parameter p and fix the other pa-
rameters, ¢, r, and «. Bifurcation diagrams of system (3.2) are also shown in Figure 1 for
different values of the fractional-order parameter «. If we consider o = 0.95, it is shown
that the fixed point fix;(0,0) is stable if p < 1, and at p > 1 it losses stability via a flip bi-
furcation. Afterwards, a stable periodic solution of period 2 appears, then the periodic
solution of period 4 becomes unstable, and a periodic solution of period 8 appears and
chaos happens. Figure 2 shows the different phase plane for system (3.2) for « = 0.95. For
p =1.55, Figure 2(a) shows an invariant closed curve bifurcating from fix; (0, 0), while for
p = 3.6, Figure 2(b) shows a chaotic attractor. Now we vary the parameter « from 0 to 1
and fix p to plot the bifurcation diagram for system (3.2) as a function of @ as shown in
Figure 3.

Next, we turn to the second case, when t = 2r. Figure 4 shows the bifurcation diagram
for system (4.2) as a function of p. If p = 0.95, the figure shows that the fixed point fixx;
becomes unstable when p > 1 as it loses stability via a flip bifurcation. Then the stable
period-2 orbit appears at p = 1.2, which in turn loses stability; then chaos appears. Finally,
Figure 5 shows the phase plane for system (4.2) for o = 0.95. Figure 5(a) shows a stable
fixed point fixx; for p = 0.6, Figure 5(b) shows a double scroll for p = 1.2, and Figure 5(c),
(d) shows chaotic attractors for p = 2, and p = 2.7, respectively.

6 Conclusion
In this paper, the dynamic behavior of a fractional-order delay Mackey-Glass equation is
investigated after applying a discretization process to it. We have considered two different
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Figure 1 Bifurcation diagram and Lyapunov exponent for system (3.2) with different values of the
fractional-order parameter &, c=6 and r = 0.5.

cases for the delay 7, the first is when 7 = r, and the second is when 7 = 2r, where r is the
discretization parameter. Stability of the fixed points and local bifurcations of fixed points
of the discretized systems in the two cases was are analyzed. A numerical simulation was
carried out to ensure our theoretical analysis and to reveal the more complex dynamics of

the system.
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Figure 2 Phase plane for system (3.2) with « =0.95,c=6 and r = 0.5.
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Figure 3 Bifurcation diagrams for system (3.2) as a function of «.
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Figure 4 Bifurcation diagram and chaos for system (4.2) as a function of p.
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Figure 5 Phase plane for system (3.1) with & =0.95, c=6,and r = 0.5.
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