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1 Introduction

The well-posedness and dynamics of the partial differential equations defined on the time-
varying domains are interesting questions to study, and they have attracted a lot of atten-
tions recently. There are many papers on this topic, we refer the reader to [1-10] and the
references therein. The stochastic dynamical systems defined on time-varying domains
are more attractive. Crauel, Kloeden, and Real established the framework for determinis-
tic PDE on time-varying domains, and later, they also developed a new approach to de-
fined noise on time-varying domain, and established the existence and uniqueness of the
solutions for stochastic partial different equations with additive noise on time-varying
domains in [11]. Recently, Crauel, Kloeden, and Yang developed the theory of ‘partial-
random’ dynamical systems to obtain the existence of random attractors for stochastic
reaction-diffusion equations on time-varying domains in [4].

Reaction-diffusion systems are usually used to describe the Turing pattern in a class
of chemical or biological systems, and the Turing pattern was observed in the chlorite-
iodine-malonic acid reaction in 1992. Dufiet and Boissonade in [12] were first to introduce
the following reaction-diffusion systems (we called it a Boissonade system):

3

W di Au+u—oav+yuv—u,

ot

3
3—‘;:d2AV+u—ﬁv,

(1.1)

to exhibit the Turing pattern of the model to describe the relation between the genuine
homogeneous 2D systems and the 3D monolayers, where d, dy, «, y, and § are positive

constants.
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The Boissonade system (1.1) is quite different from the Fitzhugh-Nagumo system in [13]
and [14], the square term %2 in the Fitzhugh-Nagumo system is replaced by the cross term
uv, leading to the nonlinearity of the second equation in the Boissonade system, and it
induces more difficulties to obtain the uniqueness of the solution. Recently, Tu in [15]
proved the existence of the global attractor for the Boissonade system (1.1). Due to the
time-varying domain, the stochastic partial differential equation induces the new partial
random dynamical systems, which is very interesting, we refer the reader to [11] for more
details.

Motivated by the idea of Crauel, Kloeden, and Real in [3] and Crauel, Kloeden, and Yang
in [11], we study the stochastic Boissonade system (SBS) on the time-varying domain by us-
ing some tricks derived from the Sobolev embedding theorem to obtain a unique solution
for the SBS, and we establish the existence of a pullback attractor for the ‘partial-random’
dynamical system generated by the weak solution for the stochastic Boissonade system on
the time-varying domain.

Therest of the paper is arranged as follows. In Section 2, some notations on time-varying
domains are introduced. Sections 3 and 4 are devoted to proving the existence and unique-
ness of solutions of random equations defined on fixed domains which are transformed
from time-varying domains. The existence of the pullback attractor for the process gen-

eralized by the weak solution is presented in Section 5.

2 SBS defined on time-varying domains

In this section, we will introduce some notions and functional spaces on time-varying
domains, following [11], and derive the Boissonade system with additive noise on the time-
varying domain.

2.1 Assumption on the time-varying domain
Let O be a nonempty bounded open subset of RN with C? boundary 80, and r = r(y, ) a
vector function

re C'(O x R;RY), (2.1)
such that
r(,t): O — O, isa C*-diffeomorphism for all £ € R. (2.2)

7(-, ) = r1(-, 2) is the inverse of r(-, ) satisfying the property

FeCc¥! (Q,,T; ]RN) forallT < T, (2.3)
ie,r, %, 837’ and ajzgx_ belong to C(Q..7;RN) forall 1 <i,j <N and for any 7 < T. Then
i i 0Xj
{O¢}tefe,17 is a family of nonempty bounded open subsets of R (N < 3).
Define
Quri=|J Orx{t} forallT>t, (2.4)
te(z,T)

Q= | J Orx{t} forallteR,

te(t,00)
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o= U 00; x {t} forall T >,

te(z,T)

and

To= () 000 x (£} forallt eR.

te(r,00)

For any T > 7, the set Q, 7 is an open subset of RN*! with the boundary
Q7= .7 U (00; x {t}) U (307 x {T}).

2.2 Assumption on noise

Assume that (2, F, IP) be a probability space, a sequence {w;(¢) : € [0,00)};>1 of mutually
independent two-sided standard scalar Wiener processes adapted to a common filtration
{F;:t€[0,00)} in F. Let {¢};>1 C Hy(O) C L*(O) and {g;};>1 C Hy(O) C L*(O) be two
sequences of functions such that

o0 oo
Yooy oo Y llgillme) < o (2.5)
j=1 j=1

Define

;= i(r(x,0),  Wi=gi(Fx 1), x€O,te(0,00),j=12,....

It follows from [7] that, for all £ € R,
oo oo
Y oDlon <00 I Il < 0
j=1 J=1
Consider the L2(O,)-valued JF;-adapted stochastic processes. Define

M=) ®ewe),  My:=» Wiwt), t=0. (2.6)
j=1

Jj=1

Let E be the expectation with respect the probability IP. Due to the pairwise independence

of the w;(¢), we have

m 2 m
E| > @(0wi0) =ty [ ) ”iz(ot)
j=n L2(Oy) j=n
and
m 2 m 9
E Z Wi ()w;(t) = tz H ;(t) ”LZ(Ot)
j=n L2(Oy) j=n
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for any ¢ > 0, m > n > 1. Therefore, we get M;(¢), My(t) € L>(O; x Q) which are
Fi-measurable. Then {M;(¢) : t > 0} and {M,(t) : £ > 0} can be viewed as F;-adapted
processes with values in L2(O;).

Direct computation implies that EM; (£) = EM,(¢) = 0,

o0 o0
]E”Ml(t) ”iz(ot) = tZH (t) ”i%ot) <tCyy ZH(l)(t) ”iZ(O)
j=1 j=1

and

]E||M2(t) ”i%ol) = tZ” W (t) ”;(ot) <tCyy Z”‘/’(t) HEZ(O)
-1 -1

for any ¢ € [0, 00), where C,; = max, 5 J ac(r,,t) and Jac(r, y, t) denoted the absolute value

of the determinant of the Jacobi matrix (g—;; 0, 8))NxN-

2.3 Stochastic Boissonade system on the time-varying domain
Following the arguments in [11], we can study the stochastic Boissonade system with ad-
ditive noise and homogeneous Dirichlet boundary condition on the time-varying domain

as follows:

du=(diAu+u—av+yu—ud)dt+dM;, in Qy,
dav = (dyAv+u— Bv)dt +dM,, in Qy,

(2.7)
u= 0) V= O, on 20,
M(O,x) = Mo(x), V(O)x) = VO(x)r X € 001
where dM; and dM, can be represented by
00 ) 00 ) 97
dM,(t) = ,21: ¢, (F(x,t)) dw(t) + ,21: w;(t)Vy; (7(x, 1)) - o )t (2.8)
and
[ee] _ o0 _ a;
AMA () = Y ¢j(7x, 1) dwy(®) + Y wi(6) V(7. 1)) - S wadt. (2.9)
j=1 J=1
Denote
Uyt = u(r(y, t),t), V(y,t) = v(r(y, t), t) forye O,t>0, (2.10)
and
N o7y a7
ax(yt) = 8—%(r(y, t),t)a—x]i(r(y, £,t), jk=1,...,N.

i=1
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Define b(y,t) = (bi(y,2),...,bn(y,£)) € RN and c(y,£) = (c1(3, £), ..., en (3, 1)) € RN by

— N
bi(y,t) = dy ATi (r(y,8), £) — %(r(y, t.t)—dy Y Ziy’f(y, t), k=1,..,N,
jr

- N
ck(y,t):dzAka(r(y,t),t)—%(r(y,t),t)—dzz “’k(y £, k=1,...,N.

j=1

Then equations (2.7) on time-varying domains can be rewritten into the following equa-

tions on O x [0, 00):

du =[dy Yy, %(a,,(uyk) +b-V,U
+U—-aV+yUV -U+R]dt +dW;, inO x [0,00),
dv=1dy Y iy oy @i V) + ¢ Vv
+U - BV +Ryldt +dW,, in O x [0,00),
u=0, V=0, ondO x[0,00),
U,0) =u(r(»0), V(30 =v(r(0), yeO,

(2.11)

where

Ri(1) = Z D%,60)- 5 (0:0).1)

Ry(y,t) = Z wi(t)V,9;(y ; (r(, 0),2),
j=1
and
Wi, ) =Y w0,  Walnt) =Y ¢()w(e).
j=1 j=1

Due to the independence of the w; and the assumption (2.5), the processes W1 (¢) and W5(¢)
are two Hj(O)-valued Wiener processes, and

E[Ri()]}20, <trn28( r(yt Z||¢,|| o ¥t=0

and

]E”Rz(t) ||i2( < tmax

r(y ), Z Il VEZO.

Therefore, R;(£) and Ry () are two F;-adapted processes belonging to L>(0, T; L2(2 x O))
forall T > 0.
Denote

F,t)=UW,t) - Wi,  GO,t) =V, t) - Wa(y,t) foryeO,t>0.  (212)
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Then equations (2.11) can be transformed into the following equations (2.12):

dF = [d; Z}k 13y, L (@i (F + Wh)y) +b - Vy(F + Wh) + (F + Wq) —a(G + W)
+y(F + W)(G + Wy) — (F+ Wh)? + R]dt, in O x [0,00),

dG =[d, Z)k 13y, (a,k(G+ Wa)y) + ¢ Vy(G + Wa) + (F + Wr)
- B(G+ W5) + Ry]ldt, inO x [0,00),

F=0, G=0, ondO x [0,00),

F(y,0) = u(r(,0)) - W1(y,0), V(y,0) = v(r(y,0)) - Wa(y,0), yeO.

(2.13)

In the following, in order to show the existence of strong solution, one is required to
impose the conditions on ¢; and ¥, j =1,2,... by

o0 o0
Z” Adi(y) ||2L4(O) <00, Z”A‘PI‘O’) ”iZ(O) <00, (2.14)
-1

j=1

rather than the assumption in (2.5).

3 Existence of strong solutions of SBS (2.13)
In this section, we will establish the existence and uniqueness of the strong solution for
equation (2.13).

For each T > 0, consider the auxiliary problem for equation (2.13),

dF =[d; Z]k 13y (a,k(F+ Wiy) +b - Vy(F+ Wh) + (F + W1) —a(G + W)
+y(F+ Wl)(G+ Wy) = (F+ W1)® +Ri]dt, inO x[0,T],

dG = [d, Z)k 1 ay (a,k(G+ Wa)y) + ¢ Vy(G+ Wa) + (F + W)
- B(G+W3) +Ry]dt, inO x[0,T],

F=0, G=0, ondO x][0,T],

F(5,0) = u(r(y,0)) - W1i(5,0),  V(5,0) = v(r(,0)) - W2(3,0), yeO.

(3.1)

Definition 3.1 (Strong solution) A F;-adapted process (F,G) = (F(w,9,t), G(w,y,t)) de-
fined in © x O x [0, T] is said to be a strong solution for problem (3.1) if

Fel*(Q,L%(t, T; H*(0))) N L*(2, C([, TT; Hy(0))),

)
F' e *(Q,L°(7, T;L%(0)))

N L2, C([x, T HH(0))),

’

G e L*(Q,L%(r, T; H*(0)))
G e L*(Q,L% (7, T;L*(0)))
and the initial data conditions in (3.1) are satisfied almost everywhere in their correspond-
ing domains.

Lemma 3.1 ([6]) Forany —oo <t < T < +00, aj € CY(O x [z, T)), by, cx € C°(O x [, T)).
In particular, aj, da , b, ¢ € L®(O x (1,T)), j,k =1,2,...,N. Moreover, there exists a
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8=68(v,r,t,T) >0 such that, for any (y,t) € O x [t,T],

N
> ap(y g > 8IE1> forany & € RN, (3.2)

k=1

Lemma 3.2 ([6]) For any —oco <t < T < +00, there exist two positive constants 8y and cy
which depend on r, T, T such that for any u € H*(O) N Hy(O), the following estimate holds:

N
30/ ‘Au(y)lzdyff Zakj(y,t)uykyjAudy
(@] (@]

kj=1

+ o L‘u@)|2 dy foranyte|t,T]. (3.3)

Define the time-dependent bilinear form by

N N
Bla, B,t] = /O —dy Z(ajk(yr t)ayk (2 t))ﬂyj O,t) + Z br(y, t)VyOl(% Hey,t)dy, (3.4)
Jk=1 k=1
N N
Dle o] = [ o 3 (an 0,040 000) + Y- s V0B s (35)
k=1 k=1

fora, B € Hy(O)and 0 <t < T.

We can apply the Galerkin argument(see[16—-18]) to prove the existence of solution for
SBS. Let @y = @i (y) € H*(O)NH(O) (k = 1,2,...) be the eigenfunctions of —A on Hy(O),
O0<XA <Ap<:-+<Ay-++, Ay = 00 as n — 00 be the corresponding eigenvalues. Then
{mx}32, is an orthogonal basis of H}(O) and an orthogonal basis of L*(0).

For each fixed positive integer m, denote
m m
F,(t,w):= Z g“,];,(t, w)wy, Gu(t, w) = Z nfn(t, w)wyg. (3.6)
k=1 k=1

Thenfork=1,...,mandt <t<T,

A,  (F, @), =)
= B[Eu(t) + PuWh, i t] + (Fn(t) + Py Wi — a(Gu(t) + Py Wa), o)
+ (Y (En(®) + PuWA) (Gon(£) + Py Wi) — (E(2) + PuWh)® + Ry, ),
A2) (G, (1), %)
= D[Gm(t) + P, W>, wy; t] + (Fm(t) + P, Wy — ,B(Gm(t) +P, Wz) + Ry, wk),
F,,(0) = P,,,Fy, G,,(0) = P,,Gy,

where Fy(y) := ug(r(y, t)) = Wi, Go(y) := vo(r(y, £)) = Wa. (-, -) is the inner product in L2(O)
with associated norm || - || 2(), Py is the projector from L*(O) to span{wy, @y, ..., @y} It
follows from [6] and the assumption (2.5) that Fy € H3(O), Gy € Hy(O).



Zhang and Huang Advances in Difference Equations (2016) 2016:141 Page 8 of 24

The assumption (2.14) yields

P, Fy— F, in H(l)(O) as m — 00,
(3.7)
P,,Gy— Gy in H(l)((’)) as m — oo.

Noticing that for each integer m =1,2,..., there exists a unique local F;-adapted process
(F(w), Gu(w)) of (2.7) satistying (A,,) in an interval [0, T},,] with0 < T}, < T.
Next, we will show some estimates on the sequences (F,, G,,,), m=1,2,....

Lemma 3.3 The following estimates hold.
(1) {E,} is bounded in C°([0, T1;L*(2,L*(0))) N L*(0, T; L*(22, Hy(0))) N L*([0, T;
LYO x Q)),
(2) (G} is bounded in C°([0, T); L*(Q, L*(O))) N L*(0, T; L*(Q2, Hy (O))).

Proof Multiplying (A) by ¢X and (A2) by n%,, and taking the sum with respect to k from
1 to m, we obtain

d 2 2

EE(”Fm”WO) +1Gulf20))

= B[Fy, Fy; t] + B[P,y Wi, Fyp t] + DGy, G t] + D[Py Wa, G 8] + | Fu(2) sz(o)
+ (PuWi, Fin) = @(Gu(8) + Py Wa, En(0)) + (¥ (Fin + PuW1)(Gon + Pru W), Fr)
— (B + Py W), F) + (B + PuWh), Gin) = (BPr W, G) = Bl Goll72 )

+ (R, Fp) + (Ry,Gy), VYte[0,Ty],P-as.we Q.

Combing Lemma 3.1 with (3.4) and (3.5) guarantees that there exists a positive constant §,
which depends only on T such that V¢ € [0, T},], P-a.s. w € ,

1d 2 2
) E(”ané(@ + ”GWIHEZ(O)) +8(dy HFm(t)HH(l)(O) +ds | Gm(t)HH(l)(O))

< My|IEnll32 ) | Fn®) ||i,5(o) + dy M| Py Wl(t)||f,é(o)||Fm||?{é(o>
+ M| P Wi0) 13 0) | Enil 20y + Mell Gl 320 |G @) 110

2 2
+ dZMa HPm WZ(t) HH(I)(O) || Gm ”i[é(o) + MC ”Pm WZ(t) ||Hé(o) ”Gm ||i2(o)
| En® 20y + P Wi Er) = & (Goa(8) + Py Wi, E())
+ (V(Fm +PmWI)(Gm +PmW2)rFm) - ((Fm +PmW1)3:Fm)
+ ((Fm + Pm Wl): Gm) - (ﬁpm WZ’ Gm) - ,BHGm”iz(o) + (Rlx Fm) + (RZ» Gm)’
where
M, = NISI%?N l @l Lo (O x10,77) (3.8)

and

My, =N"? max ||bgl|ro0x0,7); M. =N" max |lcllz©x(o,7)- (3.9)
1<k<N 1<k<N
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Here, we just consider the following term:

(v Ep + PuW1) (G + PuW3), Fn) = ((Eyy + PuWh)?, Epr)
= (¥ (B + PuWA)(Gon + Py W), Ey + Py W) = | Ell a0

- (V(Fm +PmW1)(Gm +PmW2):PmW1) + ((Fm +PmW1)3:PmWI)

<1F4 1PW‘L 109G, 1> 10y 2||P,, W> |2
__§|| m”L4(O)+§” m 1”L4(O)+ )4 ” m||L2(o)++ Y ” m 2||L2(0)

Then it follows from Cauchy’s inequality that

d
T IElF20) + 16T ) + 3 [ En®)] 1y 0, + &2 Gn®) [5.0)

1 4 2 2
+ Z ”FWI + pm Wl ||L4(O) = M2 ||Fm(t) ||L2(O) + MB ” Gm(t) ||L2(O) + RS(t)y (3'10)
where
M ZMZ% My + 2 5 M. 2M2 M, 20 B+5,
= + + 20 + 5, + + o+ -B+
2 s b 3= a8 J/
and
2d, M> 5 2d2M
RS(t) = S +Mb ”Ple”H(l)(O) + (S ”P W2”H1(O

+21Pn Willfa o) + (@ + 2092 + B) 1P Wall 72 o) + 1P Wil a0,

+ ”Rl”i2(0) + ||R2||32(O)

By the fact || P, Wl”Hé(O) <| WlllH(l)(O), |1 P, WQHH(IJ(O) < ”W2”H(1)((9)’ the assumption (2.5)
and the BDG inequality, we can find that ER;(¢) < oo, V¢ € [0, T},,]. Then combining (3.10)
with the Gronwall inequality and the fact ||P, L[0||L2(O < ||Up]? |P,, V0”i2(0) <
Vo || o)y We can find a positive constant M, here such that

20y’ |

T
E[Fn(®) ”i2(0) +E|Gu(®) ”;(0) + / 8(AhE| Fuls) ”i{é(@) + B[ G(s) ”12-13(0))
0

1 4
B ZE”Fm(S) HL‘*(O)

ds = M47
which implies that Lemma 3.3 holds. d

Lemma 3.4 The following estimates hold.:
(3) the sequence {E,,} is bounded in C°([0, T]; L*(Q2, Hy(O))) N L*(0, T; L2(2, H*(0))),
(4) the sequence {G,y,} is bounded in C°([0, T1; L*(2, Hy(0))) N L*(0, T; L*(2, H*(0))).

Proof Multiplying (A2%) by Ax nfn(t ) and summing over k =1,2,..., and recalling the fact
that —A,G,,.(£) = > 1oy Mk (¢, w)w equals 0 on O, we obtain from Lemma 3.2

1d
5 NG5y 0y + 250 [ 2G5 0

< M| Gu(2) ”H},(O) |AGx(2) ”Lz(O) + oM, | AP, W) ||L2((9) |AGH@®) ||L2<O)
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MW 0| A0 0 + oo Gt

_/ (FEn + PuWy = R)AG,, + B(VG)? + VG,V (P, W) dy,
O

— — N 0a;
where Mz = N'?max; <<y |Gl (00,1, and &(y,) 1= ey, 8) + da 3% 52 050), k =
1,2,...,N.
By Cauchy’s inequality, one derives that

d
ar “ Gm(t) ”23(0) +d)5o “ DGy () ”i2(0)
4M>
= (5 - #)16n 00+ 20 G0

4y M?
+ S 4 ”Apm WZHI%Z(O)
0

4 M2 )
(G +8) POl

3 , ) ,
* T (IEml22(0) + 1P Wil 72 0y + 1R211F2(0))- (3.11)

Since P,, G, is bounded in H}(O), then (2.14), (3.11), Lemma 3.3 and the Gronwall inequal-

ity imply that there exists a positive constant M5 that satisfies

T
EMMM%@+@%/EWWM%;@ﬁSM;
0

Next, we show the second result in Lemma 3.4. Multiplying (A!,) by Ax£%, summing over
k=1,2,...,m, we get

1d
5 di | () Hi@(@) + o | AF(2) ||i2((9)
=M ||Fm(t) ”H},(O) ” AF,(t) ||L2((9) +d\M, “ AP, WA(2) ||L2((9) “ AF,(t) ||L2(o>
+ MEHPm W(2) “H(l)(O) ”AFm(t) ||L2(O) + dlcOiFm(t”Z + ”Fm(t) ”?{(1,(0)
— (PuW1, AF) + a(Gyu(t) + Py Wa, AF,,)
- (V(Pm + PmWI)(Gm + PmWZ): AFm)

- (er AFm) + ((Fm + Py Wl)sr AFm): (312)

- - 8 .
where Mj; = NY2max)<x<n |brl1(0x(x,1), and br(y,t) = br(y,t) + di Zj\il %’lk(y, t), k =

1,2,...,N. Here, we just consider the last term in (3.12),
((Fm + PuWh)?, AF,,)
= ((Fm + PmWI)3’ A(Fm + PmWI)) - ((Fm + PmWI)S: A(Pm Wl))

=4/mwmwmwﬁﬁmmW@4mﬁmmﬁMmm»
O
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_((Fm + PmWI)Bx A(Pm Wl))

3 4 1 4
= 2 VEn+ PuWillfao) + 2 [ @ WD a0
The Cauchy inequality implies that

d
d_t ”Fm ”?.11(@) + dl(SO ”AFm ”22(@)

4M2 M2
1
< ( & +a+3>||F 120 + 241 Coll EmllZa o | AP Wil 0
1
4M; )
+ (T +1)||P Wil oy + @G + PuWally o
2y 3
<d180 E)”Fm +PmW1||24(O)
2y?

1
# s 1Gn + PuWallty oy + 5 18P Wil o
1

Then for N < 3, the assumptions (2.5) and (2.14) imply that the second result of Lemma 3.4
holds. O

Lemma 3.5 The sequences {F,}, {G.,} are bounded in L*(0, T; L*(R, L*(0))).

Proof Multiplying (A},) by ¢¥, summing over k = 1,2,...,m, and combining with ay; = a;«,

we have
/ 2 BFm
15Ol 20y + 5 dt/ Zﬂk]()/ t) a—yk(y’t)dy
da(y,t) t) dF dF,,
) — (9, t) d-
2dt/@Z ot ) ay DY
7\ 2 ) 2 2 2
= g1l + 2V 1P Wil o) + 2MG 1 Ern + P Wil o
+ 20 F + P Will o o) + 20° G + P Wil 72 )
+ Y (1En + P Willfa o) + 1Gon + P Wallfa o))
+ 20 F + P Wil $s ) + 2R 1132
Similarly,
/ 2 aGm
£ 00 25 [ Z 050,00 )y

aak,(yt Gy,
, ,td
Zdtfoz .(“ay,(@”

}
5 2
= 516l 120y + 2VMEBNPAWa s o) + 2MZ G + P Walla o

+ 201 F + P Will o o) + 282G + PuWall 7 o) + 21 R21 72 )
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Noticing the fact that a;; € CHO x [r,T]) (k=1,2,...,N), P,,F,, P,,Go are bounded in
H}(0), N < 3, we deduce that Lemma 3.5 holds. O

Theorem 3.1 Assume that r and r satisfy the assumptions (2.1), (2.2), (2.3), and
00 is C"  wherem > 2. (3.13)
Then for any (uo,vo) € Hy(Oo) x Hy(Oo), {d;(0)}jz12,..r {90,(9)}j=1,2,.. satisfy the assumption

(2.14), and for any 0 < T < +00, there exists a unique strong solution (F,G) of (3.1). More-
over, (F, G) satisfies the equality of energy, for P-a.s. w € Q,

5%” ||L2 / / d1 (aj(F + WA)yk)Ey + (F + W1)b - V,F dydt
Jk=1

T
=/ /O[(F+ Wi) — (G + Wa) + y(F + Wi)(G + Wa)
0

—(F+ W)’ + R |F dydt, (3.14)

and

d
§E||G||iz / / d2 (ai(G + Wz)yk)Gy, +(G + Wh)c- V,Gdydt
Jk=1

= /OT/O[(F +W1) - B(G+ Wh) + Ry |Gdydt, Vrel0,T]; (3.15)
and the following estimates, for P-a.s. w € Q:
|E@) 7200 + 16O 20y = € (1Fo 220y + 1GollZ o) + /OteMths, (3.16)
5 fo (DIFI, o + daIGIE, o) ds
< " (IFolI20) + 1Gol 7o) + /OterRds, (3.17)

where M is a constant and R is a fixed random function which satisfies, for P-a.s. w € Q,
R(t) e L(0, T).

Proof We first prove the uniqueness of the solution. Let (i, vio) € H(l)(Oo) X Hé(Oo) and
(Fi(£), Gi(t)), i = 1,2 be the corresponding strong solutions, then we derive

N
w =d; Z 38 (a,k( UZ)J’k) +b-V (Ul W) + (Uh — Uy)
k=1 Vi
—a(Vi= Vo) +y (U = W) (Vi = Vo) = (L)’ - (LR)?), (3.18)
N
M = d2 Z aiy‘(djk(vl — VZ)J/k) +cC- Vy(‘/l _ VZ) + (U1 _ UZ)

- B(V1-Va). (3.19)
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Taking the inner product of (3.18) with (U — L) and (3.19) with a(V; — V3) in L2(O;), we
obtain, P-a.s. w € €,

d
E(” (U - ) HEZ((’)) ta H(Vl - VZ)HEZ(O))

+dr8 H Vy(th - UZ)HEZ(O) +0ddy§ “Vy(Vl -V2) ||i2(0)

(o.M ) M 2
= (2+ 25 It -tz o) + @ E_Zﬁ V1= Vall;

+ 2/(; y (Uh(Vi = Vo) + Va(Uy — Up)) dy, (3.20)

where M}, M, are defined by (3.9).
Thanks to the Holder inequality

fo(ul(V1 - Vo) + Va(Uy - Up)) dy

< Nl IV = Vallpso) 1 Uy = Uall 20

+ I Vallpao) 1 = Wallpaop 1 V1 = Vall 20y (3.21)

Since (F1, G1) and (F,, G,) are strong solutions of (3.1), Uy, V2 € Hy(O), V¢ € [r, T, and
there exists a constant M such that ||L[1||H(1)(@) <M and ||V2||Hé(@) < M. Applying the
Sobolev embedding theorem, Cauchy’s inequality, and (3.21), we have

/(9 y(Uh(Vi = Vo) + Vo(Uy — Up)) dy

d8 2 ady$ 2
<l -0+ == 1=Vl o,
+ M(IUh = Ul ) + 11V2 = Valla)), (3.22)

where M is a constant dependent on ds, dy, M, «, y, 8, and the Sobolev embedding con-
stant.
Combining (3.22) with (3.20) yields

d dié
(1w vl V=Vl ) + o1t - W)y

odyd
+ 22 lvi- V2)||}2'-1(1)(O))
<My ([ (U = ) |20y + (Vi = V2 [ 200 (3.23)

where M; = max{1, %} xmax{2M + (2 + %),2]@[ + a(g% -28)}.

Due to the Gronwall lemma and the fact 110 (x) — 120 (x) = vig(x) —=vo0(x) = 0, F; —F> = U; —
U,, G1 -G, = Vi - V,, we obtain the uniqueness of the strong solution for (3.1) immediately.
Taking the inner product of (3.1) with (U, V), we can obtain the energy equality (3.14) and
(3.15) immediately.

Based on the estimates in Lemma 3.3, Lemma 3.4, and Lemma 3.5 on F,, and G,,,
there exist a subsequence of {F,,(w)} and a subsequence of {G,,(w)} converging weakly in
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L2((0, T] x; H*(0)), weakly star in L>(0, T; Hy(0)), and strongly in L*((0, T]; Hy(0)), for
P-a.s. w € Q. Moreover, the extremities F(w), G(w) are F-adapted processes and satisfy

Fel*(Q,L*(t, T; H*(0))) N L*(2, C([z, TT; Hy(0))),

F e I*(Q,L%(7, T; L*(0))),
and

G e L*(Q,L% (v, T; H*(0))) N L*(Q, C([r, T Hy(0))),
G e L*(,L%(x, T; L*(0))).

Thus, {(F,u, Gi)} converges to (F, G) in the sense of mean-square.
Therefore, it follows that, for P-a.s. w € Q,
< ER G|? 8(d|F@)|’ d> |G ||? 7 \E
E(” 1720y + ||L2(0)) +8(di]| (t)HH(l)(O) +dy (t)”H(l)(O)) + g” 740

2 2
< M| E(®) ||L2(0) +Ms | G(®) ”LZ(O) +R(),
where
R(t) = (2hMg + Mp) I Wil o) + (202G + M) IWa 30 ) + 21 Wl o
14
+ (@ +4y% + B) I WallFa o + (5 2yt 4 348) Wil 740
+ ZIIW 1240 + IR0 + IR21I?
o 120y T IRR0) T IRz 0)

Denote M = max{M,, M3}; the Gronwall inequality implies Theorem 3.1 holds. O

4 Existence of the weak solution
In this section, we will show the existence of the weak solution for SBS.
Denote

Uz = {0 € L*(0, T; Hy(0)) NL* (0, T;L*(0)) : ' € L*(0, T; L*(0)),

Definition 4.1 For any given initial data (o, vo) € (L%(0))% 0 < T < +00, a function
(F, Q) is called a weak solution of (3.1) if the following conditions hold. P-a.s. w € €,
(1) FeC([0, T};L2(0)) N L*([0, T]; Hy(O)) N L*(0, T; L*(O)),
G e C([0, T]; L*(0)) N L2([0, T]; H}(O)) with
(F(0), G(0)) = (uo(r(y,0)) + W1(0), vo(r(y,0)) + W2(0)).
(2) There exists a sequence of regular data (Fo , Go,m) € Hy(O) x H (O), m=1,2,...,
such that (Fy ,,, Go,m) = (Fo, Go) in L2(O) x L*(O) and (F,,, G,n) — (F,G) in
C([0, TT; L*(O x Q) x C([0, T]; L*(O x Q)).
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(3) It follows that, for all ¥ € Uy, T,
N

T
/ / —F9 +dy Y (ai(F + W)y) 0y + (F+ Wb - V,0 dydt
0 O Y
jk=1

T
=f /O[<F+W1>—a(G+Wz)+y(F+ W1)(G + Wa)
0

—(F+ Wh)? + R |9 dydt (4.1)
and
T N
/ f -GY +d, Z(a}-k(G + Wz)yk)ﬂyj +(G+ Wa)c- V0 dydt
0o Jo ‘
Jk=1
T
=f /[(F+ W1) - B(G + Wa) + R, |9 dy dt. (4.2)
0o Jo

It is easy to find that every strong solution is a weak solution of (3.1) from the definition.

Theorem 4.1 Let the function r and ¥ satisfy assumptions (2.1)-(2.3). Assume that 90
is C"m > 2. Then for any (Fy, Go) € L>(0) x L*>(0) and 0 < T < +00, there exists a
unique weak solution (F,G) of (3.1). Moreover, (F,G) satisfies the equality of energy, for
P-as. we L,

1d T N
5;||F||§2(O)+/ /odlE (aj(F + W)y )Eyj + (F + W1)b - V,F dy dt
0 .
Jk=1

T
:/ /O[(F+ Wi) —a(G + Wa) + ¥ (F + WA)(G + Wa)
0

—(F+ W1’ +Ri|Fdydt, Vtelo,T);

1d T N
52”G||i2(0) + / /(;dz Z(ﬂ/’((G + Wz)yk)Gy]‘ +(G+ Wh)e-V,Gdydt
0 ,
Jk=1

T
=f / [(F + W) -B(G+ W) + Rz]Gdydt, Vte[0,T],
0o Jo

and the following estimates, for P-a.s. w € Q:

t
2 2
[E® |20 + | GO 120y = € (IFol 720y + 1Goll72()) + / MR ds, (4-3)
0
t t
5 f (Al FI ) + 1l Glip ) ds < € (I o720y + 1Goll iz ) + / M Rds, (4.4)
0 0

where M and R are defined in the proof of Theorem 3.1.

Proof We first of all show the uniqueness of weak solutions for (3.1). Let (£, G;) and
(Fy, Go) be weak solutions for (3.1) with the initial value (91, v01) and (ug,vo2), respec-
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tively, then

N

o(lh — Uh) d
(B1) 137t2 = dlijZI a_yj(ajk(ul —Uy)y,) + b Vy(Uy = W) + (U — U)
—a(Vi=Va) + y(Uy - Uh) (Vi = Va) = ((Lh)° = (L)?),
(Vi -V, Na
(B2) % = dz% S—/(ﬂ/k(‘ﬁ = Va)y) + ¢ Vy(Vi = Va) + (U — Up)
- B(V1-Va).

Taking the inner product of (B,) with V; — V; in L2(0) and using Lemma 3.1 and Cauchy’s
inequality, we obtain

d
V= Vallbao) + a8 | (V= Va) [y o

Mg 2 2
< - 2/3 +1 ” Vl - V2||L2(O) + ”Ul - Uz”LZ(O)’ (45)
dy$

where M, is defined in the proof of Theorem 3.1.
Taking the inner product of (B;) with U — U, in L*(0) and using Lemma 3.1 and
Cauchy’s inequality again, we can get

d
T = Uy + i3] W = 1)

M; 2
=< ﬂ"’z ”ul_uZ”LZ(O)

1
+2/ (ma(Vi=Va) +y(th Vi = U Va) = (U} = U3) ) (Uh = Up) dy
@
(M, 4.n 1L = Uy 172 ) + @l V2 = V2l
= d18 1 2 12(0) 1 2 12(0)

+ 2/0 y(thVi = Up Vo) (Uh — Ua) dy. (4.6)

Notice that U, U, € C(0, T;L*(0)), then there exists a constant M, such that [U|? +
|Lb]? < M, Vt € (0, T), and

/O(V(UIVI — U, Vo)) (Uy = Uy) dy

= / yUi(Vi = Va)(Uy = Up) + Vo (U — Un)* dy
o

Sy MV = Vallpso)l Uy = Wl a0y + ¥ Vall o) 1 UL - Uzlliz(@) |th = Ul a0y
Hence, there exists a constant Cy such that

_/O(V(Ul Vi-Us Vz))(l,[1 - L) dy

< )’MuC12\]|| Vl - V2||Hé(('))||u1 - UZHH(I)((’))
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+ 7 CillVallga o) | h = Uall 2o | U = Ul o)

a8 ) 2MACH, )
< I = 1y o) + S IVi= Vally o
2°Ch V2l o i
+ ”ul - UZHLZ(O)'

)
Combining the above inequality with (4.5) and (4.6), we obtain

8M2CL,

Page 17 of 24

d _
E(”LII_UZH%%O)‘F drdrs? ” VI_VZHEZ(O)) SM(”LII_UZHEZ(O)"' ”VI_VZ”%Z(O))y
1642

where

dys

_ 4V2C1%[||V2(t)||?_1(1)(0) M}% M?2 8M2C},
M(t) = — 2 1) % 4,
® o T Tt < ) drd3?

Recalling that V3, V, € L2(0, T; H3(O)), so fOT M(s) dt < co. Thus we can obtain uniqueness

immediately from the above inequality, the Gronwall inequality, and the fact F; — F, =

U, — U, Gy — Gy = V1 = V2, uyg = uzg, V1o = V0.

Next, we will show the existence of a weak solution. Let Fy ,,,, Go,» € Hy(0), m=1,2,...,

such that

Fon — Fo in L*(0), as m — oo, (4.7)

Gom — Gy in L*(0), as m — oc. (4.8)
Then for each Fy,,, Go, m =1,2,..., there exists a unique strong solution (F,,, G,,)
for (3.1). We deduce from (3.16) and (3.17) that, for P-a.s. w € €2,

{F,u} is bounded in C([0, T]; L*(0)) N L*(0, T, Hy(0)) N L*(0, T; L*(O)) (4.9)
and

{G,} is bounded in C([0, T1; L*(0)) N L*(0, T, Hy(O)), (4.10)
which implies that

the sequence {yFme - F;Z} is bounded in L*3 (0, T; L4/3((9)). (4.11)

Therefore, we can extract a subsequence (denoted also by {(F,,;, G,;)}) such that P-a.s. w €

Q

F,—~F weaklyin L*(0, T; Hy(O)),
Gy — G weaklyin I? (0, T;Hé(@)),

yF,,G,, —Fi — & weaklyin L3 (0, T;LA‘/?’(O)).

(4.12)
(4.13)

(4.14)
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Combining the arguments of the uniqueness and the fact (4.7), (4.8), which implies that
{F,»} and {G,,,} are Cauchy sequences in C([0, T]; L*(O x €2)), the uniqueness of the limit
and (4.12)-(4.13) yield, for P-a.s. w € Q,

F,— F in C([O, T];LQ(C’))) and
(4.15)
Gun— G inC([0,T);L*(0)), asm— oo.

Therefore, extracting a subsequence if necessary, we can assume that yF,,G,, — F>, —
YEG - F3,a.e.in O x [0,T] as m — oo. Then (4.14) implies that ® = y FG — F?. Mean-
while, for any test function ¥ € Uy 7, (F,, Gi) satisfies (4.1) and (4.2). By using (4.12),
(4.13), (4.14), and (4.15), and passing to the limit, we see that (F, G) also satisfies (4.1) and
(4.2). The estimates (4.3) and (4.4) can be obtained from (3.16), (3.17), (4.7), (4.8), and
(4.15) directly. Thus, we can see (F, G) is a weak solution of (3.1) with initial (o, vo) by all
arguments above. Then the proof of Theorem 4.1 is completed. d

Remark 4.1 Since (F,G) € (L*(0, T; HA(0)))?, for any ¢ € (7, T), P-as. w € L, it follows
that there exists an earlier time #, € (0,¢) satisfying that (F, G) € (H}(0))?, which implies
that the weak solutions of (3.1) turn into the strong solutions after a null measure set (z, £y).
Hence, we obtain (F', G') € L*(0, T; L*(0)) x L*(0, T; L*(0)) and (F, G) € C(0, T; L*(0)) x
C(0, T; L*(0)).

Definition 4.2 A function (F,G): Ute[O,oo) O x t — R? is called a weak solution of (2.13)
if for any T > 0, the restriction of (F, G) on Ute[O,T) O x t is a weak solution of (3.1).

Repeating arguments similar to Theorem 4.1, we obtain the following result.

Theorem 4.2 Under the same assumptions of Theorem 3.1, for any (ug,vo) € L*(Og) x
L*(Oy), (2.13) has a unique weak solution.

5 The non-autonomous pullback D, -attractor for SBS
In this section, we will establish some priori estimates for the solutions of (2.13), and in-
troduce the ‘partial-random’ dynamical system generated by weak solution. By following
the argument in [8], we prove the existence of the non-autonomous pullback D, -attractor
for the system.

Assume that (F, G) is a weak solution of (2.13) with initial value (Fy, Gy). Let

M, =N max_|lallzoxr) (5.1)
1<j,k<N
My =N" max ||bellzoxr)y M =N"? max |cxllrooxr), (5.2)
1<k<N 1<k<N
and
Mj =N"? max ||brllpooxr)y, Mz =NY? max ||&llz0xr), (5.3)
1<k<N 1<k<N

where b, ¢ are defined in the proof of Theorem 3.1. We will also assume that M, < oo,

]\_/Ib<oo,}_\/lc<oo,]\_/[,;<oo,and}_\/[5<oo.
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Lemma 5.1 There exist two positive constants M, C, and a random process Ry such that

forP-asweQ, t>1

[E@ 20 + 1601 20,

t
<Me I (|F@) 20 + 160 120) + / e IRy(s,0)ds. (5.4)

Proof Taking the inner product of the first formula of (2.13) with F and the second formula
with G in L2(0), then using Cauchy’s inequality, Hélder’s inequality, and Lemma 3.1, we

can obtain

2

’F(t)HLZ(O) + dl‘SHF(t) le-l(l)((?) + HF(t) ”;(O)

4 |
dt
<My |F)| 20y + M| GO [ 12 + Rt ), (5.5)

—_—
where M; = % + My +20+y +4, My =a+5y?%, and

R(t)—Zdlei\_/I wl? LAk 472) | W5 |12
sho) =\ =5 + M Wil o) * | 20 + (@ +47°) W2l 720,

' (% * 709) IWillioy + 5 1Wallfs o) + IRl oy
Similarly, we have
d 2 2 2 2
1600y + B8[GO 1y 0) = IF O 120) + M3 [ GO 120, + Re(t ), (56)

2M2 —
where M3 = d2§ + M, +4 -8, and

R(t)—ZdzMil\_/I W 12 W |2 Wa 12 Ry |12
s(6,0) = ( T + M ) 1WAl o) + 1 Wil o) + BIWallEz ) + 1Rl P20

Choosing 8 > max(;{f—f + M, + 4} such that M; < 0, and denoting M; = —M;. We can
derive from (5.5) and (5.6) that

d _ _
E(”F(t) “;((’)) +C| G(t)HEZ(O)) + dlBHF(t)”iIé(O) + CdﬁHG(t)“:(g(@ + ”F(t)”;((?)

< My + O)[E®) ] 1200, + (Mo ~ CM5) [ G(1) | 120, + R (£, ) + CR (2, ). (5.7)
LetC = %, then
d _ i
ZUED 2 0) + CIGO] o) + b [E@ 5 0) + Cb [ G0) [ 0,
M 1
+ S F@ 0 + M]G0 20, + 3 IF @0

d _ -
= E(”F(t) “12,2((’)) +C|Go “i2(0)) + dl‘SHF(t)HZg)(O) + Cda8[ G(2) ”?{3(0)
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1 4 2 M%
D) |F@) “L‘*(O) + M ||G(@) ||L2((9) + E'Ol

- <(M1 +C)?  M?

5 + 63_22>|O| +Rs(t,w) + CRg(t, ). (5.8)

Denote

(M1 + 6)2 M2

R7(t,(1))= ( 2 +C—22)|O|+R5(t’w)+CR6(t:w))

the inequality (5.8) implies that

d - M _
E(”F(t) HEQ(O) +C| G(t)H;(O)) + %(”F(t) ”iZ(O) +C|G0 ”;(0))

_ 1
+ i3 [E@) 3 0 + Cad | G0 [y o) + 7 [E@] s 0) < Rr(t, ). (5.9)

o

From the Gronwall inequality, we see that for P-a.s. w € Q

[EO 120y + IGO0

IA

M, _ L M
& E D)+ EIG o) + [ € Rels 00 (5.10)

T

. ,C M .
Denoting M = E‘;’;HC}}, C =2 and Ry(t,0) = m&(t, w), the proof is completed.  [J

Lemma 5.2 For any nonrandom bounded set B € L*(O) x L*(0), there exists a random
time Tg(w) > 0 such that

|F@) HiZ(O) +|6@ ||i2(0) = 2/_; e “IRy(s, ) ds, (5.11)
forP-as.w € Q, forall t - > Ty(w), for any (F(z), G(z)) € B.
Proof 1t follows from Lemma 5.1 that
|F() H;(O) + ]G0 ||i2(o>
= M [F©) 160 ao) + [ IR 01
We can obtain from the above inequality that

OO o) + 160 Nz0) =0 ast—7— 00,

)HEZ(O)

Then there exists a random time Tg(w) such that for t — t > Tx(w)

t
e (| FO oy + 160 o) = [ e IR 0
-0

Thus, the proof is completed. O
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Corollary 5.1 For any nonrandom bounded B € L*(0) x L*(O), there exist a random time
Tg(w) > 0 such that

t+1
[ IFO 0+ 166 5+ 1F O oy ds < 8, 512

forP-as.w e Q, forall t — v > Tg(w), for any (F(t), G(1)) € B.

Lemma 5.3 For any nonrandom bounded B € L*(O) x L*(0), there exists a random time

T(w) > 0 and a random constant M, such that
[ 10+ 166 [0, < 3. (5.13)
forP-as.w e Q, forall t — v > Tg(w), for any (F(t), G(1)) € B.

Proof Taking the inner product of the second formula in (2.13) with ~AG in L*(0), and

using Cauchy’s inequality, Holder’s inequality, and Lemma 3.2, we obtain

d
ar “ G(2) Hiﬂ(@) +d> 5o H AG(2) ”22(0)

AM; 4d a2
<<d5 _’6>”Gt)”Hl(O + 20300 | G(O) 20 + ———2 1AW
4-1\_/1 3
( 55 )|| Wa(O) g0 + oo (IFI 20, * IWillzio) + IRl 0)- - (514)

Combining the assumptions (2.5), (2.14) with Lemmas 5.1-5.2, we have

4d2M

t+1 ]\_/I
/ 2260 | GO) 120y + 2 1AW 22 ) + ( Za +ﬂ)||Wz(S)|IH1<o
t

3 2
+ 2o UF@ 2oy * 1 Wllliz(o) +1Ry22 ) ds < 00,

for P-a.s. w € Q and for all £ — 7 > Tis(w). Therefore there exists a constant M such that

16110y = M, (5.15)

for P-a.s. w € Q and for all £ — 7 > Tg(w) + 1.
Similarly,

d
E”F”i[l(@) + dl(SOllAF”iZ(o)
4M? 4d, M?
< (Tab +o+ 3) IE 1730y + 261 CollEll 20 + T“MAWn@(@

100

aM’ 2y 3 .
+ (d—80 +1>||W1|| ytallG+ W2”H1(O (m + 5>||F+ Will 40

2y? 4 1 4
WHG + Walljae) + 5||AW1||L4(O)~ (5.16)
180
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Due to (2.5), (2.14), we have

t+1 4d1]\_/[2
| 2l + S AWl
t 0

4M}% 2 2
+ <d150 + I)HWlllH(l)(o) +O[||G+ WZ”]_](I)(@)

2

2y* 3 4 2y 4
+=—+=|JIF+W +——G+W
<d150 2) ” 1||L4(O) d180 ” 2”L4(O)

1
+ §||AW1||ﬁ4(O) ds < 00,

for P-a.s. w € Q and for all £ — v > Tp(w) + 1. Thus, applying the uniform Gronwall lemma
to (5.16), we see that there exists a constant M such that

IF I o) =M, (5.17)

for P-a.s. w € Q and for all £ — T > T(w) + 2. Denoting T(w) = Ts(w) + 2, we complete the
proof. d

6 Attractors for partial-random dynamical system
In this section, we introduce the partial-random dynamical system generated by a SPDE
defined on time-varying domains developed by Crauel et 4l. in [4], and prove the existence
of the non-autonomous attractor for partial-random dynamical system.

Assume that the probability space (2, F,P) with incremental shifts (x;):cr is a metric
dynamical system, R is a subset of the topology of space C}(R; C2(O; RN)) generated by
the domain varying diffeomorphisms r. The transformations ; : 2R — R defined by m;r(- +

s,-)=r(-+s+t,-) for t € R, form a one-parameter group (7;);cr With
Tps = 04 O T
for all s, ¢ € R. The product flow, given by
(kK XT)i=k; XX R—> w xR
for t € R, will be denoted by (i¢);cr-
For each (Fy, Go) € (L*(0))?, Theorem 4.2 implies that equations (2.13) have a unique

global solution (F, G). Define the operators

Y (¢ (w,1)) :L*(0) x L*(0) — L*(0) x L*(0) (6.1)

Y (£, (w, 7)) (Fo, Go) = (F(t; (w,7), Fo, Go ), G(t; (w,7), Fo, Go) ) = (F(2), G(t)). (6.2)

Here (F(¢; (w, 1), Fo, Go), G(t; (w, 1), Fo, Go)) is defined by unique solution process of (5.9)
with initial value (Fy, Gy) and the transform for domains r. From Theorem 4.2, we know
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that the definition makes sense. Then the family of operators {Y(£) : 0 < £ < +00} generates
a non-autonomous dynamic system, i.e.

T (0, (w, 7)) = Id(identity on L*(0)) V(w,7) € 2 x R, (6.3)

T(t + 5, (w, r))

=Y(t,kp(w,r)) o Y(s,(w,r)) foralls,t€[0,00)and (w,r) € Q x R. (6.4)
Now, we can define the attractor of the non-autonomous dynamic system Y.

Definition 6.1 ([4]) Suppose that D is a set of maps from Q2 x R to the power set of
L*(0) x L*(0) such that D(w, r) is nonempty for every (w,r) € Q x R and D € D. A map
A from Q x 9 to the power set of L2(0) x L%(O) is said to be a D-attractor if:

(1) A(w,r) is compact for all (w,r) € Q x R,

(2) A isinvariant in the sense that

’Y‘(t, (o, r))A(a), r) = kiA(w, 1)

for all £ € [0,00) and (w, r) € 2 x R,
(3) A attracts every D € D in the sense that

tlircr}o dist(T(t, Kk_¢(w, r))D(E_t(a), r)),A(a), r)) =0
forevery D e D.
Here dist(A, D) is for the Hausdorff semi-distance.

Definition 6.2 ([4]) Suppose that D is a set of maps from Q x R to the power set of
L2(0) x L*(0) such that D(w, r) is nonempty for every (w,r) € 2 x R and D € D. A map
K from Q x fR to the power set of L2(O) x L2(0) is said to be a D-attracting if

tlirglo dist(T (t, i_t(w, r))D(/Z_t(a), r)),I((w, r)) =0
for every D € D.

Theorem 6.1 ([4]) The existence of a compact D-attracting K is equivalent to the existence
of a D-attractor.

Remark 6.1 From Lemmas 5.2 and 5.3, we can find that there exists a compact D-
attracting K for the non-autonomous dynamic system Y defined above, attracting
bounded subsets of L2(O) x L2(O). Thus, using Theorem 6.1, we can obtain a unique
non-autonomous pullback attractor in L2(0) x L2(0).

Theorem 6.2 The partial-random system generated by the random-PDE (2.13) on domain
O has a unique non-autonomous pullback attractor in L*(0) x L*(O), attracting bounded
subsets of L*(O) x L*(O).
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