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Abstract

In this paper, we employ elementary methods to investigate the reciprocal sums of
the products of two Fibonacci numbers in several ways. First, we consider the sums of
the reciprocals of the products of two Fibonacci numbers and establish five
interesting families of identities. Then we extend such analysis to the alternating sums
and obtain five analogous results.
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1 Introduction

For an integer n > 0, the Fibonacci number F, is defined by
F,=F,1+F,, forn>2,

with Fp = 0 and F; = 1. There exists a simple and nonobvious formula for the Fibonacci

numbers:

(55 -0

The Fibonacci numbers play an important role in the theory and applications of math-
ematics, and its various properties have been investigated by many authors; see [1-4].

In recent years, there has been an increasing interest in studying the reciprocal sums of
the Fibonacci numbers. For example, Elsner, Shimomura, and Shiokawa [5-8] investigated
algebraic relations for reciprocal sums of the Fibonacci numbers. Ohtsuka and Nakamura
[9] studied the partial infinite sums of the reciprocal Fibonacci numbers. They established

the following results, where | -] denotes the floor function.

Theorem 1.1 Foralln> 2,

-1
i i | Fu2 if nis even;
Fi | Es-1 ifnis odd.

k=n
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Theorem 1.2 For each n > 1,
00 _1 . .
Z 1 | FiFua =1 ifniseven;
k=n FI% F,F, lfl’l is odd.

Recently, Wang and Wen [10] considered the partial finite sums of the reciprocal
Fibonacci numbers and strengthened Theorem 1.1 and Theorem 1.2 to the finite-sum case.

Theorem 1.3
(i) Foralln=> 4,

(Ex) [

(i) fm=>3andn=>2,then
mn -1 . '
Z i | Fua if n is even;
— Fy F,>o-1 ifnisodd.
Theorem 1.4 For all m > 2 and n > 1, we have
mn -1 . .
Z L ) EuFua -1 if nis even;
p F} F,F, 4 ifnis odd.

Furthermore, Wang and Zhang [11] studied the reciprocal sums of the Fibonacci num-
bers with even or odd indexes and obtained the following main results.

Theorem 1.5 We have

mn -1 .
Z 1 ) P ifm=2andn>3;
Fo | B -1 ifm>3andn>1.

k=n

Theorem 1.6 Forall n > 1 and m > 2, we have

(S |-

Theorem 1.7 Ifn>1and m > 2, then

mn 1 -1
— =Fy,0 -1

Theorem 1.8 For all n > 1 and m > 2, we have

mn -1

> E
=L4p—4.

k=n F22/<—1
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More recently, Wang and Zhang [12] proceeded with investigating the reciprocal sums
of the Fibonacci numbers according to the subscripts modulo 3 and found many identities.

Here are a few examples.

Theorem 1.9
(i) Foralln > 2,

" -1
L) | o
o FBk 3n-2-

(i) Ifm=>3andn>1, then
mn -1 . .
Z L | 2F3 if n is even;
— Fsi 2F3, 9 -1 ifnisodd.
Theorem 1.10 Ifn > 2 and m > 2, we have
mn 1 -1 2 2 . . .
Z 1 B Fs if n is even;
“—~ Fy F; —F; .-1 ifnisodd.

In this article, we focus ourselves on the sums and alternating sums of the products of
two reciprocal Fibonacci numbers. By evaluating the integer parts of these sums, we obtain

several interesting families of identities concerning the Fibonacci numbers.

2 Main results I: reciprocal sums
We first introduce several well-known results on the Fibonacci numbers, which will be

used throughout the article. The detailed proofs can be found in, for example, [4] and [13].

Lemma 2.1 For any positive integers m and n, we have
Fan + Fm+1Fn+1 = Fm+n+1~ (21)
Lemma 2.2 Ifn>1, then

Fy=Fyy—Fry, (2.2)

n

Fypi1 = FpiaFpia — FyaFy. (23)
Lemma 2.3 Let a, b, c, d be positive integers with a + b = ¢ + d and b > max{c,d}. Then
E,Fy—F.Fy=(-1)*""Fy_Fy_s. (2.4)

2.1 Reciprocal sum of FyFy.,
Lemma 2.4 For all n > 1, we have

Fzzn+1 +1> (1-"2+1 + 1)2 > F,Fya (F2+1 + 1). (2.5)

n n
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Proof It follows from (2.1) that Fy,,,; = F2 + F2

n+l*

Hence,

Ey o +1=Fy+2F.F2 +F  +1>Fy +2F. +1=(F} + 1)2.

n- n+

It is clear that Fﬁ 1 = FuFy41; therefore, F,ZI .1 +1>F,F,.1, which yields the second inequal-

ity. O
Theorem 2.5 Ifm > 2 and n > 1, then

mn -1
Z 1 ) F if nis even;
FiFra | F2-1 ifnisodd.

k=n

Proof We first consider the case where n is even. By elementary manipulations and setting
a=k-1,b=k+1,and c=d = k in (2.4), we obtain, for k > 1,

1 1 1 F,-FFa-F
F/g FiFr Fl?‘f’l FI%FIEH
_ Fk—leJrl _F/?
Flzplgﬂ
—1)k
LU 2.6)
ka+1

Now we have

f’: 1 1 1 o (1)Kt
=— - + .

ken Fka+1 F;% Frznn+1 k=n F13F13+1

Since # is even, it is easy to see that
mn (_1)k—1
Z F2F2 <0,
k=n kT k+1

which implies that
mn
1 1

> <. (2.7)
. FiFe  F;

A direct calculation shows that, for k > 1,

1 1 1

Flg +1  FiFra F/§+1

_ FBFea(FLy - F) = (R +1)(FY, +1)
(F} + D)FxFra(FE, +1)

+1

_ FeFin(Fy,, — B} = FiFea) - F} - Ff,, — 1
(Flg + l)FkaH(F]gH +1)
_ BFa(FiaFra - FY) - Fp - Ff -1
(F} + ) FcFrn(FE, +1)
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_ (-1)XFyFy —F? - F},, -1

(Ff + DFiFia(FE, +1)
<0.
Therefore,
1 1 1 e (DK + F2 + F2 +1
= - +
“~ FeFa Fp+1 Fpoa+1 “—~  (F+DEFea(F, +1)
1 1 F2+F2 ., +1-F,Fu
> — +
F2+1 F2,+1 (F2+1)F,Fp(F2, +1)
1 1 1
> 5 + 2 )
F2+1 F,Fa(F,+1) Fj +1
1
’ 2.8
P41 .

where the last inequality follows from (2.5).
Combining (2.7) and (2.8), we have

mn

1 1 1
Pl R P
P o LKLkl p
which means that the statement is true when # is even.

We now concentrate ourselves on the case where # is odd. It is obviously true for n = 1.
Now we assume that # > 3. A similar calculation shows that, for k > 3,

1 1 1 (-D)FFen+FL+F}, +1
Fi-1 FFra Fi, -1 (F{-1FFea(Fg, —1)

from which we get

o1 1 1 1

kZ FFoi F2-1 F2 1 FP-1 @9)
It follows from (2.1) that
Fopst = FyiFus + FyFon = FF + Fo
which implies that Fy,,; > F,F,42, and Fyy.5 > Fy,1 > Fﬁﬂ. Therefore,
FyuiFaniz > FiF, Froo. (2.10)

Invoking (2.6), (2.2), and the fact # is odd, we have

<1 1 1 E (e

ZFF PP +ZF2F2

ken kL k+1 n mn+1 k=n = kT k+1
11 1 1

> — — + -
F2 F.. F2F, F2 P2

n n- n+l n+l* n+2
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1 F;3+2 - F;% 1
= — + _
Fﬁ F5F3+1FV21+2 F22n+1
— i + F2n+2 _ F2n+2
Fi% F;«21F5+1F3+2 F22r1+1F2n+2
ok (2.11)

n

where the last inequality follows from (2.10).
Combining (2.9) and (2.11) yields that

I 1 1
E<ZFka “P_r
n k=n +1 n
O

from which the desired result follows immediately.

2.2 Reciprocal sum of Fy,_1Fa
Lemma 2.6 Forall n > 1, we have

Fgpi1 > Fouo1Fou(Fapaa +1).

Proof Applying (2.1) repeatedly, we have

Fgu1 = Fioy + F3, > Fry + Fapst = Fapet (Fanar +1) > Foy 1 Foy(Fapsn +1),

which completes the proof. O
Theorem 2.7 Foralln > 2 and m > 2,
— FocaFox B
Proof 1t follows from (2.3) that
F4n+1 = F2n+1F2n+2 - F2n—1F2m (212)
Fun3 = Foy1F0y — Fap_3Fouoa. (2.13)
Employing (2.4), we can easily get that
(2.14)
(2.15)

Fyy 2P = FoyaFay -1,
Fyp3Fou10 = Fyp1Foy + 2.
Applying (2.12), (2.13), (2.14), and (2.15), it is easy to see that, for all k > 2,

I _ _ Foj1Fo(Faksr — Far—3) — Fak—sFakn
Fyes  FyaFoxr  Faen Fyr3Foi 1FoxFaria
_ FusFyaFopnForen — F2  F2
- Fyr—3Fok1FoxFars1

1 1
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PPy -2
Fop 3P 1 FoxFara
>0,

which implies that

mn mn
1

1 1 1 1 1
)3 < Z( ) L (216)
FopaFo 41—

. Fap-3  Faxn1) Fan-s  Fampr  Fans

It follows from (2.1) that
Fapns1 > Fan = Fop1Foy + FopFop > Fay1Fay + 1.
Therefore, by (2.13) we obtain
Fans1 — Fon3Fou2 > Foy 1Foy — Fop 3F2p 2 +1=Fap 3 + 1. (2.17)

Elementary manipulations and (2.17) yield, for k > 2,

r 11 FxsFyxo—Fun-3
Fus+1 Fy_1Fox  Fan+1  (Fakes + D)ForciFox(Fagaa +1)
-1

< .
For1For(Fage1 +1)

Now we can deduce that

mn mn

1 1 1 1
) > - +)
Fy a1 For Fapz+1  Fuppa+1 Foxo1Fox(Fagn +1)

k=n k=n
1 1 1
> + -
Fin3+1  FyuaFp(Fana +1)  Fappa +1
1 1 1
> + -
Fin3+1  FyuaFou(Fana +1)  Fgp +1
1
> 00, (2.18)
F4n_3 +1
where the last inequality follows from Lemma 2.6.
Combining (2.16) and (2.18), we deduce
1 - 1 1
< < )
Fans+1 4= Fyabo Fans
which yields the desired identity. O

Similarly, we can prove the following result, whose proof is left as an exercise to the
readers.

Theorem 2.8 Foralln > 2 and m > 2,

R I D
—~ FyFn T
=n
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2.3 Reciprocal sum of Fox_qFaxs1
Lemma 2.9 Forall n > 2, we have

2
Fn+2

—F%, > 4F,  F,,1.
Proof It is easy to check that

F2

n+2

~F} = (Fu2— Fyoa)(Fusa + Fyn)
> (Fpe1 + Fuo1) (B + Fu1)
=F’ +F2 +2F, F..
= (Fps1 = Fu1)” + 4F,1F

> 4F, 1Fp.
Lemma 2.10 Ifn>1, then
Fgnia > (Fanz + 1)(Fapez +1).
Proof 1t follows from (2.2) that

Fsui2 = Fypiy — Fay = (Fansa = Fan)(Fansa + Fan) = Fane1(Fansa + Fan).
It is obvious that Fy,,1 > Fy,_2 + 1 and Fy,, > 1, which completes the proof.

Theorem 2.11 Foralln>1and m > 2,

i Far1Fokn e

Proof Employing (2.2), we can readily see that

Funia = Fapoo — Fay = Fops1 (Fopsa + Fay) = F5,

n - 2n+

1t 2F2;1F2n+1r

Funo =Fy, —F3, 5 =Fyu1(Fay + Fay ) = 2F5, 1Fa, — F5, ;.

n

Applying (2.4), we can establish the following identities:

2
Fypi = FouFopia +1,

E3  =FyoFoy+1,
E3 = FyyaFop +1.

With the help of these identities, we now arrive at
Finvz = Fan-2 = Fy .y + Fyy g + 2F2uFant = 2Fan 1 Foy

) 2 2
=Fyn +Fyq +2F,,

Page 8 of 26
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= (FouFomsa + 1) + (FapoFon + 1) + (FapoFopsz +1) + F,

= (Fous2 + Fop)(Fop + Foy0) +3

_ FanioFaps

= +3. (2.19)
F2n—1F2n+1

Elementary manipulations and (2.19) yield that, for k > 1,

o 1 1 PPy (Fakes — Faks) — FuaFaren
Fir  FuciFoun  Far Faj2For1Foiv1Faksn
_ 3Fok-1Fok
* FaaFok1Fokn Fagero
>0, (2.20)

which implies that

mn

271 <i< ! ! ) ! ! ! (2.21)
k=n

- = — < .
= ForaForn Fajo  Faxsz) Fan2  Famniz  Fana

Invoking (2.20) and Lemma 2.9, we have

1 1 1
Fyo+1  FyiFopyn Fagp +1

Py Fop1 (Fakez = Far—2) = Fax2Faks2
© (Far + Dy Forsn (Farsn +1)
Fypa + Fagio +1
(Far—2 + 1) Fop 1 Fogs1(Fagsa + 1)

_ 3FyFora — (Fyy,y — F ) - 1
 (Fakea + )P 1Fopar (Fagsa +1)

3Fok-1Foks1 — 4F2k_1F2k1 — 1

(Far—2 + 1) For_1Fops1(Fagsa +1)
1
(Fak—z + 1)(Faies2 +1)

from which we deduce that

mn mn mn

> i L E ) L E

— by = \Faxa+1 Faea+1) 4= (Fagz + 1)(Fagsz +1)
1 1 ““ 1

= - +
Fano+1  Fipypa +1 kz (Fak—2 + 1)(Fags2 +1)

=n

1 1 1
> + -
Fing+1  (Fang + 1)(Fansa+1)  Fguio +1
1
> — (2.22)
Fyp+1

where the last inequality follows from Lemma 2.10.



Liu and Wang Advances in Difference Equations (2016) 2016:136 Page 10 of 26

Combining (2.21) and (2.22), we obtain

1 — 1 1
< < )
Fana+1 4= FoabFoa Fana

from which the desired result follows. O
Similarly, we can obtain the following result, whose proof is omitted here.

Theorem 2.12 Foralln>1and m > 2,

mn 1 -1
> =Fyp— 1.
i FarFarsa

3 Main results II: alternating reciprocal sums
In this section, we extend the analysis of the sums of the products of two reciprocal

Fibonacci numbers to alternating sums.

3.1 Alternating reciprocal sum of FiFy.4

Lemma 3.1 For n>1, we have

Fn+1 i _ F2n+1 + (_l)n -1

- ’ (3'1)
Fn F2n F2n
F 1 F -1)"+1
n+l - = 2n+1 +( ) + ) (32)
Fn FZn FZn
Proof Applying (2.1) repeatedly and (2.4), we derive that
Fn+1 _i _ Fn+1F2n_Fn
Fn FZn FnF2n
_ Fn+1(Fn—1Fn +FnFn+1) _Fn
FnFZn
_ Fn+1Fn—1 +F5+1 -1
FZn
_ (FuFpa _F;?,) + (F,% +F;3+1)_1
F2n
Py + (<) -1
F2n )
Then (3.2) immediately follows from (3.1). O
Lemma 3.2 Ifn>2, then
1 F,
s, (3.3)
F2n -1 FnF2n+1
1 F,
. (3.4)

F2n+1_FnF2n+1
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Proof 1t follows from (2.4) that

1 _ Fn+1 _ FnF2n+l - Fn+1F2n + Fn+1 _ (_1)n+1Fn + Fn+1 >
F2n -1 FnF2n+1 (F2n - l)FnF2n+l (FZn - I)FnFZnH
Similarly, we can prove (3.4). d

Lemma 3.3 For n>1and m > 2, we have

F. F,
2n+1 _ mn+2 S 0, (35)
F2n an+1

F2n+2 _ an+2 <0. (36)

F2n+1 an+1

Proof With the help of (2.4), we see that

F2n+1 an+2 _ F2n+1an+1 - FZnan+2 _ (_1)2,,,_,.2 F(m—2)n+1

_ = = > 0.
F2n an+1 FZVIanH FZnFmVHl
A similar analysis yields (3.6). O
Theorem 3.4 Ifm > 2 and n>1, then
-1
f: (=1)k ) Faw-1 if nis even;
— FiFra | -F, -1 ifnisodd.
Proof Employing (2.4), we derive that
(-1)k _ F?., — FxFrin _Fen Fro
FyFra FyFrn Fe  Fra
which implies that
% (_l)k _ Fn+1 _ an+2 (3 7)
ken Fka+1 Fn an+1
Furthermore, it follows from (3.6) and (2.4) that
Fpa Fns - Fra Fone _ Fyi1Fopi1 — FpFonin _ (1 Fi ‘ (3.8)
Fn an+1 Pn F2n+1 FnF2n+1 FnF2n+1
We first assume that # is even. Then combining (3.8) and (3.3), we obtain
Fn+1 _ an+2 < Fn+1 1 (39)

= < .
Fn anH FnF2n+1 F2n -1
On the other hand, it follows from (3.1) and (3.5) that

Fn+1 1 an+2
SLAL LN
Fn FZn an+1
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which means that

F, F 1
n+l _ mn+2 s (310)
Fn anH FZn

Now combining (3.7), (3.9), and (3.10), we deduce that

mn

1 —1)k 1
< re <
Fy, FiFe Fou -1

k=n

which shows that the statement is true when # is even.
We now consider the case where # is odd. It is clearly true for # = 1, so we assume that
n > 3. Applying (3.8) and (3.4), we can see that

Fn+1 _ an+2 <- Fn+1 < 1 ) (3'11)
Fn an+1 FnF2n+1 F2r1 +1
It follows from (3.2) and (3.5) that
FVH—I 1 an+2 F2n+1 an+2
+ — - = - >0,
Fn F2n an+1 FZn an+1
which means that
Fn+1 _ an+2 _i‘ (3.12)
Fn an+1 F2n
Combining (3.7), (3.11), and (3.12), we get that
1 & (-1 1
D Tt
F2n ken Fka+1 F2n+1
which yields the desired identity. O

3.2 Alternating reciprocal sums of Fy,_1Fax

For n > 2, we define

1 (-1)" 1
f(l’l) = - - ’
3Fu2Fu  FyuabFy  3F,Fann
1 (-1)" 1
g(n) = - - ,
3F2Fua+1 By 1Fy,  3F,Fua+1
1 (=1)" 1
s(n) = . + )
3Fy oy +1  Fyuibyy  3F,Fna+1
-1 -1)" 1
£n) = (-1)

- + .
3F2n—2F2n—1 F2n—1F2n 3F2nF2n+1

It is not hard to check that f(#), g(n), s(n), and t(n) are all negative if n is even and positive

otherwise.
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Lemma 3.5 For n > 2, we have
fm)+f(n+1)>0. (3.13)

Proof The statement is clearly true when 7 is odd, so we assume that # is even in the rest

of the proof. Applying (2.3), we derive that

1 1 1 1
8Fs, 2Fou1  Fau1Fo * FowiFones  3FaoFans
11 1 1 1
3 (PZW_Zan_l - F2n+2F2n+3) - (PZHFM - FMHPMZ)
1 FBypFops — FoyoFon1 FopniFonva — Fon1Fon
"3 FyaFoniPoaFons  FaniFouFanFonso
1 BypaFopes — FouFona + FanFonn — Fou-aFon
"3 Fou2Fon1Fon2Fon3

Frni1Fonsa — Fap1Fop

Fyu1FonFoniFopia

fn)+f(n+1) =

1 Fapz + Fapn B Faps
3 FoyaFon1FonsaFons  FanaFonFaniiFansa
1 3Fann B Fapn
3 FysFouiFonsaFones  Fon1FonFansiFonso

_ Faun ( 1 1 >
 Fou1Fopr \FonaFoms  FonFonn
_ Fua Fabown —FanaFoms

" FyuaFonsa FonaFouFons1Fonss

_ Fun 2

" FoyiFonsy  FonaFonFoniiFonss

>0,

where the last equality follows from (2.4). O

Remark From the proof of Lemma 3.5 we can easily derive that if # is odd, then

F4n+1 1 1
n)+f(n+1) = ( + )
4 4 Fyp1Fono \ FonaFonz  FonFona
F4n+1 2

> . .
Fyp1Fonvy FouaFonFopnaFonys

Therefore, whether # is even or odd, we always have

(3.14)

F. 2 2
f) +fn+1) = 0. > .
FyuaFony  FonaFoubonaFons  FonaFonFoniiFonys

Lemma 3.6 Ifn>2 and m > 2, we have

f(n) +f(m+1) +f(mn)> 0.
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Proof If mn is odd, then the result follows from (3.13) and the fact f(mn) > 0. Now we

consider the case where mn is even. It is straightforward to check that

1 1 1
3F2mn—2F2mn—1 F2mn—1F2mn 3F2mnF2mn+1

flmn) =

_ FZmnFZmn+1 - F2mn—2F2mn—1 - 3F2mn—2F2mn+l

3Fmn—2F2mn-1F2mnFomns1
_ Fon(Fomn + Fomn-1) = (Famn = Fayn-1)Frmn-1 = 3F2mn—2Fomns1
- 3Fmn-2F2mn-1F2mnFomn1
F3pn + Fns = 3Famn = Fapun1) (Famn + Fan-1)
3Fmn—2F2mn-1F2mnFomns1

4F; 2F;

mn-1 " 2mn

3F2mn—2F2mn—1F2mnF2mn+1

Invoking (2.4), we get

2 2 _ 2 2
F2mn - 2F2mn—l = (FZmn—l + F2mn—2) - 2F2mn_1
= 2FmnoFomn + Fappy o — F2
= 2mn-24"2mn-1 2mn-2 2mn—-1

= 2F2mn—2F2mn—1 - FZmn—BFZmn
= FZmn—ZFZmn—l - (FZmn—3F2mn - FZWM—ZFZMH—I)
= F2mn—2F2mn—1 - (_1)2mn—2

= F2mn—2F2mn—l -1

Therefore, we have

_2(F2mn—2F2mn—1 - 1) S -2
3F2mn—2F2mn—1F2mnF2mn+1 3F2mnF2mn+l

f(mn) = (3.15)

Combining (3.14) and (3.15), we obtain

2 2
fn) +f(n+1)+f(mn) > -
F2n—2F2nF2n+1F2n+3 3F2mnF2mn+l
2 2

> — .
T ByuFyaFonaFons  3FaFunn

Since Fy;41 > Fa, and

Fyy = Fop1Fon + FonFops1 = Fop-3Fops2 + Fan-2Fons,
we determine that

fn) +f(n+1)+f(mn)>0.

The proof is completed. O
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Lemma 3.7 Ifn > 2 is even, we have

gn)+g(n+1)<0.

Proof From the proof of Lemma 3.5 we know that

1 1 1 1
gn) +g(n+1) = - + -
3FyoFya+1  FyiFyy  FopaFonn  3Fu0Fus+1
_ 3(F2n+2F2n+3 - F2n—2F2n—1) _ ( 1 _ 1 )
(3Fyp-2Fou-1 + 1)(3Fou42F2p3 + 1) Fyp by FopiFonen

_ 9F4n+1 _ 9F4n+1
(BFyu-2F2u-1 + 1) BFauaFons +1)  9Fsu1FouFopiiFonsa

For n > 2, we have

(BF-2Fan-1 +1)B3F2us2Fns3 + 1)
> 9Fou2Fon1F2n2Fones + 3FansaFons3
= 9Fu 1Fon2(Fan-2Fons3 — FanFans1)
+ 3Fn2Fanes + YFon1FonFani1 Fonso
= 9Fy 1FonFons1Fonsa + 3FouaFone3 — 18F2, 1Fon42
= 9F, 1FanFaons1Fansa + 3Fans2(Fanss — 6F2,1)
=9Fy 1FonFonsiFansa + 3Fap42(3Fan-2 — Fap1)

> 9 1 FonFoniFansas
which implies
gn)+g(n+1)<0.
This completes the proof. d

Lemma 3.8 Ifn >0 is even, then

1

— <0.
3F2HF2}’I+1 +1

g(n) +

Proof The result follows from the definition of g(#) and the fact 3F, > F,,,. O
To introduce the property of s(n), we need two preliminary results.

Lemma 3.9 Ifn>5, then
FynFypa > 3F, 1 FyFpaFyio.

Proof 1t is easy to see that 2F, > F,,; for n > 3. We claim that 5F,, > 3F,,; if n > 3. First,
the claim holds for n = 3 and n = 4. Now we assume that n > 5. It is straightforward to
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verify that
5F,=3F,+2F,=3F,+2F, 1+2F, >3F,+2F, 1+ F,_1=3F,.1.

Since 5F,, > 3F,,1 and 2F,,,1 > F,..», we have 5F,, > F,..3 for n > 3.
It follows from (2.1) that F,, = F, 1F, + F,,F,,,1 and

F2n+1 = Fn—ZFrHZ + Fn—lFrHB = Fn—ZFnJrZ + Fn—anJrZ + Fn—anJrl)

from which we derive that

F2nF2n+1 _ F2n . Z:'2n+1
Fn—anFn+1Fn+2 FnFn+l Fn—an+2

Fn—l Fn—Z Fn+1
=1+ 1+ +

Fn+1 Fn—l Fn+2
Fn—Z Fn+1 + Fn—l Fn—Z Fn—l

+ + +
Fn—l Fn+2 Fn+1 Fn+1 Fn+2
Fn—Z Fn+1 + Fn Fi’l—l

=1+ + +
Fn—l Fn+2 Fn+1 Fn+2
3 1
>l+4—-+-+—-+ =
5 5 5 5
=3,
which completes the proof. 0

Lemma 3.10 For n > 5, we have
F2n+1(Fn+3 - 6Fn—l) > (Fn—ZFn—l + 1)Fn+3-
Proof 1t is easy to see that Fﬁ_szz > F,,3 for n > 5, and thus we have

Fopi1Fpz = (Fn2Fns2 + Fu1Fpi3)Fra
= Fz,anJrZ + Fn—ZFn—an{’)
> Fn+3 + Fn—ZFn—IFn+3

= (Fn—ZFn—l + I)Fn+3'
It is straightforward to check that F,,3 = 5F,_1 + 3F,_2, from which we get
F,.3—-6F,.1=3F, —-F,1>F, .

Combining the last two inequalities yields the desired result. O

Lemma 3.11 Ifn > 3 is odd, then

1

—>0.
3F4nP4n+1 +1

s(n) +s(n+1)—
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Proof Since n is odd, we have

-1 1 1 1
+ - +
3F b1 +1  Fou by Fouubonn  3FhuaFus +1

s(n)+s(n+1) =

1 1 1 1
N (FZHIFZH - F2n+1F2n+2> B <3F2n2F2n1 +1 - 3F2n+2F2n+3 + 1>

~ Finil B 9F4nn

By FouFonnFoney (3F2u2Fau 1 +1)(3FauiaFonss +1)

S Finn B 3Fann
FonaFonFoniiFonvy  (BFan-2Fau1 + 1)FopsoFonys

B 1 * Fap1 (Fonys — 6F3,1)

" FyrFouFoniFonsy  (3Fan-aFon1 + 1)Fopis

. 1 . Fun1(Fany3 — 6F2,1)
Fyn1FonFoniiFonva  (3F2n-2Fau1 + 3)Fanis

1

> 7
3F1FFanFons

where the last inequality follows from Lemma 3.10.
Applying Lemma 3.9, we have

3FuuFane1 + 1> 3F4,Fa1 > OF2, 1F0,Fopi1 Fopes

which implies that
1 1
s(m)+s(m+1)— ———>s(m) +s(n+1) -
3F4nF4n+1 +1 9F2n—1F2nF2n+1F2n+2
1 1
> f—
3F2n—lF2nF2n+1F2n+2 9F2n—1F2nF2n+lF2n+2

>0,

which completes the proof. 0

Applying a similar analysis of f (1), we can obtain the following properties of £(n), whose
proofs are omitted here.

Lemma 3.12 Forn > 2,
t(n) +t(n+1)<0.

Lemma 3.13 Ifn > 2 and m > 2, we have
t(n) + t(n +1) + t(mn) < 0.

Theorem 3.14 If m > 2 and n > 3, then

-1
f; (-1)k | 3Fn2Fon if n is even;
For_1Fok | BFwaFa -1 ifnisodd.

k=n
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Proof We first consider the case where 7 is even. With the help of f(n), we have

mn _1 k 1 1 mn
A - - .
i FoxaFor - 3FanaFon 3FamnEomna 1
Lemma 3.5 implies that
mn-1
> flk)>o.
k=n+2
Furthermore, applying Lemma 3.6, we get
mn mn—1
D fk) =f () +fn+1) +f(mn) + D f(K) > 0.
k=n k=n+2
Hence, we obtain
mn _1 k 1
> - < : (3.16)
By 1Fox - 3Fau-aFaua

k=n

It follows from Lemma 3.7 and Lemma 3.8 that

mn

mn
(-1)k 1 1

P — Sa

kn 2k—1F2k 3FZn—ZFZn—l +1 3F2mnF2mn+1 +1 e

mn-1
1 1
. S— ) — I
3Fyu0F2 1 +1 ; gk) (g(mn) * 3EyunFomne1 + 1)

1

> - - (3.17)
3F, 2F, 1 +1
Combining (3.16) and (3.17) yields
1 o (-1)k 1
<Y ,
3FynaFya +1 = FyaFor  3F2Fon
which shows that the statement is true when # is even.
Next, we turn to the case where 7 is odd. It follows from Lemma 3.11 that
mn k mn
-1 -1 1
> - B -3
kn FZk—1F2k 3FZn—ZFZn—l +1 3FZ;’;1;11:'2;';1;'&1 +1 ken
_1 1 mn
= —|s(m)+s(n+1) - —) - s(k)
3F2n—2F2n—1 +1 ( 3F2mnF2mn+1 +1 k;z
<—— |s(n) +s(m+1) - 7) - s(k)
3Fy 2Fy 1 +1 ( 3F4,Fap +1 k;z
-1
(3.18)

<—
3F,2F1 +1
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If mn is even, then it follows from Lemma 3.12 that ) ;" #(k) < 0, and hence

% -k -1 1 -

= + - tk)
i FoxaFox - 3FauoFon1 3Faymnbomna 1=
-1
>—\
3Fn2Fn
If mn is odd, then it follows from Lemma 3.13 that
mn k mn
-1 -1 1
> D _ + -tk
i FoxaFok - 3FauoFon1 3FaymnFomna 1=
-1 1 mn-1
= + - ) k)
3F2n—2F2n—1 3F2mnF2mn+1 k=n+2
- (t(n) +t(n+1)+ t(mn))
-1
>—\
3F2n—2F2n—1
Therefore, if 7 is odd, then we always have
mn k
-1 -1
> D . (3.19)
pam Fy1Fox - 3Fu2F2,1
It follows from (3.18) and (3.19) that
-1 o (-1 -1
<Y e ,
3Fynaba 4= FacaFox 3FanaFopa +1
which shows that the assertion for odd # also holds. O

Similarly, we can consider the alternating reciprocal sums of Fy;Fyi,1 and obtain the
following result, whose proof is similar to that of Theorem 3.14 and is omitted here.

Theorem 3.15 Ifm > 2 and n > 2, then

m 1
i (-1)k | 3FpaF, -1 if n is even;
FoxFogs1 | -3FywFo  ifnisodd.

k=n

3.3 Alternating sums of Fyx_1Fak4

We first introduce the following notation:

1 (-1)" 1
)= T B Fn 3B
3 2n-1 2m-1F2n 3 2n+1
1 (=1)" 1
B =35 1" E B 31
3 2n-1 1 wm-1Fon 35, -1
-1 (=" 1
Y= 3 1 FoaForn 3, -1
3F;,, -1 wm-1Fon - 3F5,,, -1
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-1 (-1) 1

8(n) = + .
3F22n 1 F2n—1F2n+1 3F22n+1

Itis not hard to check that «(n), 8(n), y (1), and §(n) are all negative if  is even and positive
otherwise.

Lemma 3.16 Ifn >0 is even, then
a(n) +a(n+1)<0.

Proof Since n is even, we have

1 1 1 1
p— + —
3F3, 1 FowiFop  FopaFons  3F3,.5

) 1( 1 1 ) 1 ( 1 1 )
F3. F22n+3 Fyi \Fan-1 Fopus

a(n)+a(n+1) =

=)
Fyuq F2n+3 " Foun

( Fru3 )
F2n+3 F2n 1F2n+1

Fyy1Fo1 — Foue 3F2n+3>

Fo1 Foues

1

Fr1 Foues

w|>— w|»—n

Fryu1FopiFonss

“3leas) (&
5 )
3l mn)

)

1
(an 1 Fonz ) Foue 1F2n+lF2n+3

where the last equality follows from (2.4). O

Lemma 3.17 Forn>0,

6F1F2nn > (3F; —1)F,

n+3*
Proof 1t is easy to see that the result holds when n < 5. Next we show that, for n > 5,
2Fs,1Fona1 > FouFope1 > Fo_ F1 s,

from which the desired result follows.
The first inequality is obvious. It follows from (2.1) that

F2n = Fn—ZFn+3 + Fn—BFn+2:

F2n+l = Fn—an+3 + Fn—ZFn+2:
which implies that

F2nF2n+1 = Fn—ZFn—lFZJrg + Fﬁ,an+2Fn+3 + Fn—SFn—an+2Fn+3 + Fn—BFn—ZF;EJrz

n—ZFn—ng.,.g + (Fn SFn 1— ( 1) ) n+2Fn+3 + Fn 3Fn an+2Fn+3
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+Fy3F,2F},,
= FyaFurFo g + 2F, 3Fy 1FyaFuis + FusFuoFryy = (-1)"FriaFpis
> Fy oF, 1F>? 5+ Fy 3F, 1F2 3 + F, 3F, oF2,, — (<1)"F,42F .3
=Fy \Fp 3+ FusFuaF;,, = (<1)"FuaFs
> F2 |F:

n+3?

where the last inequality follows from the fact that, for n > 5,
Fn—3Fn—2Fn+2 = 2Fn+2 > Fn+3~
This completes the proof. O

Lemma 3.18 Forn>1,

B(n)+B(m+1)>0.

Proof 1t is obviously true when # is odd, so we assume that # is even. Now we have

1 1 1 1
Bn) +Bn+1) = | — ) - -
3F2n—1 -1 3F2n+3 -1 F2n—1F2n+1 F2n+1F2n+3
_ 3(F3,.3 —F3,1) Bz — B
(BF%, . -1)(3F3,,5-1) Fo1FoniFons

_ 9F241(Fans3 — Fop-1) Bz — Py
(3F22n_1 - 1) (3F22n+3 - 1) F2n—1F2n+1F2n+3 ’

Since

(3F22n—1 - 1) (3F22n+3 - 1)

= 9F22n—1F22n+3 - 3F22n—1 - 3F2

on+3 T 1

= 9F2"—1F2”+3 (F22n+1 + 1) - 3FZZn—l - 3F22n+3 +1

= 9F,1F3,,,1Fons3 + 9Fau_1Fanis — 3F;,_ — 3F5

m+3 T 1

<9F, 1F5, .\ Fonss + 9F2, 1F2,,3 — 3F5,.5
= 9F2n—1F22n+1F2n+3 + 3F2n+3 (3F2n—1 - F2n+3)
=9F,1F5, 1 Fonis = 3F2u3(2F2-1 + 3F2,2)

2
< 9F2n—1F2n+1F2n+3:
we have

Bn)+Bm+1)>0,

which completes the proof. g
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Remark From the proof of Lemma 3.18 we can derive that if # is odd, then

1 1 1 1
BW +Bn+1) = (0 - — " _
3FZ;«;-l -1 3F2n+3 -1 FZn—1F2n+1 F2n+1F2n+3

< 1 1 > < 1 1 )
> - — _
3F;, -1 3F,.5-1 Fyp b FopaFons

_ 9F241(Fans3 — Fon-1) Bz — Py
(3F22n_1 - 1) (3F22n+3 - 1) F2n—1F2n+1F2n+3

> 9F22n+1 _ F2n+1
(3F22n—1 - 1)(3F22n+3 - 1) F2n—1F2n+lF2n+3
_ 9F22n+1 1
(3F22n—1 - 1) (3F22n+3 - 1) F2n—1F2n+3
> 3F22n+1 1

(8F3,., ~DF3,;s  FaniFanus
_ 3F3u-1(F3,1 — Fan-1Fanss) + Fonys
(3F22n—1 - 1)F2”*1F22n+3
F2n+3 - 31:'2;4—1
(3F22n—1 - 1)F2”—1F22n+3

_ 2Fy, + Fun
(SFZZn—l - l)an—1F22W+3
Thus, we have that, for all 7 > 0,
2F2n + an_z 2
B(n) + B(n+1) > > . (3.20)
(3F22n—1 - 1)F2"*1F22n+3 (3F22n—1 - 1)F22n+3

Lemma 3.19 Ifn>1and m > 2, we have
B(n) + B(n+1) + B(mn) > 0.

Proof 1f mn is odd, then the result follows from the facts B(mn) > 0 and (1) + B(n+1) > 0.
Next, we focus ourselves on the case where mmn is even. It is easy to see that

1 1 1
Blmm) = - I
3F2mn_1 -1 FZmn—IFZmn+l 3F2mn+1 -1
— 3F22mr1+1 - 3F22mn—1 _ 1
(3F22mn71 - 1)(3F22mn+1 - 1) FZmn—1F2mn+l
31:'22;’;1;'14—1 - 3F22Wl}’l—1 _ 1
3F22mn—1 : 3F22;'nr1-*—1 Fomn-1Fomn+1
_ F22mn+1 - FZZmn—l _ 1
3F22mn_1F22mn+1 FZmn—1F2mn+1

Furthermore, since

2 2 2
Fymi = Fopn1 = Fomns1 (Famn—a + 2Fampn1) — Fy

2
= 2F2mn—11:'2mn+1 + F2mn—2 (FZmn—l + FZmn) - FZmn—l
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2
= 2F2mn—1F2mn+l + PZmn—ZFZmn—l + (FZmn—ZFZmn - FZmn—l)
2mn-1
= 2F2mn—1F2mn+1 + PZmn—ZFZmn—l + (_1) "

> 2F2mn—1F2mn+lr

we have
2F2mn—lF2mn+l 1 1
B(mn) > — 5 - =- .
3F2mn—1F2mn+l FZmn—1F2mn+l 31:'2mn—1F2mr1+1

From (3.20) we see that

Bln) + Bln +1) + Blmn) : :
n) + B(n+1)+ B(mn) > -
(3F22n71 - 1)F22n+3 3F2mn—1F2mn+1
2 1
z 2 2
(3F2n_1 - 1)F2n+3 3F4n—1F4n+1

> 0,

where the last inequality follows from Lemma 3.17. O

Applying a similar analysis of 8(n), we can obtain the following properties of y (), and
the details are left as an exercise.

Lemma 3.20 For n > 1, we have
y(n)+ymn+1)<0.

Lemma 3.21 Ifn>1and m > 2, then
y(m)+ym+1)+y(mn)<O0.

Lemma 3.22 Ifn>1is odd, then we have

S(n)+8(n+1)— > 0.

2
4n+1

Proof Since n is odd, we have

1 1 1 1

d(m)+8(m+1)=—-——+ — +—
Ban_l F2n—1F2n+1 F2n+1F2n+3 3F2n+3

Applying the argument in the proof of Lemma 3.16, we obtain

F2n+3 - F2n—1 S 1
2 2 2 2
FZn—lFZerFZ F2n—1F2

n+3 n+3

S(n)+8(n+1)=
Since Fyu1 = Fop-2Fousa + Fou_1Fo,.3, we have Fy, . > F,_1Fy,.3. Thus,
3FZ}4+1 > F22n—1F22n+3‘

Combining the last two inequalities yields the desired result. O
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Theorem 3.23 Ifm > 2 and n > 2, then

1
f: (-1 | 3F, -1 ifniseven;
Fok1Fokn | -3F},_,  ifnisodd.

k=n
Proof We first consider the case where 7 is even. Now we have

1 1

=— - <0,
3F2mn—1 F2mn—1F2mn+l

o(mn) +

3F2

2mn+1

where the inequality follows from the fact 3F,_; > F,,1.

Combining Lemma 3.16 and the last inequality, we derive that

= - -y
Fy1Fos1  3Fs,, 3F;

k=n 2mn+1 k=n
1 mn-1 1
= - a(k) - <oz(mn) + —)
3F2Zn—1 kXZ,; 3I:'22m;'1+1
1
> —.
31:'22;'1—1

With the help of B(n), Lemma 3.18, and Lemma 3.19, we get

mn (—l)k 1 1 mn
= - - k
Z 3F}, -1 3F} 1 kZ )

For 1Foa1

k=n 2mn+l
mn-1
< — (BN + Blr+ 1)+ o) - 3 BR)
3F2n_1 -1 k=n+2
1
) 3F22n—1 -1 '

Therefore, we arrive at

1 mn _1 k 1
<D — <3m2 ’
3P2n—1 k=n Fyi1Forn 3F2n—1 -1

which shows that the statement is true when # is even.

We now turn to the case where # is odd. We have

mn mn

3 (-1 -1 1 3
== + 53 - y (k).

FoyxaFon  3F;,_ -1 3F 1 k=n

k=n 2mn+l

If mn is even, we easily see that

f:y(k) <0

k=n

Page 24 of 26
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by Lemma 3.20. Therefore,

> .
pam Fy1Fokn - 3F3, -1

If mn is odd, then employing Lemma 3.20 and Lemma 3.21, we deduce

mn mn-1
(=1)k -1 1
= + - E y (k)
k=n FZk_lFZk'*'l 3F22n—1 -1 3F22mn+1 -1 k=n+2

- (y(m) + y(n+1) + y (mn))
1
g 3F22n—1 - 1'

Thus, we always have

> ’
- Fyc1Fora ~ 3F3, -1

provided that # is odd.
Since 7 is odd, it follows from Lemma 3.22 that

f: 8(k) > 0.

k=n+2

Furthermore, applying the last inequality and Lemma 3.22, we derive that

mn k mn
-1 -1 1
S L S Y e
Fy1Forn  3F;,; 3F pa

k=n 2mn+1
LS sw (30080141 37— )
= - () +6(n+1) - ———
3Fzzn—l k=n+2 3F22mn+1
-1 1
<z —(dm+s(n+1) - —;
31:'2;'1—1 3FALn+1
-1
< —.
3FZZn—l
Therefore, when 7 is odd, we have
-1 o (=D -1
2 < Z = <3m2
3F2n_1 -1 ken F2k—1F2k+1 3F2n_1
which yields the desired identity. O

Similarly, we can prove the following result, whose proof is omitted here.

Theorem 3.24 If m > 2 and n > 2, then

mn -1
Z (-1)k | 3F;3, if n is even;
FoiFoka | -3F2, -1 ifnisodd.

k=n
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4 Conclusions

In this paper, we investigate the sums and alternating sums of the products of two recipro-
cal Fibonacci numbers in various ways. The results are new and interesting. In particular,
the techniques for dealing with alternating sums can be applied to study other types of

alternating sums, which will be presented in a future paper.
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