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Abstract
In pest control, taking the lag of parasitic eggs, the lag effect of pesticide poisoning
and the age of releasing natural enemies as control variables, combined with the crop
fertility cycle, researches on the optimization problem of pest control models at
seedling stage, the bud stage, and filling stage of crops fill in a gap. For these
purposes, a generalized hybrid optimization problem involving state delay with
characteristic times and parameter control is presented. Then an algorithm based on
a gradient computation is given. Finally, two examples in an agroecological system
are given to exhibit the effectiveness of the proposed optimization algorithm.

Keywords: hybrid optimization problem; time delay; gradient; agroecological
system; pest control

1 Introduction
A mathematical model for continuous control of insect pests is mostly used by a differ-
ential equation to describe the relationship between preys and predators. Apreutesei et
al. [] and Srinivasu et al. [] investigated the optimal parameter selection problem of the
pest control models. Apreutesei [], Kard [], Bhattacharyya [, ], and Molnar [] took
the external interference intensities of systems, such as the rate of pesticide poisoning,
releasing rates of parasitic eggs, and infertility pests as well as pathogens, as control vari-
ables to study the optimal pest management strategy. In the above achievements, taking
the differential equations as state equations, taking the Bolza type performance index as
objective function, the authors sought the optimal control by utilizing Pontryagin’s mini-
mum principle. These are standard optimal control problems [].

In the last decade, research on the mathematical models of the chemical controls, bio-
logical controls, and of comprehensive control has made great progress. He et al. [], Luo
et al. [] and Feng et al. [] have investigated the optimal problems of microorganism
and population dynamic systems. The National Natural Science Foundation of China has
funded research projects related to the mathematical model for pest control. Despite all
this, there are still some challenging problems worth exploring, including primarily: () lag,
hibernate, delay phenomena of development from larva to adult and so on are widespread
in the population life cycle, therefore considering optimal control problem of the ecolog-
ical system with time delay is a meaningful work; () taking the lag of parasitic eggs, lag
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effect of pesticide poisoning and the age of releasing natural enemies as control variables
(state delays), combined with the crop fertility cycle, research on the optimization prob-
lem of pest control models at seedling stage, bud stage and filling stage of crops fills (in) a
gap which is optimal problem with multiple characteristic times.

The generalized model of these problems is a hybrid optimization problem involving
state delay with characteristic time and parameter control. In this paper, we first present
a general question on state delays, then design optimization algorithms. Finally, two ex-
amples in the field of pest control are given to exhibit the effectiveness of the proposed
optimization algorithm.

2 Problem formulation
Consider the following nonlinear time delay system:

ẏ(t) = g
(
y(t), y(t – ω), . . . , y(t – ωm),ω,η

)
, t ∈ [, tf ], ()

y(t) = ψ(t,η), t ≤ . ()

Here tf >  is a given terminal time, y(t) = (y(t), . . . , yn(t))T ∈ Rn is the state vector, ωi,
i = , . . . , m are state delays and ηi, i = , , . . . , r are system parameters. g : R(m+)n × Rm ×
Rr → Rn and ψ : R × Rr → Rn are given functions. Let

ω = (ω, . . . ,ωm)T ∈ Rm, η = (η, . . . ,ηr)T ∈ Rr .

Let M denote the set of all ω which are admissible state delay vectors. Let F denote the
set of all η which are admissible parameter vectors.

The following bound constraints on the state delays and system parameters are imposed:

Ai ≤ ωi ≤ Bi, i = , . . . , m, ()

and

Cj ≤ ηj ≤ Dj, j = , . . . , r, ()

where Ai and Bi, Cj, and Dj are given constants such that  ≤ Ai ≤ Bi and  ≤ Cj ≤ Dj.
Our aim is to seek admissible controls ω and η that minimize the following cost function:

J(ω,η) = �
(
y(t | ω,η), . . . , y(tp | ω,η),ω,η

)

+
∫ tf


L
(
y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η

)
dt, ()

where � : Rpn × Rm × Rr → R is a given function and tk , k = , . . . , p are given time points
satisfying  < t < · · · < tp ≤ tf . Time points tk , k = , . . . , p are called characteristic times.
We define the hybrid optimization problem with state delay as follows.

Problem (P) Choose (ω,η) ∈M×F to minimize the cost function ().
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Remark Both state equation () and cost function () are not only explicit but also implicit
functions of the decision variables. In addition, our cost function () contains a integral
term which is known as the problem of Lagrange. Hybridity of optimization problem in-
creases the complexity of the calculation.

3 Algorithm design based on gradient computation
Define

φ(t | ω,η) =

{
∂ψ(t,η)

∂t , if t < ,
g(y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η), if t ∈ [, tf ],

∂ ḡ(t | ω,η)
∂y

=
∂g(y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η)

∂y
,

∂L̄(t | ω,η)
∂y

=
∂L(y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η)

∂y
,

∂ ḡ(t | ω,η)
∂ ỹi =

∂g(y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η)
∂ ỹi ,

∂L̄(t | ω,η)
∂ ỹi =

∂L(y(t | ω,η), y(t – ω | ω,η), . . . , y(t – ωm | ω,η),ω,η)
∂ ỹi ,

where ∂

∂ ỹi is differentiation with respect to the ith delayed state vector.
Take into account the auxiliary impulsive system below,

λ̇(t) = –
{[

∂L̄(t | ω,η)
∂y(t)

]T

+
[

∂ ḡ(t | ω,η)
∂y(t)

]T

λ(t)
}

–
m∑

l=

{[
∂L̄(t + ωl | ω,η)

∂ ỹl

]T

+
[

∂ ḡ(t + ωl | ω,η)
∂ ỹl

]T

λ(t + ωl)
}

,

for t ∈ [, tp], ()

λ
(
t–
k
)

= λ
(
t+
k
)

+
[

∂�(y(t | ω,η), . . . , y(tp | ω,η),ω,η)
∂y(tk)

]T

, for k = , . . . , p, ()

λ(t) = 0, for t ≥ tp. ()

Define λ(· | ω,η) as the solution of system ()-() matching the admissible control pair
(ω,η) ∈M×F .

In turn, the following result gives formulas for the partial derivatives of J with respect
to the state delays.

Theorem  For each (ω,η) ∈ M × F , we obtain the following gradients with respect to
time delays ωi:

∂J(ω,η)
∂ωi

=
∂�

∂ωi
+

∫ tp



{
∂L̄(t)
∂ωi

+ λT (t)
∂ ḡ(t)
∂ωi

–
(

∂L̄(t)
∂ ỹi + λT (t)

∂ ḡ(t)
∂ ỹi

)
φ(t – ωi | ω,η)

}
dt, ()

where i = , . . . , m.
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Proof Let the function �(t) : [,∞) → Rn. Assume that �(t) is continuous and differ-
entiable on the intervals (tk–, tk), k = , . . . , p + , where t = , tp+ = ∞. Furthermore
limt→t+


�(t) exists and for each t = tk (k = , . . . , p), limt→t±k

�(t) exists. We may express
the cost function J as follows:

J(ω,η) = �
(
y(t), . . . , y(tp),ω,η

)
+

∫ tp



{
L(t | ω,η) + �T (t)g(t | ω,η) – �T (t)ẏ(t)

}
dt

= �
(
y(t), . . . , y(tp),ω,η

)
+

p∑

k=

∫ tk

tk–

{
L(t | ω,η) + �T (t)g(t | ω,η)

}
dt

–
p∑

k=

∫ tk

tk–

�T (t)ẏ(t) dt.

Applying integration by parts to the last integral gives

J(ω,η) = �
(
y(t), . . . , y(tp),ω,η

)
+

p∑

k=

∫ tk

tk–

{
L(t | ω,η) + �T (t)g(t | ω,η)

}
dt

–
p∑

k=

{
�T(

t–
k
)
y(tk) – �T(

t+
k–

)
y(tk–)

}
+

p∑

k=

∫ tk

tk–

�̇T (t)y(t) dt. ()

Computing the above third term shows

p∑

k=

{
�T(

t–
k
)
y(tk) – �T(

t+
k–

)
y(tk–)

}

=
p∑

k=

�T(
t–
k
)
y(tk) –

p∑

k=

�T(
t+
k–

)
y(tk–)

=
p∑

k=

�T(
t–
k
)
y(tk) –

p–∑

k=

�T(
t+
k
)
y(tk)

= �T(
t–
p
)
y(tp) +

p–∑

k=

{
�T(

t–
k
)

– �T(
t+
k
)}

y(tk) – �T(
t+

)
y(t). ()

Substituting () into () yields

J(ω,η) = �
(
y(t), . . . , y(tp),ω,η

)
+

p∑

k=

∫ tk

tk–

{
L(t | ω,η) + �T (t)g(t | ω,η)

}
dt

+
p∑

k=

∫ tk

tk–

�̇T (t)y(t) dt – �T(
t–
p
)
y(tp)

–
p–∑

k=

{
�T(

t–
k
)

– �T(
t+
k
)}

y(tk) + �T(
+)

ψ(,η). ()

Let δli be the Kronecker delta function and define

�i(t) =
∂y(t)
∂ωi

, t ∈ (–∞, tf ].
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Then

∂

∂ωi

{
y(t – ωl)

}
=

{
–δli

∂ψ(t–ωl ,η)
∂t , t < ωl,

�i(t – ωl) – δliẏ(t – ωl), t ≥ ωl.
()

Define the indicator function:

χ[ωl ,∞)(t) =

{
, if t ≥ ωl,
, otherwise.

Equation () is rewritten

∂

∂ωi

{
y(t – ωl)

}
= �i(t – ωl)χ[ωl ,∞)(t) – δliφ(t – ωl). ()

Next, according to (), differentiating () with respect to ωi one obtains

∂J(ω,η)
∂ωi

=
∂�(y(t), . . . , y(tp),ω,η)

∂ωi
+

p∑

k=

∂�(y(t), . . . , y(tp),ω,η)
∂y(tk)

�i(tk)

+
∫ tp



{
∂L̄
∂ωi

+ �T (t)
∂ ḡ
∂ωi

}
dt +

p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
�i(t) dt

+
m∑

l=

p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
�i(t – ωl)χ[ωl ,∞)(t) dt

–
p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂ ỹi + �T (t)

∂ ḡ(t)
∂ ỹi

}
φ(t – ωi) dt – �T(

t–
p
)
�i(tp)

–
p–∑

k=

{
�T(

t–
k
)

– �T(
t+
k
)}

�i(tk) +
p∑

k=

∫ tk

tk–

�̇T (t)�i(t) dt.

Therefore

∂J(ω,η)
∂ωi

=
∂�

∂ωi
+

∫ tp



{
∂L̄
∂ωi

+ �T (t)
∂ ḡ
∂ωi

}
dt

+
p–∑

k=

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tk)
– �T(

t–
k
)

+ �T(
t+
k
)}

�i(tk) – �T(
t–
p
)
�i(tp)

+
∂�(y(t), . . . , y(tp),ω,η)

∂y(tp)
�i(tp)

+
∫ tp



{
�̇T (t) +

∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
�i(t) dt

+
m∑

l=

∫ tp



{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
�i(t – ωl)χ[ωl ,∞)(t) dt

–
∫ tp



{
∂L̄(t)
∂ ỹi + �T (t)

∂ ḡ(t)
∂ ỹi

}
φ(t – ωi) dt. ()
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Again the second last integral term in () can be transformed as

∫ tp



{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
�i(t – ωl)χ[ωl ,∞)(t) dt

=
∫ tp–ωl

–ωl

{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
�i(t)χ[,∞)(t) dt

=
∫ tp–ωl



{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
�i(t)χ[,∞)(t) dt. ()

So, by () and (),

∂J(ω,η)
∂ωi

=
∂�

∂ωi
+

∫ tp



{
∂L̄
∂ωi

+ �T (t)
∂ ḡ
∂ωi

}
dt

×
p–∑

k=

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tk)
– �T(

t–
k
)

+ �T(
t+
k
)
}
�i(tk)

+
{

∂�(y(t), . . . , y(tp),ω,η)
∂y(tp)

– �T(
t–
p
)}

�i(tp)

+
∫ tp


�̇T (t)�i(t) dt +

∫ tp



{
∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
�i(t) dt

+
m∑

l=

∫ tp–ωl



{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
�i(t)χ[,∞)(t) dt

–
∫ tp



{
∂L̄(t)
∂ ỹi + �T (t)

∂ ḡ(t)
∂ ỹi

}
φ(t – ωi) dt. ()

Because the function λ(· | ω,η) meets all properties of � and its arbitrariness, one may
choose � = λ(· | ω,η) in (). Then together with () and (), we get

∂J(ω,η)
∂ωi

=
∂�

∂ωi
+

∫ tp



{
∂L̄
∂ωi

+ λT (t)
∂ ḡ
∂ωi

}
dt

+
∫ tp


λ̇

T (t)�i(t) dt +
∫ tp



{
∂L̄(t)
∂y

+ λT (t)
∂ ḡ(t)
∂y

}
�i(t) dt

+
m∑

l=

∫ tp



{
∂L̄(t + ωl)

∂ ỹl + λT (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
�i(t) dt

–
∫ tp



{
∂L̄(t)
∂ ỹi + λT (t)

∂ ḡ(t)
∂ ỹi

}
φ(t – ωi) dt.

So, combined with (), one obtains

∂J(ω,η)
∂ωi

=
∂�

∂ωi
+

∫ tp



{
∂L̄
∂ωi

+ λT (t)
∂ ḡ
∂ωi

–
(

∂L̄(t)
∂ ỹi + λT (t)

∂ ḡ(t)
∂ ỹi

)
φ(t – ωi)

}
dt.

The proof is completed. �

Next we calculate the gradients of J with respect to the system parameters.
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Theorem  For each (ω,η) ∈M×F , we obtain the following gradients with respect to the
system parameters ηj:

∂J(ω,η)
∂ηj

=
∂�(y(t | ω,η), . . . , y(tp | ω,η),ω,η)

∂ηj
+ λT(

+ | ω,η
)∂ψ(,η)

∂ηj

+
∫ tp



{
∂L̄(t | ω,η)

∂ηj
+ λT (t | ω,η)

∂ ḡ(t | ω,η)
∂ηj

}
dt

+
m∑

l=

∫ 

–ωl

{
∂L̄(t + ωl | ω,η)

∂ ỹl + λT (t + ωl | ω,η)
∂ ḡ(t + ωl | ω,η)

∂ ỹl

}

× ∂ψ(t,η)
∂ηj

dt, ()

where j = , . . . , r.

Proof Recall �(·) and equation () in the proof of Theorem . Differentiating () with
respect to ηj gives

∂J(ω,η)
∂ηj

=
∂�(y(t), . . . , y(tp),ω,η)

∂ηj
+

p∑

k=

∂�(y(t), . . . , y(tp),ω,η)
∂y(tk)

∂y(tk)
∂ηj

+
p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
∂y(t)
∂ηj

dt +
p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂ηj

+ �T (t)
∂ ḡ(t)
∂ηj

}
dt

+
m∑

l=

p∑

k=

∫ tk

tk–

{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
∂y(t – ωl)

∂ηj
dt – �T(

t–
p
)∂y(tp)

∂ηj

–
p–∑

k=

{
�T(

t–
k
)

– �T(
t+
k
)}∂y(tk)

∂ηj
+ �T(

+)∂ψ(,η)
∂ηj

+
p∑

k=

∫ tk

tk–

�̇T (t)
∂y(t)
∂ηj

dt.

Hence

∂J(ω,η)
∂ηj

=
∂�(y(t), . . . , y(tp),ω,η)

∂ηj
+

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tp)
– �T(

t–
p
)}∂y(tp)

∂ηj

+
p–∑

k=

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tk)
– �T(

t–
k
)

+ �T(
t+
k
)
}

∂y(tk)
∂ηj

+
∫ tp



{
�̇T (t) +

∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
∂y(t)
∂ηj

dt

+
m∑

l=

∫ tp



{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
∂y(t – ωl)

∂ηj
dt

+
∫ tp



{
∂L̄(t)
∂ηj

+ �T (t)
∂ ḡ(t)
∂ηj

}
dt + �T(

+)∂ψ(,η)
∂ηj

. ()
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For t ≤ , y(t) = ψ(t,η), then we have

∫ tp



{
∂L̄(t)
∂ ỹl + �T (t)

∂ ḡ(t)
∂ ỹl

}
∂y(t – ωl)

∂ηj
dt

=
∫ 

–ωl

{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
∂ψ(t,η)

∂ηj
dt

+
∫ tp–ωl



{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
∂y(t)
∂ηj

dt. ()

Uniting () with () generates

∂J(ω,η)
∂ηj

=
∂�(y(t), . . . , y(tp),ω,η)

∂ηj
+

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tp)
– �T(

t–
p
)}∂y(tp)

∂ηj

+
p–∑

k=

{
∂�(y(t), . . . , y(tp),ω,η)

∂y(tk)
– �T(

t–
k
)

+ �T(
t+
k
)
}

∂y(tk)
∂ηj

+
∫ tp



{
�̇T (t) +

∂L̄(t)
∂y

+ �T (t)
∂ ḡ(t)
∂y

}
∂y(t)
∂ηj

dt

+
m∑

l=

∫ 

–ωl

{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
∂ψ(t,η)

∂ηj
dt

+
m∑

l=

∫ tp–ωl



{
∂L̄(t + ωl)

∂ ỹl + �T (t + ωl)
∂ ḡ(t + ωl)

∂ ỹl

}
∂y(t)
∂ηj

dt

+
∫ tp



{
∂L̄(t)
∂ηj

+ �T (t)
∂ ḡ(t)
∂ηj

}
dt + �T(

+)∂ψ(,η)
∂ηj

.

Let � = λ(· | ω,η). Along with ()-(), then the above formula can be translated to (). The
proof can be completed. �

4 Application
Example  Consider a delayed epidemic model with the stage structure []

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = px(t)
q+xn

(t) – γ x(t) – e–γ τ px(t–τ )
q+xn

(t–τ ) ,

ẋ(t) = e–γ τ px(t–τ )
q+xn

(t–τ ) – βx(t) y(t)
A+y(t) – ηx(t),

ẏ(t) = βx(t) y(t)
A+y(t) – ωy(t) + u,

()

and

x(t) = ϕ(t), x(t) = ϕ(t), y(t) = ϕ(t), t ≤ . ()

The pest population is divided into egg, susceptible, and infective classes, with the size of
each class given by x(t), x(t), and y(t), respectively. The parameter τ represents a constant
time to hatch, which mathematically is the delay in our model. For the pest egg population,
the death rate is proportional to the existing pest egg population with a proportionality
constant γ . The parameters η and ω represent the death rate of the susceptible pest pop-
ulation and, respectively, infective pest population. The expression px(t)/(q + xn

(t)) is a
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birth rates function of the susceptible pest population. The incidence rate is given by a
function βx(t)y(t)/(A + y(t)), and u >  is the release amount of infected pests which are
bred in laboratories each time in order to drive target pests (susceptible pests) to catch an
epidemic, or generate an endemic. Our aim is to find an admissible control pair (τ , u) that
minimizes the following cost function:

J(τ , u) =
∑

k=

x
(tk) + uT . ()

In (), the terminal time is taken to be T = , and the observation times for susceptible
pest are scheduled at tk = , , , , k = , , , . The state delay τ and the release amount
of infected pests u will be optimally selected to obtain the minimum pest level J at minimal
cost in problem ().

The auxiliary impulsive system for this problem is

λ̇(t) = γ λ(t),

λ̇(t) =
(

βy(t)
A + y(t)

+ η

)
λ(t) –

βy(t)
A + y(t)

λ(t)

+
pq + ( – n)pxn

(t)
(q + xn

(t))

(
e–γ τ

(
λ(t + τ ) – λ(t + τ )

)
– λ(t)

)
,

λ̇(t) =
βAx(t)

(A + y(t)) λ(t) +
(

ω –
βAx(t)

(A + y(t))

)
λ(t),

()

with jump conditions

λ
(
t–
k
)

= λ
(
t+
k
)
, λ

(
t–
k
)

= λ
(
t+
k
)

+ x(tk),

λ
(
t–
k
)

= λ
(
t+
k
)
, k = , . . . , ,

()

and boundary conditions

λ(t) = , λ(t) = , λ(t) = , t ≥ . ()

By Theorems  and , the gradient formulas for this problem are

∂J(τ , u)
∂τ

= e–γ τ

∫ T

τ

{
γ px(t – τ )
q + xn

(t – τ )
+

pq + ( – n)pxn
(t – τ )

(q + xn
(t – τ )) ẋ(t – τ )

}

× {
λ(t) – λ(t)

}
dt,

∂J(τ , u)
∂u

= T +
∫ T


λ(t) dt.

()

In order to get a minimum cost value, we try to choose the optimal time to hatch the
pest egg population τ and release an amount of infected pests u. For this purpose, we will
conduct the following numerical simulation.

For problem (), take

p = , q = ., n = , γ = ., β = .,

A = , η = ., ω = ., τ = , u = .
()
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Figure 1 Time-series of (a) the egg, (b) the susceptible, and (c) the infective pest population; (d) the
curve graph of pest populations.

We solved the optimal problem by a Matlab program that integrates the SQP optimiza-
tion method with equations ()-(). Starting with the initial guesses τ =  and u = , we
recover the optimal time to hatch the pest egg population τ ∗ = . and release amount
of infected pests u∗ = ., as well as the corresponding optimal cost value J∗ = ..
The optimal cost value J∗ is less than J = . under no optimal control strategy. Here
the initial values of the populations are taken to be ϕ(t) = , ϕ(t) = , ϕ(t) = . We im-
pose the bound constraints on the state delay τ and the release amount of infected pests
u as  < τ (or u) ≤ .

We plot the comparisons of dynamic behaviors according to the optimal control τ ∗ =
., u∗ = . as well as no optimal control τ = , u =  (see Figures (a)-(d)). Exactly,
(a), (b), and (c) are time-series of the egg, susceptible, and infective pest populations, re-
spectively, when time varies from the first day to the th day. We conclude that the sus-
ceptible pest population decreases after using an optimal control strategy. Also, the infec-
tive pest population declines as a result of its optimal release amounts u∗ = . < u = .
At the same time, the curve graph of the pest populations (egg, susceptible, and infective
classes) is drawn in Figure (d).

Example  Consider a competitive-predator model with stage structure and reserved
area[]:

⎧
⎪⎨

⎪⎩

u̇(t) = αe–γτ u(t – τ) – βu
 – θuv + cu – cu,

u̇(t) = αe–γτ u(t – τ) – βu
 – θuv – cu + cu,

v̇(t) = θuv + θuv – dv,
()

and

u(t) = ϕ(t), u(t) = ϕ(t), v(t) = ϕ(t), t ≤ , ()
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where u(t) and u(t) are the densities of prey species at time t on unreserved area and
reserved area, respectively. The delays τ and τ are the times taken from birth to maturity
of u(t) and u(t). The meanings αi, βi (i = , ) are the same as in the literature []. Nev-
ertheless, θ and θ are the predation rates of predator on two preys. The parameters c

(> ) and c (> ) are the migration rates from the unreserved area to the reserved area and
the reserved area to the unreserved area, respectively. d is the death rate of the predator
population. Let τ = (τ τ)T , c = (c c)T . Our aim is to obtain a maximum harvest with
respect to the prey and predator populations at the harvesting time T . Thus, the objective
function is

J(τ , c) = u(T) + u(T) + v(T). ()

Assume that the harvesting time for prey and predator populations is scheduled at T =
. We will optimally select the state delays τ, τ and the migration rates c, c to obtain
the maximum harvest J at the observation time in problem ().

The auxiliary impulsive system for this problem is

λ̇(t) = (βu + θv + c)λ(t) – cλ(t) – θvλ(t) – αe–γτλ(t + τ),

λ̇(t) = –cλ(t) + (βu + θv + c)λ(t) – θvλ(t) – αe–γτλ(t + τ), ()

λ̇(t) = θuλ(t) + θuλ(t) + (d – θu – θu)λ(t),

with jump conditions

λ
(
T–)

= λ
(
T+)

– , λ
(
T–)

= λ
(
T+)

– , λ
(
T–)

= λ
(
T+)

– , ()

and boundary conditions

λ(t) = , λ(t) = , λ(t) = , t ≥ . ()

According to Theorems  and , the gradients of J with respect to τ, τ, c, and c are

∂J(τ , c)
∂τ

= –
∫ T

τ

αe–γτλ(t)
{
γu(t – τ) + u̇(t – τ)

}
dt,

∂J(τ , c)
∂τ

= –
∫ T

τ

αe–γτλ(t)
{
γu(t – τ) + u̇(t – τ)

}
dt,

∂J(τ , c)
∂c

=
∫ T


u

{
λ(t) – λ(t)

}
dt,

∂J(τ , c)
∂c

=
∫ T


u

{
λ(t) – λ(t)

}
dt.

()

Let us ask how to optimally choose the times taken from birth to maturity τ, τ and the
migration rates c, c to get the highest level of population at harvesting time in a period.
For this purpose, we will conduct the following numerical simulation.
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Figure 2 Time-series of (a) the prey population on unreserved area, (b) the prey population on
reserved area, and (c) the predator population; (d) the curve graph of prey and predator populations.

In the same way, for problem (), take

α = ., α = , β = ., β = ., θ = .,

θ = ., d = ., γ = ., γ = ., τ = ,

τ = , c = ., c = ..

()

We solved this problem utilizing the same Matlab program as was used to solve the
above example. Similarly, for the initial guess τ = , τ = , c = ., and c = ., we
obtained the optimal periods of maturity τ ∗

 = ., τ ∗
 = ., and migration rates

c = ., c = ., as well as the maximum yield J∗ = .. The maximum yield J∗

is higher than J = . under no optimal control strategy, which is exactly what we ex-
pected. Here the initial values of populations are taken to be ϕ(t) = , ϕ(t) = , ϕ(t) = .
The bound constraints of the state delays as well as the migration rates are  < τ(or τ) ≤ 
and  < c(or c) ≤ , respectively.

Figures (a)-(c) show that the comparisons of dynamic behaviors of the prey and preda-
tor populations, respectively, according to the optimal control τ ∗ = (. .)T , c∗ =
(. .)T , and no optimal control τ = ( )T , c = (. .)T . It is observed that the
prey population on unreserved area and reserved area increases after using optimal con-
trol strategy. Also, Figure (c) implies that the predator population goes up as the time
varies from the first day to the th day. The curve graph of prey and predator popula-
tions also proves our ideas (see Figure (d)).

5 Conclusion
In pest control, taking the lag of parasitic eggs, the lag effect of pesticide poisoning, and the
age of releasing natural enemies as control variables, combined with the crop fertility cycle,
researches on the optimization problem of pest control models at seedling stage, bud stage,
and filling stage of crops fill in a gap. For these purposes, a generalized hybrid optimization
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problem involving state delay with characteristic time and parameter control is presented.
Then an algorithm based on a gradient computation is given. Finally, two examples in an
agroecological system are given to exhibit the effectiveness of the proposed optimization
algorithm.
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