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Abstract
In this paper, we establish a predator-prey model with impulsive biological control
and unilaterally impulsive diffusion. This predator-prey model for two regions, which
are connected by diffusion of predator population, portrays the evolution of the
population. We study the model for biological pest control in which a pest population
is controlled by a program of periodic releases of a fixed yield of predators that prey
on the pest population. We prove that there exists a globally asymptotically stable
prey-extinction boundary periodic solution. The condition for permanence is also
obtained. Simulations are also employed to verify our results. We conclude that the
impulsive diffusion and releasing predator provide reliable tactic basis for pest
management.

Keywords: predator-prey model; unilaterally impulsive diffusion; impulsive
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1 Introduction
The warfare between humans and pests has persisted for thousands of years. In the past
few decades, man has adopted some advanced and modern weapons for instance chemical
pesticides, biological pesticides, remote sensing and measure, computers, atomic energy
etc. Some brilliant achievements have been obtained. However, the warfare will never be
over. Although a great deal of pesticides were used to control pests, the insect pests im-
pairing crops are increasing because of the resistance to the pesticide. With pesticides
employed, the residual pests breed a large number of pests with resistance to pesticides.
So the pesticide is invalid in a sense. Moreover, insect pests will remain. On the other
hand, the chemical pesticides kill not only pests but also their natural enemies. Therefore,
insect pests are rampant again. Then the effect of chemical control was challenged. Fur-
thermore, the practice proves that long-term adopting chemical control may give rise to
disastrous results, for example, we witness environmental contamination and toxicosis of
man and animal, and so on.

The use of a natural enemy to suppress pests is one of the most important approaches in
pest control. Biological control [–] is one of the reductions in pest populations from the
actions of other living organisms, often called natural enemies or beneficial species. It is
the purposeful introduction and establishment of one or more natural enemies from the
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region of origin of an exotic pest, specifically for the purpose of suppressing the abundance
of the pest in a new target region to a level at which it no longer causes economic damage.
Jiao et al. [] analyzed the dynamics of a stage-structured Holling mass defence predator-
prey model with impulsive perturbations on predators,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = rx(t) – re–wτ x(t – τ) – wx(t),

dx(t)
dt = re–wτ x(t – τ) – βx(t)

+ax+bx


x(t) – dx(t) – dx
(t),

dx(t)
dt = kβx(t)

+ax+bx


x(t) – dx(t),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= nτ ,

�x(t) = ,
�x(t) = ,
�x(t) = μ,

⎫
⎪⎬

⎪⎭
t = nτ , n = , , . . . ,

(ϕ(ζ ),ϕ(ζ ),ϕ(ζ )) ∈ C+ = C([–τ, ], R
+), ϕi() > , i = , , ,

(.)

where x(t), x(t) represent the immature and mature pest densities, respectively. x(t)
denotes the density of nature enemy. The biological meanings of the parameters can be
found in [].

The dispersal is a ubiquitous phenomenon in the natural world. It is important for us
to understand the ecological and evolutionary dynamics of populations mirrored by the
large number of mathematical models devoted to it in the scientific literature [–]. In
recent years, the analysis of these models focused on the coexistence of populations and
the local (or global) stability of the equilibria [–]. Spatial factors play a fundamen-
tal role on the persistence and stability of the population, although the complete results
have not yet been obtained even in the simplest one-species case. If the population dy-
namics with the effects of spatial heterogeneity is modeled by a diffusion process, most
previous papers focused on the population dynamical system modeled by the ordinary
differential equations. But in practice, it is often the case that diffusion occurs in a regular
pulse. For example, when winter comes, birds will migrate between patches in search for
a better environment, whereas they do not diffuse in other seasons, and the excursion of
foliage seeds occurs at a fixed period of time every year. Thus impulsive diffusion pro-
vides a more natural description. Lately theories of impulsive differential equations []
have been introduced into population dynamics. Jiao et al. [] proposed and investigated
the dynamical behaviors of a stage-structured predator-prey model with prey impulsively
diffusing between two patches

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)),

dx(t)
dt = x(t)(a – bx(t)) – αx(t)y(t),

dy(t)
dt = kαx(t)y(t) – kαe–wτ x(t – τ)y(t – τ) – wy(t),

dy(t)
dt = kαe–wτ x(t – τ)y(t – τ) – dy(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nτ ,

�x(t) = d(x(t) – x(t)),
�x(t) = d(x(t) – x(t)),
�y(t) = ,
�y(t) = ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = nτ , n = , , . . . ,

(.)

where we suppose that the system is composed of two patches connected by diffusion and
occupied by a single species xi (i = , ) is the density of species in the ith patch. y(t),
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y(t) represent the densities of the immature individual predator and mature individual
predator at time t in the second patch. The biological meanings of the parameters can be
found in [].

Theories of impulsive differential equations have been introduced into population dy-
namics lately [–]. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [–], they generally describe
phenomena which are subject to steep or instantaneous changes. The theories of popula-
tion dynamical systems and their applications have achieved many good results. However,
the oasis vegetation degradation combined with a dynamical system has been considered
very little. In this paper, we will investigate an impulsive dispersal on SIR model on re-
stricting infected individuals boarding transports. We expect to obtain some dynamical
properties of the investigated system. We also expect that impulsive dispersal will provide
a reliable tactic for controlling epidemic.

The organization of this paper is as follows. In the next section, we introduce the model
and background concepts. In Section , some important lemmas are presented. We give
the globally asymptotically stable conditions of the prey-extinction boundary periodic so-
lution of System (.), and the permanent condition of System (.). In Section  is a sim-
ulation analysis, and a brief discussion are given in the last section to conclude this work.

2 The model
In this paper, we establish a predator-prey model with impulsive biological control and
unilaterally impulsive diffusion.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)) – βx(t)y(t),

dy(t)
dt = kβx(t)y(t) – dy(t),

dy(t)
dt = y(t)(a – by(t)),

⎫
⎪⎪⎬

⎪⎪⎭

t �= (n + l)τ , t �= (n + )τ ,

�x(t) = ,
�y(t) = Dy(t),
�y(t) = –Dy(t),

⎫
⎪⎬

⎪⎭
t = (n + l)τ , n ∈ Z+,

�x(t) = ,
�y(t) = μ,
�y(t) = ,

⎫
⎪⎬

⎪⎭
t = (n + )τ , n ∈ Z+,

(.)

where we suppose that the system is composed of two patches connected by diffusion.
These two patches are separated by rivers or highways or railways. The predator popu-
lation can transverse the rivers or highways or railways, while the prey population can-
not. x(t) and y(t) represent the numbers of preys and predators in the populations in
patch  at time t. y(t) represents the number of predators in the population in patch 
at time t. a >  represents the intrinsic growth rate of the prey population in patch .
b >  represents the coefficient of the intraspecific competition of the prey population
in patch . a >  represents the intrinsic growth rate of the predator population in
patch . b >  represents the coefficient of the intraspecific competition of the preda-
tor population in patch . The predator consumes the prey according to βx(t), in patch
 at time t. k is the rate of conversion of nutrients into the reproduction of the preda-
tor in patch . d represents the death rate of the predator population in patch . The
pulse diffusion occurs every τ period (τ is a positive constant), the system evolves from
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its initial state without being further affected by diffusion until the next pulse appears;
�yi((n + l)τ ) = yi((n + l)τ+) – yi((n + l)τ ) where yi((n + l)τ+) represents the density of pop-
ulation in the ith patch immediately after the nth diffusion pulse at time t = (n + l)τ , while
yi((n + l)τ ) represents the density of population in the ith patch before the nth diffusion
pulse at time t = (n + l)τ ,  < l < , n ∈ Z+.  < D <  represents the diffusive rate be-
tween two patches. �y((n + )τ ) = y((n + )τ+) – y((n + )τ ) and μ represent the releasing
amount of predator population at t = (n + )τ , n ∈ Z+, in patch .

3 The lemmas
The solution of (.), denoted by X(t) = (x(t), y(t), y(t))T , is a piecewise continuous func-
tion X : R+ → R

+, X(t) is continuous on (nτ , (n + l)τ ] and ((n + l)τ , (n + )τ ], n ∈ Z+ and
X(nτ+) = limt→nτ+ X(t), X((n + l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously the global exis-
tence and uniqueness of solutions of (.) is guaranteed by the smoothness properties of
f , which denotes the mapping defined by right side of System (.) [].

Let V : R+ × R
+ → R+, then V is said to belong to class V, if:

(i) V is continuous in (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+, for each z ∈ R
+,

n ∈ Z+, V (nτ+, z) = lim(t,y)→(nτ+,z) V (t, y), V ((n + l)τ+, z) = lim(t,y)→((n+l)τ+,y) V (t, y)
exist.

(ii) V is locally Lipschitzian in z.

Definition . V ∈ V, then, for (t, z) ∈ (nτ , (n + l)τ ] × R
+ and ((n + l)τ , (n + )τ ] × R

+, the
upper right derivative of V (t, z) with respect to the impulsive differential System (.) is
defined as

D+V (t, z) = lim sup
h→


h
[
V
(
t + h, z + hf (t, z)

)
– V (t, z)

]
.

Since dxi(t)
dt = , when xi(t) = ; dyi(t)

dt = , when yi(t) = , and �y(t) = μ > , when t =
(n + )τ , we can easily obtain the following lemma.

Lemma . Suppose X(t) is a solution of (.) with X(+) ≥ , then X(t) ≥  for t ≥ .
Furthermore, X(t) >  (t ≥ ) for X(+) > .

Lemma . [] Let the function m ∈ PC′[R+, R] satisfy the inequalities
{

m′(t) ≤ p(t)m(t) + q(t), t ≥ t, t �= tk , k = , , . . . ,
m(t+

k ) ≤ dkm(tk) + bk , t = tk ,
(.)

where p, q ∈ PC[R+, R] and dk ≥ , bk are constants; then

m(t) ≤ m(t)
∏

t<tk<t
dk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

( ∏

tk <tj<t
dj exp

(∫ t

t

p(s) ds
))

bk

+
∫ t

t

∏

s<tk<t
dk exp

(∫ t

s
p(σ ) dσ

)

q(s) ds, t ≥ t.

Now, we show that all solutions of (.) are uniformly ultimately bounded.
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Lemma . There exists a constant M >  such that x(t) ≤ M, y(t) ≤ M, y(t) ≤ M for
each solution (x(t), y(t), y(t)) of (.) with all t large enough.

Proof Define

V (t) = kx(t) + y(t) + y(t),

then t �= nτ , t �= (n + l)τ , we have

D+V (t) + dV (t)

= kx(t)
[
(a + d) – bx(t)

]
+ y(t)

[
(a + d) – by(t)

]

= –kb

(

x(t) –
a + d

b

)

+
k(a + d)

b
– b

(

x(t) –
a + d

b

)

+
(a + λ)

b

≤ k(a + d)

b
+

(a + d)

b

	= ζ .

When t = (n + l)τ , V ((n + l)τ+) = kx((n + l)τ+) + y((n + l)τ+) + y((n + l)τ+) = kx((n +
l)τ ) + y((n + l)τ ) + Dy((n + l)τ ) + ( – D)y((n + l)τ ) = V ((n + l)τ ). When t = (n + )τ ,
V ((n + )τ+) = kx((n + )τ+) + y((n + )τ+) + y((n + )τ+) = kx((n + )τ ) + y((n + )τ ) +
μ + y((n + )τ ) = V ((n + )τ ) + μ. By Lemma ., for t ∈ (nτ , (n + )τ ], we have

V (t) ≤ V
(
+)e–λt +

ζ

d

(
 – e–dt) + μ

e–d(t–τ )

 – e–dτ
+ μ

edτ

edτ – 

→ ζ

d
+ μ

edτ

edτ – 
, as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), we see that there
exists a constant M >  such that x(t) ≤ M, y(t) ≤ M, y(t) ≤ M for t large enough. The
proof is complete. �

If x(t) = , we have the following subsystem of (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t),

dy(t)
dt = y(t)(a – by(t)),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = Dy(t),
�y(t) = –Dy(t),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = ,

}

t = (n + )τ .

(.)

We can easily obtain the analytic solution of (.) between pulses as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(t) =

{
y(nτ+)e–d(t–nτ ), t ∈ [nτ , (n + l)τ ),
y((n + l)τ+)e–d(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

y(t) =

⎧
⎨

⎩

ay(nτ+)ea(t–nτ )

a+by(nτ+)(ea(t–nτ )–)
, t ∈ [nτ , (n + l)τ ),

ay((n+l)τ+)ea(t–(n+l)τ )

a+by((n+l)τ+)(ea(t–(n+l)τ )–)
, t ∈ [(n + l)τ , (n + )τ ).

(.)
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Considering the third and fourth equations of (.), we have

⎧
⎪⎨

⎪⎩

y((n + l)τ+) = e–dlτ y(nτ+) + D × ay(nτ+)ealτ

a+by(nτ+)(ealτ –)
,

y((n + l)τ+) = ( – D) × ay(nτ+)ealτ

a+by(nτ+)(ealτ –)
.

(.)

Considering the fifth and sixth equations of (.), we also have

⎧
⎨

⎩

y((n + )τ+) = e–d(–l)τ y((n + l)τ+) + μ,

y((n + )τ+) = aea(–l)τ y((n+l)τ+)
a+by((n+l)τ+)(ea(–l)τ –)

.
(.)

Substituting (.) into (.), we have the stroboscopic map of (.),

⎧
⎨

⎩

y((n + )τ+) = e–dτ y(nτ+) + Dae[a l–d(–l)]τ y(nτ+)
a+b(ealτ –)y(nτ+)

+ μ,

y((n + )τ+) = (–D)aeaτ y(nτ+)
a+b(ealτ –)[+(–D)ealτ ]y(nτ+)

.
(.)

Choosing notations A = e–dτ < , B = Dae[al–d(–l)]τ > , B = ( – D)aeaτ > , C =
b(ealτ – ) > , C = b(ealτ – )[ + ( – D)ealτ ] > , and

B – a >  ⇔  < D <  – e–aτ ,

we can rewrite (.) as
⎧
⎨

⎩

y((n + )τ+) = Ay(nτ+) + By(nτ+)
a+Cy(nτ+) + μ,

y((n + )τ+) = By(nτ+)
a+Cy(nτ+) .

(.)

Equation (.) has two fixed points (y∗
 , ) and (y∗∗

 , y∗∗
 ), where

⎧
⎪⎪⎨

⎪⎪⎩

y∗
 = μ

–A > ,
y∗∗

 = B(B–a)
(–A)[aC+C(B–a)] + μ

–A > ,  < D <  – e–aτ ,

y∗∗
 = B–a

C
> ,  < D <  – e–aτ .

(.)

Lemma .
(i) If  – e–aτ < D <  holds, the fixed point (y∗

 , ) of (.) or (.) is globally
asymptotically stable.

(ii) If  < D <  – e–aτ holds, the fixed point (y∗∗
 , y∗∗

 ) of (.) or (.) is globally
asymptotically stable.

Proof For convenience, we take the notation (yn
 , yn

) = (y(nτ+), y(nτ+)). The linear form
of (.) can be written as

(
yn+



yn+


)

= M

(
yn



yn


)

. (.)

Obviously, the near dynamics of (y∗
 , ) and (y∗∗

 , y∗∗
 ) are determined by the linear System

(.) or (.). The stabilities of (y∗
 , ) and (y∗∗

 , y∗∗
 ) are determined by the eigenvalue of
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M less than . If M satisfies the Jury criterion [], we can know the eigenvalue of M less
than ,

 – tr M + det M > . (.)

(i) If  – e–aτ < D <  holds, that is, B
a

< , we can easily see that (y∗
 , ) is a unique fixed

point of (.) or (.), and

M =

(
A B

a

 B
a

)

. (.)

For

 – tr M + det M =  –
(

A +
B

a

)

+
(

A × B

a

)

= ( – A)
(

 –
B

a

)

> .

From the Jury criterion, (y∗
 , ) is locally stable, then it is globally asymptotically

stable.
(ii) If  < D <  – e–aτ holds, that is, a

B
< , we can easily see that (y∗∗

 , y∗∗
 ) is a unique

fixed point of (.) or (.), and

M =

⎛

⎝
A Ba

(a+Cy∗∗
 )

 Ba
(a+Cy∗∗

 )

⎞

⎠ . (.)

For

 – tr M + det M =  –
(

A +
Ba

(a + Cy∗∗
 )

)

+
(

A × Ba

(a + Cy∗∗
 )

)

= ( – A)
[

 –
Ba

(a + Cy∗∗
 )

]

= ( – A)
(

 –
a

B

)

> .

From the Jury criterion, (y∗∗
 , y∗∗

 ) is locally stable, then it is globally asymptotically
stable. This completes the proof. �

Lemma .
(i) If  < D <  – e–aτ holds, the periodic solution (ỹ(t), ỹ(t)) of System (.) is globally

asymptotically stable, where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ỹ(t) =

{
y∗∗

 e–d(t–nτ ), t ∈ [nτ , (n + l)τ ),
y∗∗∗

 e–d(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

ỹ(t) =

⎧
⎪⎨

⎪⎩

ay∗∗
 ea(t–nτ )

a+by∗∗
 (ea(t–nτ )–)

, t ∈ [nτ , (n + l)τ ),
ay∗∗∗

 ea(t–(n+l)τ )

a+by∗∗∗
 (ea(t–(n+l)τ )–)

, t ∈ [(n + l)τ , (n + )τ ),

(.)
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where y∗∗
 and y∗∗

 are determined as (.), y∗∗∗
 and y∗∗∗

 are defined as
⎧
⎪⎨

⎪⎩

y∗∗∗
 = e–dlτ y∗∗

 + D × ay∗∗
 ealτ

a+by∗∗
 (ealτ –)

,

y∗∗∗
 = ( – D) × ay∗∗

 ealτ

a+by∗∗
 (ealτ –)

.
(.)

(ii) If  – e–aτ < D <  holds, the periodic solution (ŷ(t), ) of System (.) is globally
asymptotically stable, where

ŷ(t) =

{
y∗

 e–d(t–nτ ), t ∈ [nτ , (n + l)τ ),
y∗∗∗∗

 e–d(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),
(.)

where y∗∗∗∗
 = e–dτ y∗

 , and y∗
 is determined as (.).

Therefore, if y() = ., y() = ., d = ., a = ., b = ., μ = ., l = ., τ = ,
D = ., then . = D > D∗ =  – e–aτ .= .; the predator population y(t) will go
into extinction. Its dynamical behaviors can be seen in Figure . If y() = ., y() = .,
d = ., a = ., b = ., μ = ., l = ., τ = , D = ., then . = D < D∗ .= .;
the predator population are permanent. Its dynamical behaviors can be seen in Figure .
Obviously, the diffusion rate between the patches affects the dynamics of System (.).

Figure 1 Globally asymptotically stable y2(t) extinction periodic solution with y1(0) = 0.5, y2(0) = 0.5,
d1 = 0.6, a2 = 0.1, b2 = 0.2, μ = 0.4, l = 0.25, τ = 1, D = 0.15. (a) Time series of y1(t); (b) time series of y2(t);
(c) the phase portrait of a globally asymptotically stable periodic solution (ŷ1(t), 0) of System (3.2).
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Figure 2 Permanence for System (3.2) with y1(0) = 0.5, y2(0) = 0.5, d1 = 0.6, a2 = 0.1, b2 = 0.2, μ = 0.4,
l = 0.25, τ = 1, D = 0.05. (a) Time series of y1(t); (b) time series of y2(t); (c) the phase portrait of permanence
for System (3.2).

4 The dynamics
Theorem . If

 – e–aτ < D <  (.)

and

aτ <
β

d

[
y∗


(
 – e–dlτ ) + y∗∗∗∗


(
e–dlτ – e–dτ

)]
(.)

hold, the prey-extinction boundary periodic solution (, ŷ(t), ) of (.) is globally asymp-
totically stable, where y∗

 and y∗∗∗∗
 are defined as (.) and (.).

Proof First, we prove the local stability of the prey-extinction boundary periodic solution
(, ŷ(t), ) of (.). Defining x(t) = x(t), y(t) = y(t) – ŷ(t), y(t) = y(t), then we have the
following linearly similar system for (.) which concerns one periodic solution (, ŷ(t), ):

⎛

⎜
⎜
⎝

dx(t)
dt

dy(t)
dt

dy(t)
dt

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

a – βŷ(t)  
kβŷ(t) –d 

  a

⎞

⎟
⎠

⎛

⎜
⎝

x(t)
y(t)
y(t)

⎞

⎟
⎠ .
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It is easy to obtain the fundamental solution matrix


(t) =

⎛

⎜
⎝

exp [
∫ t

 (a – βŷ(t)) ds]  
exp [

∫ t
 kβŷ(t) ds] exp(–dt) 

  exp(at)

⎞

⎟
⎠ .

The linearization of the fourth, fifth, and sixth equations of (.) is

⎛

⎜
⎝

x((n + l)τ+)
y((n + l)τ+)
y((n + l)τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

  
  D
   – D

⎞

⎟
⎠

⎛

⎜
⎝

x((n + l)τ )
y((n + l)τ )
y((n + l)τ )

⎞

⎟
⎠ .

The linearization of the seventh, eighth, and ninth equations of (.) is

⎛

⎜
⎝

x((n + )τ+)
y((n + )τ+)
y((n + )τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠

⎛

⎜
⎝

x((n + )τ )
y((n + )τ )
y((n + )τ )

⎞

⎟
⎠ .

The stability of the periodic solution (, ŷ(t), ) is determined by the eigenvalues of

M =

⎛

⎜
⎝

  
  D
   – D

⎞

⎟
⎠

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠
(τ ),

where

λ = exp

[∫ τ



(
a – βŷ(t)

)
ds
]

,

λ = e–dτ < ,

and

λ = ( – D)eaτ .

According to condition (.), (.), and the Floquet theory [], i.e.

exp

[∫ τ



(
a – βŷ(s)

)
ds
]

< 

and

( – D)eaτ < ,

we have

λ < 
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and

λ < ,

the prey-extinction boundary periodic solution (, ŷ(t), ) of (.) is locally stable.
In the following, we will prove the global attraction. From condition (.), we can choose

an ε >  such that

ρ = exp

[∫ τ



(
a – β

(
ŷ(s) – ε

))
ds
]

< .

From the second equation of (.), we notice that dy(t)
dt ≥ –dy(t). Then we consider the

following impulsive comparative differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –dy(t),

dy(t)
dt = y(t)(a – by(t)),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = Dy(t),
�y(t) = –Dy(t),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = ,

}

t = (n + )τ .

(.)

From Lemma . and the comparison theorem of impulsive equations (see Theorem ..
in []), we have y(t) ≥ y(t), y(t) ≥ y(t), and y(t) → ŷ(s), y(t) → , as t → ∞.
Then

{
y(t) ≥ y(t) ≥ ŷ(s) – ε,
y(t) ≥ y(t) ≥ –ε,

(.)

for all t large enough. For convenience, we may assume (.) holds for all t ≥ . From (.)
and (.), we get

dx(t)
dt

≤ [
a – β

(
ŷ(s) – ε

)]
x(t). (.)

So x((n + )τ ) ≤ x(nτ+) exp[
∫ (n+)τ

nτ
(a – β(ŷ(s) – ε)) ds]. Hence, x(nτ ) ≤ x(+)ρn and

x(nτ ) →  as n → ∞, therefore x(t) →  (i = , ) as t → ∞.
Next, we will prove that y(t) → ŷ(t) and y(t) →  as t → ∞. For  < ε < d

kβ
small

enough, there must exist a t >  such that  < x(t) < ε for all t ≥ t. Without loss of
generality, we may assume that  < x(t) < ε for all t ≥ . For System (.) we have

–dy(t) ≤ dy(t)
dt

≤ –(d – kβε)y(t), (.)

then we have y(t) ≤ y(t) ≤ y(t), y(t) ≤ y(t) ≤ y(t), and y(t) → ŷ(t), ̂y(t) → ,
y(t) → ̂y(t), ̂y(t) → , as t → ∞. Meanwhile (y(t), y(t)) and (y(t), y(t)) are the
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solutions of (.) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –(d – kβε)y(t),

dy(t)
dt = y(t)(a – by(t)),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = Dy(t),
�y(t) = –Dy(t),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = ,

}

t = (n + )τ ,

(.)

respectively. We have

̂y(t) =

{
y∗

e–(d–kβε)(t–nτ ), t ∈ [nτ , (n + l)τ ),
y∗∗∗∗

 e–(d–kβε)(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),
(.)

where y∗∗∗∗
 = e–(d–kβε)τ y∗

, and y∗
 is determined as

y∗
 =

μ

 – e–(d–kβε)τ .

For any ε > , there exists a t, t > t such that

̂y(t) – ε < y(t) < ̂y(t) + ε

and

̂y(t) – ε < y(t) < ̂y(t) + ε.

Let ε → , so we have

ŷ(t) – ε < y(t) < ŷ(t) + ε

and

–ε < y(t) < +ε,

for t large enough, which implies y(t) → ŷ(t) and y(t) →  as t → ∞. This completes
the proof. �

We can easily prove Theorem . similar to Theorem ..

Theorem . If

 – e
–aτ+[ln

a+by∗∗
 (ea lτ –)
a

+ln
a+by∗∗∗

 (eaτ –)

a+by∗∗∗
 (ea lτ –)

]
< D <  – e–aτ (.)

and

aτ <
β

d

[
y∗∗


(
 – e–dlτ ) + y∗∗∗


(
e–dlτ – e–dτ

)]
(.)
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hold, the prey-extinction boundary periodic solution (, ỹ(t), ỹ(t)) of (.) is globally
asymptotically stable, where y∗∗

 , y∗∗∗
 , y∗∗

 , and y∗∗∗
 are defined as (.) and (.).

The next task is to investigate the permanence of System (.).

Definition . System (.) is said to be permanent if there are constants m, M >  (inde-
pendent of the initial value) and a finite time T such that for all solutions (x(t), y(t), y(t))
with all initial values x(+) > , y(+) > , y(+) > , m ≤ x(t) ≤ M, m ≤ y(t) ≤ M,
m ≤ y(t) ≤ M hold for all t ≥ T. Here T may depend on the initial values
(x(+), y(+), y(+)).

Theorem . If

 < D <  – e–aτ (.)

and

aτ >
β

d

[
y∗∗


(
 – e–dlτ ) + y∗∗∗


(
e–dlτ – e–dτ

)]
(.)

hold, System (.) is permanent, where y∗∗
 and y∗∗∗

 are defined as (.) and (.).

Proof Suppose (x(t), y(t), y(t)) is a solution of (.) with x() > , y() > , y() > . By
Lemma ., we have proved there exists a constant M >  such that x(t) ≤ M, y(t) ≤ M,
y(t) ≤ M, for t large enough. From (.), Theorem ., and condition (.), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(t) > ỹ(t) – ε

> y∗∗
 e–dlτ + y∗∗∗

 e–d(–l)τ – ε
	= m,

y(t) > ỹ(t) – ε

> ay∗∗
 ea lτ

a+by∗∗
 (ea lτ –)

+ ay∗∗∗
 ea(–l)τ

a+by∗∗∗
 (ea(–l)τ –)

– ε
	= m,

(.)

for ε small enough. So we only need to find m >  and ε such that x(t) > m for t large
enough. Otherwise, we can select m >  small enough satisfying m < d

kβ
, and we prove

x(t) < m cannot hold for t ≥ . By condition (.) and choosing ε small enough, we
can obtain

σi = aτ

–
β

(d – kβm)
[
y∗∗


(
 – e–(d–kβm)lτ ) + y∗∗∗


(
e–(d–kβm)lτ – e–(d–kβm)τ )]

– βετ

> ,
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Figure 3 Globally asymptotically stable prey-extinction periodic solution (0, ̂y1(t), 0) of System (2.1)
with x1(0) = 0.5, y1(0) = 0.5, y2(0) = 0.5, a1 = 2.4, b1 = 0.1, a2 = 1.5, b2 = 0.21, β1 = 0.3, k1 = 0.5,
μ = 0.86, d1 = 0.1, τ = 1, l = 0.25, D = 0.78. (a) Time series of x1(t); (b) time series of y1(t); (c) time-series of
y2(t); (d) the phase portrait of globally asymptotically stable periodic solution (0, ŷ1(t), 0) of System (2.1).

with y∗∗
 and y∗∗∗

 defined as (.) and (.). Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt < –(d – kβm)y(t),

dy(t)
dt = y(t)(a – by(t)),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = Dy(t),
�y(t) = –Dy(t),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = ,

}

t = (n + )τ .

(.)

By Lemma ., we have y(t) ≤ y(t), y(t) ≤ y(t) and y(t) → y(t), y(t) → y(t),
t → ∞, where (y(t), y(t)) is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt = –(d – kβm)y(t),

dy(t)
dt = y(t)(a – by(t)),

}

t �= (n + l)τ , t �= (n + )τ ,

�y(t) = Dy(t),
�y(t) = –Dy(t),

}

t = (n + l)τ ,

�y(t) = μ,
�y(t) = ,

}

t = (n + )τ ,

(.)
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Figure 4 Globally asymptotically stable prey-extinction periodic solution (0, ˜y1(t), ˜y2(t)) of
System (2.1) with x1(0) = 0.5, y1(0) = 0.5, y2(0) = 0.5, a1 = 2.4, b1 = 0.1, a2 = 1.5, b2 = 0.21, β1 = 0.3,
k1 = 0.5, μ = 0.86, d1 = 0.1, τ = 1, l = 0.25, D = 0.6. (a) Time-series of x1(t); (b) time-series of y1(t);
(c) time-series of y2(t); (d) the phase portrait of globally asymptotically stable periodic solution (0, ỹ1(t), ỹ2(t))
of System (2.1).

with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜y(t) =

{
y∗∗

 e–(d–kβm)(t–nτ ), t ∈ [nτ , (n + l)τ ),
y∗∗∗

 e–(d–kβm)(t–(n+l)τ ), t ∈ [(n + l)τ , (n + )τ ),

˜y(t) =

⎧
⎪⎨

⎪⎩

ay∗∗
ea(t–nτ )

a+by∗∗
(ea(t–nτ )–)

, t ∈ [nτ , (n + l)τ ),
ay∗∗∗

 ea(t–(n+l)τ )

a+by∗∗∗
 (ea(t–(n+l)τ )–)

, t ∈ [(n + l)τ , (n + )τ ),

(.)

where y∗∗
 and y∗∗

 are determined as

⎧
⎨

⎩

y∗∗
 = B(B–a)

(–A)[aC+C(B–a)] + μ

–A
> ,  < D <  – e–aτ ,

y∗∗
 = B–a

C
> ,  < D <  – e–aτ ,

(.)

with A = e–(d–kβm)τ < , B = Daealτ > , B = ( – D)aeaτ > , C = b(ealτ – ) > ,
C = b(ealτ – )[ + ( – D)ealτ ] > , and y∗∗∗

 and y∗∗∗
 are defined as

⎧
⎨

⎩

y∗∗∗
 = e–(d–kβm)lτ y∗∗

 + D × ay∗∗
ea lτ

a+by∗∗
(ea lτ –)

,

y∗∗∗
 = ( – D) × ay∗∗

ea lτ

a+by∗∗
(ealτ –)

.
(.)
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Figure 5 Permanence for System (2.1) with x1(0) = 0.5, y1(0) = 0.5, y2(0) = 0.5, a1 = 4, b1 = 0.1, a2 = 4,
b2 = 0.21, β1 = 0.3, k1 = 0.1, μ = 0.01, d1 = 0.1, τ = 1, l = 0.25, D = 0.01. (a) Time-series of x1(t);
(b) time-series of y1(t); (c) time-series of y2(t); (d) the phase portrait of permanence for System (2.1).

Therefore, there exist T >  and ε >  such that

y(t) ≤ y(t) ≤ y(t) – ε

and

y(t) ≤ y(t) ≤ y(t) – ε.

Then

dx(t)
dt

≥ [
a – β

(
y(t) – ε

)]
x(t), (.)

for t ≥ T, let N ∈ N and Nτ > T. Integrating (.) on (nτ , (n + )τ ), n ≥ N, we have

x
(
(n + )τ

) ≥ x
(
nτ+) exp

(∫ (n+)τ

nτ

[
a – β

(
y(t) – ε

)]
dt
)

= x(nτ )eσ ,

then x((N + k)τ ) ≥ x(Nτ
+)ekσ → ∞, as k → ∞, which is a contradiction to the bound-

edness of x(t). Hence, there exists a t >  such that x(t) ≥ m. This completes the
proof. �
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Figure 6 Predator (y2(t)) extinction and x1(t) – y1(t) permanence of System (2.1) with x1(0) = 0.5,
y1(0) = 0.5, y2(0) = 0.5, a1 = 2, b1 = 0.1, a2 = 1.5, b2 = 0.21, β1 = 0.3, k1 = 0.5, μ = 0.1, d1 = 0.1, τ = 1,
l = 0.25, D = 0.99. (a) Time-series of x1(t); (b) time-series of y1(t); (c) time-series of y2(t); (d) the phase portrait
of predator (y2(t)) extinction and x1(t) – y1(t) permanence of System (2.1).

5 Discussion
In this paper, we establish a predator-prey model with impulsive diffusion and releasing on
predator population. This predator-prey model for two regions, which are connected by
diffusion of the predator population, portrays the evolution of the population. We prove
that all solutions of the investigated system are uniformly ultimately bounded. From Theo-
rem ., the prey-extinction periodic solution (, ŷ(t), ) of System (.) is globally asymp-
totically stable. From Theorem ., the prey-extinction periodic solution (, ỹ(t), ỹ(t)) of
System (.) is globally asymptotically stable. From Theorem ., System (.) is perma-
nent. It is assumed that x() = ., y() = ., y() = ., a = ., b = ., a = .,
b = ., β = ., k = ., μ = ., d = ., τ = , l = ., D = .; the conditions (.)
and (.) are obviously satisfied, then the prey-extinction periodic solution (, ŷ(t), ) of
System (.) is globally asymptotically stable (see Figure ). It is assumed that x() = .,
y() = ., y() = ., a = ., b = ., a = ., b = ., β = ., k = ., μ = .,
d = ., τ = , l = ., D = .; the conditions (.) and (.) are obviously satisfied, then
the prey-extinction periodic solution (, ỹ(t), ỹ(t)) of System (.) is globally asymptoti-
cally stable (see Figure ). It is also assumed that x() = ., y() = ., y() = ., a = ,
b = ., a = , b = ., β = ., k = ., μ = ., d = ., τ = , l = ., D = .; the
conditions (.) and (.) are obviously satisfied, then System (.) is permanent (see Fig-
ure ). It is also assumed that x() = ., y() = ., y() = ., a = , b = ., a = .,
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b = ., β = ., k = ., μ = ., d = ., τ = , l = ., D = .; predator (y(t)) will
go into extinction and x(t) – y(t) will be permanent in System (.) (see Figure ).

From the simulations, we can guess that there exist three controlling thresholds with D.
It is always assumed that  < D∗ < D∗∗ < D∗∗∗ < . If  < D < D∗ holds, System (.) is per-
manent. If D∗ < D < D∗∗ holds, the prey-extinction periodic solution (, ỹ(t), ỹ(t)) of Sys-
tem (.) is globally asymptotically stable. If D∗∗ < D < D∗∗∗ holds, the prey-extinction pe-
riodic solution (, ŷ(t), ) of System (.) is globally asymptotically stable. If D∗∗∗ < D < 
holds, the predator y(t) will go into extinction, prey x(t) and predator y(t) will be perma-
nent. We can discuss parameter μ similar to parameter D. We discover that the diffusive
rate of the predator population plays an important role in pest management. We conclude
that the impulsive diffusion and the released predator provide reliable tactic bases for pest
management.
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