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Abstract
Two numerical methods are proposed to solve nonlinear Volterra integral equations
of the first kind. By using variable transformations, the problem is converted into
linear Volterra integral equations of the second kind. These methods are
implemented by utilizing Sinc quadrature, and then the problem is reduced to linear
algebraic system equations. We state error analysis for the proposed methods, which
show that these methods obtain exponential convergence order. Numerical
examples are presented to confirm the theoretical estimation and illustrate the
effectiveness of the proposed methods.
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1 Introduction
Volterra integral equations of the first kind arise in many fields of science and engineering,
for example, in diffusion problems, fluid dynamics, heat conduction problems, nonlinear
dynamic systems identification, concrete problems of mechanics, et cetera. As we all know,
Volterra integral equations of the first kind are ill-posed problems because their solutions
are generally unstable, and slight changes can make large errors [, ]. So it is difficult to
find exact solutions of these equations in many cases. Furthermore, since the small error
may lead to an unbounded error, it is also difficult to find numerical solutions. Some works
were motivated by the aforementioned discussion, and several regularization methods
were introduced to conquer the ill-posedness in [–].

This paper is focused on proposing two numerical methods for solving a class of non-
linear Volterra integral equations of the first kind in the form

∫ x

a
K(x, t)H

(
u(t)

)
dt = f (x), x ∈ [a, b], ()

where K , H , and f are given functions, H is invertible, and u is the solution to be deter-
mined under the condition f (a) = .

There exist several methods to solve linear Volterra integral equations of the first kind
[–], such as block-pulse functions method [], modified block-pulse functions method
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[], and wavelet method []. However, nonlinear problems are still a challenge. Babolian
et al. introduced the operational matrices method by using piecewise constant orthogo-
nal functions and homotopy perturbation method for solving nonlinear Volterra integral
equations of the first kind separately in [] and []. The Adomian method [] and opti-
mal homotopy asymptotic method [] were applied to solve nonlinear Volterra integral
equations. Inderdeep and Sheo presented the Haar wavelet method for numerical solution
of a class of nonlinear Volterra integral equations of the first kind in [].

It is common to employ a collocation method or analytic method based on the use of
polynomial base functions to solve Volterra integral equations. Recently, several authors
introduced SE and DE Sinc quadratures for solving integral equations. Muhammad and
Mori proposed a numerical method of indefinite integration based on the DE transforma-
tion together with Sinc expansion of the integrand in []. Haber provided two formulas
and approximation error for approximating the indefinite integral over a finite interval in
[]. The Sinc Nyström method for numerical solution of one-dimensional Cauchy sin-
gular integral equations given on a smooth arc in the complex plane has been described
in []. Muhammad et al. [] presented a technique for linear integral equations using
the Sinc collocation method based on the DE transformation. Rashidinia and Zarebnia
[] developed an analogous approach for the system of linear Fredholm integral equa-
tions by means of SE transformation. More recently, Okayama et al. [] reported error
estimates with explicit constants for the Sinc approximation, Sinc quadrature, and Sinc
indefinite integration. Furthermore, the theoretical analysis of Sinc Nyström methods for
linear integral and differential equations have been discussed in [–]. Similar numeri-
cal approaches for nonlinear Fredholm and Volterra integral equations of the second kind
are also presented in [, ]. However, nonlinear Volterra integral equations of the first
kind are still not solved. In this work, we develop SE and DE Sinc methods to solve Eq. ()
in terms of SE and DE Sinc quadrature rules; these methods have a simple structure and
perfect approximate properties. The convergence rates of these methods are exponential.
Therefore, the proposed methods improve the conventional polynomial convergence rate.
Furthermore, the proposed schemes are stable because the discrete coefficient matrices
are very well conditioned.

In this paper, the basic ideas are organized as follows. In Section , we present some
definitions and preliminary results about the Sinc function and SE, DE Sinc quadrature for
indefinite integral. In Section , Sinc Nyström methods for the nonlinear Volterra integral
equations of the first kind are developed. In Section , the convergence analysis with errors
are described for the current methods. Both of these two algorithms are exponentially
convergent. In Section , numerical examples are presented to validate the effectiveness
of these methods. Numerical results of the proposed methods are compared with existing
methods to confirm the reliability of the proposed methods. Finally, a conclusion is given
in Section .

2 Preliminaries
2.1 Sinc indefinite integral on the real axis
In this section, we give a summary of the basic formulation of the Sinc function []. We
introduce some known results and useful formulas. The Sinc function is defined on the
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whole real line by

Sinc(x) =

⎧⎨
⎩

sin(πx)
πx , x �= ,

, x = .
()

The Sinc approximation for a function f on the entire real axis can be expressed in the
truncated sum form

f (x) ≈
N∑

i=–N

f (ih)S(i, h)(x), x ∈R, ()

where the basis function S(i, h)(x) = sin[π (x/h–i)]
π (x/h–i) , and h is a step size appropriately selected

hinging on N ∈ Z
+ and i = –N , . . . , N . Haber [] introduced the numerical indefinite in-

tegral formula by employing the Sinc function as follows:

∫ s

–∞
f (x) dx ≈

N∑
i=–N

f (ih)
∫ s

–∞
S(i, h)(x) dx

=
N∑

i=–N

f (ih)J(i, h)(s), s ∈R, ()

where the basis function J(i, h) is expressed as

J(i, h)(s) = h
{




+

π

Si
[
π (s/h – i)

]}

with Si(s) =
∫ s


sinμ

μ
dμ.

2.2 SE and DE Sinc indefinite integral
From the above we can see that the approximation of Eq. () is valid on R, whereas Eq. ()
is defined on finite interval [a, x]. Equation () can be applicable to infinite intervals using
variable transformations. Here, the smoothing variable transformations with standard SE
and DE transformation functions φ(x) are utilized.

The SE transformation and its inverse can be presented as follows:

φSE(x) =
b – a


tanh

(
x


)
+

b + a


, x ∈R,

{
φSE}–(t) = log

(
t – a
b – t

)
, t ∈ (a, b).

()

In order to define a facilitate function space, we introduce the strip domain Dd = {z ∈ C :
| Im z| < d} for some d > . The SE transformation maps (a, b) onto R and maps Dd onto
the region

φSE(Dd) =
{

z ∈ C
∣∣∣∣arg

(
z – a
b – z

)∣∣∣∣ < d
}

.

In order to obtain the results precisely, we need to introduce a number of spaces of func-
tions analytic as follows.
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Definition . Let D be a simply connected domain satisfying (a, b) ⊂ Dd , and let α be a
positive constant. Then, Lα(Dd) denotes the family of all functions f satisfying the follow-
ing conditions:

(i) f is analytic in Dd ;
(ii) |f (z)| ≤ M|Q(z)|α for all z in Dd , where Q(z) = (z – a)(b – z), and M is a constant.

Based on the Sinc approximation and SE transformation, we can implement a quadra-
ture rule designated as the SE Sinc quadrature and present exponential convergence in the
following theorem.

Theorem . (see []) Assume that (fQ) ∈ Lα(φSE) with  < d < π and let h be selected by
the formula

h =
√

πd
αN

, ()

where N ∈ Z
+. Then, there exists a constant CSE

α such that

∣∣∣∣∣
∫ x

a
f (t) dt –

N∑
i=–N

f
(
φSE(ih)

){
φSE}′(ih)J(i, h)

({
φSE}–(x)

)∣∣∣∣∣
≤ M(b – a)α–CSE

α e–
√

πdαN , ()

where M is the constant in Definition ..

In order to improve the convergence speed, Muhammad substituted the DE transfor-
mation for the SE transformation. The DE transformation and its inverse are described as
follows:

φDE(x) =
b – a


tanh

(
π


sinh(x)

)
+

b + a


, x ∈R,

{
φDE}–(t) = log

[

π

log

(
t – a
b – t

)
+

√
 +

{

π

log

(
t – a
b – t

)}]
, t ∈ (a, b).

()

The DE transformation maps Dd onto the domain

φDE(Dd) =
{

z ∈ C
∣∣∣∣arg

[

π

log

(
t – a
b – t

)
+

√
 +

{

π

log

(
t – a
b – t

)}]∣∣∣∣ < d
}

.

If we use the DE transformation instead of the SE transformation, then the DE Sinc quadra-
ture for indefinite is obtained. The convergence order of error is improved in the next
theorem.

Theorem . (see []) Assume that (fQ) ∈ Lα(φDE) with  < d < π/, and let h be selected
by the formula

h =
log(dN/α)

N
, ()



Ma et al. Advances in Difference Equations  (2016) 2016:151 Page 5 of 15

where N ∈ Z
+. Then, there exists a constant CSE

α such that

∣∣∣∣∣
∫ x

a
f (t) dt –

N∑
i=–N

f
(
φDE(ih)

){
φDE}′(ih)J(i, h)

({φDE}–(x)
)∣∣∣∣∣

≤ M(b – a)α–CDE
α

log(dN/α)
N

e
–πdN

log(dN/α) , ()

where M is the constant in Definition ..

3 Sinc Nyström method for Volterra integral equations
In this part, we consider the numerical solution of Eq. (). First, the nonlinear Volterra
integral equation of first kind is transformed to a linear Volterra integral equation of the
second kind by setting

H
(
u(t)

)
= v(t) ()

in Eq. (). Therefore, we obtain the linear Volterra integral equation of the form

∫ x

a
K(x, t)v(t) dt = f (x), x ∈ [a, b]. ()

Then, taking the derivative with respect to x in both sides of the last equation, we get

K(x, x)v(x) +
∫ x

a

∂K(x, t)
∂x

v(t) dt = f ′(x), x ∈ [a, b]. ()

Assume that the function K(x, x) �= , so that Eq. () can be converted into a Volterra
integral equation of the second kind

v(x) +
∫ x

a
K(x, t)v(t) dt = f(x), x ∈ [a, b], ()

where K(x, t) = ∂K (x,t)
∂x /K(x, x) and f(x) = f ′(x)/K(x, x).

Further, the proposed numerical methods for Eq. () will be fully discussed in two sub-
sections, where we state the SE Sinc Nyström method and DE Sinc Nyström method for
efficient evaluation of Volterra integral equations.

3.1 SE Sinc Nyström method
According to Theorem ., SE Sinc indefinite integration can be directly applied to the in-
tegral term (on the left-hand side of Eq. ()): the integral can be accurately approximated
as

∫ x

a
K(x, t)v(t) dt ≈ KSE

N v(x)

= h
N∑

i=–N

K
(
x, ζ SE

i
){

φSE}′(ih)J(i, h)
({

φSE}–(x)
)
vSE

i , ()

where vSE
i denotes an approximate value of v(φSE(ih)), ζ SE

i = φSE(ih), and the mesh h is
chosen by formula (). The Nyström method is exploited to find the approximate solution
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vSE
N for Eq. () such that

vSE
N (x) + h

N∑
i=–N

K
(
x, ζ SE

i
){

φSE}′(ih)J(i, h)
({

φSE}–(x)
)
vSE

i = f(x). ()

There are N +  unknowns vSE
i (i = –N , . . . , N ) to be determined in Eq. (). In order to

determine these unknowns, we select the Sinc points ζ SE
j = φSE(jh) as quadrature points.

By taking x = ζ SE
j in Eq. (), we eventually gain the following linear system of equations

with unknowns vSE
j (j = –N , . . . , N ):

vSE
j + h

N∑
i=–N

K
(
ζ SE

j , ζ SE
i

){
φSE}′(ih)J(i, h)(jh)vSE

i = f
(
ζ SE

j
)
. ()

Note that {φSE}–(ζ SE
j ) = jh, so J(i, h)({φSE}–(ζ SE

j )) = J(i, h)(jh), and h is given by formula
(). Equation () can be stated in operator form as follows:

(
IN + KSE

N
)
vSE

N = f SE
N . ()

Then, the approximate solution vSE
N (x) at an arbitrary point x of Eq. () can be expressed

as

vSE
N (x) = f(x) – h

N∑
i=–N

K
(
x, ζ SE

i
){

φSE}′(ih)J(i, h)
({

φSE}–(x)
)
vSE

i . ()

In fact, vSE
N (x) is also an approximate solution of Eq. (). Using relation (), we obtain an

approximate solution uSE
N (x) of Eq. (),

uSE
N (x) = H–(vSE

N (x)
)
, x ∈ [a, b]. ()

3.2 DE Sinc Nyström method
Similarly, DE Sinc indefinite integration can also be directly employed to the second term
kernel integral (on the left-hand side of Eq. ()); based on Theorem ., we derive the
discrete DE operator

∫ x

a
K(x, t)v(t) dt ≈ KDE

N v(x)

= h
N∑

i=–N

K
(
x, ζ DE

i
){

φDE}′(ih)J(i, h)
({

φDE}–(x)
)
vDE

i , ()

where vDE
i represents an approximate value of v(φDE(ih)), ζ DE

i = φDE(ih), and the mesh h is
selected by (). The Nyström method is utilized to obtain the vDE

N such that

vDE
N (x) + h

N∑
i=–N

K
(
x, ζ DE

i
){

φDE}′(ih)J(i, h)
({

φDE}–(x)
)
vDE

i = f(x). ()

There are N +  unknowns vDE
i (i = –N , . . . , N ) to be determined in Eq. (). In order

to determine these N +  unknown values, we choose the Sinc points ζ DE
j = φDE(jh) as
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quadrature points. By taking x = ζ DE
j in Eq. () we get the following system of linear

equations with unknowns vDE
j (j = –N , . . . , N ):

vDE
j + h

N∑
i=–N

K
(
ζ DE

j , ζ DE
i

){
φDE}′(ih)J(i, h)(jh)vDE

i = f
(
ζ DE

j
)
. ()

Note that {φDE}–(ζ DE
j ) = jh, so J(i, h)({φDE}–(ζ DE

j )) = J(i, h)(jh), and h is given by formula
(). So, we obtain an approximate solution vDE

j (j = –N , . . . , N ) of the linear system Eq. (),
which can be easily solved. Equation () can be written in the following discrete DE op-
erator equation:

(
IN + KDE

N
)
vDE

N = f DE
N . ()

Then, the approximate solution vDE
N (x) at an arbitrary point x of Eq. () can be expressed

as

vDE
N (x) = f(x) – h

N∑
i=–N

K
(
x, ζ DE

i
){

φDE}′(ih)J(i, h)
({

φDE}–(x)
)
vDE

i . ()

Indeed, vDE
N (x) is also an approximate solution of Eq. (). From formula () we get an

approximate solution uDE
N (x) for Eq. () of the form

uDE
N (x) = H–(vDE

N (x)
)
, x ∈ [a, b]. ()

4 Convergence analysis for numerical method
Throughout this section, we provide a convergence analysis of the associated SE and DE
Sinc Nyström methods. Let us first consider the SE case. Tomoaki Okayama and his coau-
thors have given the theoretical analysis of Sinc Nyström methods for linear Volterra equa-
tion in [] by utilizing error estimates with explicit constants for Sinc quadrature. They
display that approximate solutions have exponential convergence order.

Theorem . Let f ′ ∈ Hol(φSE(Dd)), ∂K (x,·)
∂x Q(·) ∈ C[a, b], ∂K (·,t)

∂t Q(t) ∈ C[a, b] for all x, t ∈
[a, b], and /K(t, t) ∈ C[a, b]. Then, there exist N ∈ Z

+ and a constant C such that for
N > N, the discrete coefficient matrix IN + KSE

N is invertible, and

max
a≤x≤b

∣∣v(x) – vSE
N (x)

∣∣ ≤ Ce–
√

πdαN . ()

Proof We refer to []. �

Theorem . Let the assumptions in Theorem . be satisfied. Then there exist constants
C and C independent of N such that

∥∥IN + KSE
N

∥∥∞ ≤ C,
∥∥(

IN + KSE
N

)–∥∥∞ ≤ C. ()

Proof We refer to []. �

According to these results, we can give an error analysis of the nonlinear Volterra inte-
gral equations of the first kind.
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Theorem . Let the assumptions in Theorem . be satisfied, and let the inverse function
of H(v(t)) satisfy the Lipschitz condition with respect to v of constant L > , that is,

∣∣H–(v) – H–(v)
∣∣ ≤ L|v – v|. ()

Then there exists a constant C independent of N such that

max
a≤x≤b

∣∣u(x) – uSE
N (x)

∣∣ ≤ Ce–
√

πdαN . ()

Proof Combining Theorem . and known conditions, we have

max
a≤x≤b

∣∣u(x) – uSE
N (x)

∣∣ = max
a≤x≤b

∣∣H–(v(x)
)

– H–(vSE
N (x)

)∣∣

≤ L
∣∣v(x) – vSE

N (x)
∣∣

≤ LCe–
√

πdαN

= Ce–
√

πdαN .

The proof of the theorem is completed. �

Next, we take into account the error analysis of DE case for Eq. (). The proof is similar
to that in the SE case, so we only state the results.

Theorem . Let f ′ ∈ Hol(φDE(Dd)), ∂K (x,·)
∂x Q(·) ∈ C[a, b], ∂K (·,t)

∂t Q(t) ∈ C[a, b] for all x, t ∈
[a, b], and /K(t, t) ∈ C[a, b]. Then, there exist N ∈ Z

+ and a constant C such that for
N > N, the discrete coefficient matrix IN + KDE

N is invertible, and

max
a≤x≤b

∣∣v(x) – vDE
N (x)

∣∣ ≤ C
log(dN/α)

N
e

–πdN
log(dN/α) . ()

Theorem . Let the assumptions in Theorem . be satisfied. Then there exist constants
C and C independent of N such that

∥∥IN + KDE
N

∥∥∞ ≤ C,
∥∥(

IN + KDE
N

)–∥∥∞ ≤ C. ()

Theorem . Let the assumptions in Theorem . be satisfied, and let the inverse function
H–(v(t)) satisfy the Lipschitz condition with respect to v of constant L > , that is,

∣∣H–(v) – H–(v)
∣∣ ≤ L|v – v|. ()

Then there exists a constant C independent of N such that

max
a≤x≤b

∣∣u(x) – uDE
N (x)

∣∣ ≤ C
log(dN/α)

N
e

–πdN
log(dN/α) . ()

Remark  Here, the values of C in formulas () and () are different. In addition, the
convergence rate of the approximate solution in () and () are consistent while the in-
verse function of H(u(t)) satisfies the Lipschitz condition. We can get the same conclusion
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for the DE case. Further, the convergence speed of the DE Sinc Nyström method is much
faster than that of the SE Sinc Nyström method.

Remark  Theorem . and Theorem . suggest that the condition numbers of the ma-
trices IN + KSE

N and IN + KDE
N are uniformly bounded under the infinity norm.

5 Numerical examples
In this section, several numerical examples are provided to illustrate the effectiveness and
accuracy of the SE and DE Sinc Nyström methods, and all experiments are implemented
using MATLAB. For the SE Sinc Nyström method, we choose d = . and α =  in formula
(). For the DE Sinc Nyström method, we choose d = . and α = / in formula (). In the
following numerical examples, in order to observe the convergence behavior and validate
the theoretical results, we solve each equation for several values of N . Specifically, we
select N = , , , , . . . and define

Errorv(x) = max

{∣∣v(xi) – vN (xi)
∣∣ : xi =

i


, i = , , . . . , 
}

, ()

Erroru(x) = max

{∣∣u(xi) – uN (xi)
∣∣ : xi =

i


, i = , , . . . , 
}

, ()

ρN = log

( Errori
u(x)

Error(i+)
u(x)

)
, Cond = ‖IN + KN‖∞

∥∥(IN + KN )–∥∥∞, ()

where Errorv(x) and Erroru(x) are the maximum errors corresponding to the grid points
for Eq. () and Eq. (), respectively. In addition, vN and uN stand for vSE

N and uSE
N or vDE

N
and uDE

N , respectively, and ρN denotes the convergence rate of the presented methods for
Eq. (). In formula (), Errori

u(x) represents the Erroru(x) in the (i+)th row of the following
tables, and Cond denotes the condition number of matrix IN + KSE

N or IN + KDE
N .

Example  Consider the following nonlinear Volterra integral equation of the first kind:

∫ x


e(x–t)u(t) dt = ex – ex, x ∈ [, ],

with the exact solution u(x) = ex. This equation is converted to a linear Volterra integral
equation of the second kind by means of u(t) = v(t). From the relation u(t) = H–(v(t)) =√

v(t), v ∈ [, e], an approximate solution of this equation is gained.

Since for all v, v ∈ [, e], |u – u| = |H–(v) – H–(v)| = |√v – √v| = | v–v√v+√v
| ≤


 |v – v|, we have that H–(v(t)) satisfies the Lipschitz condition with respect to v. The
numerical results are shown in Tables  and , which verify the conclusions of the above

Table 1 The numerical results of the SE Sinc Nyström method for Example 1

N Errorv(x) Erroru(x) ρN Cond

4 9.203e–003 2.442e–003 ∗ 5.403
8 9.862e–004 2.329e–004 3.390 5.434
16 3.027e–005 7.625e–006 4.933 5.437
32 2.164e–007 4.670e–008 7.351 5.437
64 1.536e–010 3.001e–011 10.604 5.437
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Table 2 The numerical results of the DE Sinc Nyström method for Example 1

N Errorv(x) Erroru(x) ρN Cond

4 8.238e–002 1.887e–002 ∗ 5.500
8 5.987e–003 1.305e–003 3.854 5.438
16 1.871e–005 3.476e–006 8.553 5.437
32 9.852e–010 2.360e–010 13.846 5.437
64 3.553e–015 8.882e–016 18.020 5.437

Figure 1 Erroru(x) comparison between
methods of Example 1.

Figure 2 The numerical results and exact solutions of Example 1.

theorems. The results present the exponential convergence rate of described methods, and
the condition numbers of the matrices IN + KSE

N and IN + KDE
N are uniformly bounded with

infinity norm. By increasing the value of N the error decreases. As anticipated, Tables 
and  illustrate that the convergence speed of the DE Sinc Nyström method is much faster
than that of the SE Sinc Nyström method. Figure  represents the numerical results of
the SE Sinc Nyström method, DE Sinc Nyström method, and Haar wavelet method [].
When the value of N is small, the Haar wavelet method is more efficient than the DE Sinc
Nyström method. Yet, it is displayed that the convergence rate of present methods is much
faster than that of the Haar wavelet method. In fact, the convergence order of the error for
Haar wavelet method is O( 

m ). In Figure , the values of exact solution and approximate
solution with N =  for our methods are provided. The figure shows the accuracy of the
proposed methods.
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Example  Consider the following nonlinear Volterra integral equation of the first kind:

∫ x


e(x–t) ln

(
u(t)

)
dt = ex – x – , x ∈ [, ],

with the exact solution u(x) = ex. This equation is converted to a linear Volterra integral
equation of the second kind by employing ln(u(t)) = v(t). According to the identity u(t) =
ev(t), the approximate solution of this equation is achieved.

Based on the Lagrange theorem, u = H–(v(t)) = ev satisfies the Lipschitz condition with
respect to v. The numerical results of Tables  and  present the exponential convergence
rate of the presented methods. In addition, the condition number of the matrices in each
row is small and bound. The tables demonstrate that the convergence speed of the DE
Sinc Nyström method is much faster than that of the SE Sinc Nyström method, as pre-
dicted. Figure  displays the numerical results obtained from the SE Nyström Sinc method,
DE Sinc Nyström method, and Haar wavelet method []. When the value of N is small,
the Haar wavelet method is better than the DE Sinc Nyström method. But it is clear that
the convergence speed of the proposed methods is much quicker than the Haar wavelet
method. Figure  shows the curves of exact solution and approximate solution with N = 
of the proposed methods. The results approve the efficiency of this method for solving
these problems.

Table 3 The numerical results of the SE Sinc Nyström method for Example 2

N Errorv(x) Erroru(x) ρN Cond

4 1.701e–003 4.167e–003 ∗ 5.403
8 1.766e–004 4.658e–004 3.161 5.434
16 9.051e–006 2.365e–005 4.301 5.437
32 1.039e–007 2.602e–007 6.505 5.437
64 1.360e–010 3.175e–010 9.678 5.437

Table 4 The numerical results of the DE Sinc Nyström method for Example 2

N Errorv(x) Erroru(x) ρN Cond

4 1.541e–002 2.591e–002 ∗ 5.500
8 8.811e–004 2.325e–003 3.478 5.438
16 1.308e–005 3.266e–005 6.154 5.437
32 6.183e–010 1.139e–009 14.817 5.437
64 5.551e–016 8.882e–016 20.291 5.437

Figure 3 Erroru(x) comparison between
methods of Example 2.
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Figure 4 The numerical results and exact solutions of Example 2.

Table 5 The numerical results of the SE Sinc Nyström method for Example 3

N Errorv(x) Erroru(x) ρN Cond

4 3.565e–003 5.677e–002 ∗ 2.814
8 3.096e–004 4.437e–003 3.678 2.823
16 1.388e–005 2.006e–004 4.467 2.824
32 1.547e–007 1.211e–006 7.372 2.824
64 2.502e–010 6.334e–010 10.901 2.824

Table 6 The numerical results of the DE Sinc Nyström method for Example 3

N Errorv(x) Erroru(x) ρN Cond

4 3.044e–002 9.255e–002 ∗ 2.866
8 1.686e–003 3.949e–003 4.551 2.825
16 1.439e–005 8.880e–005 5.475 2.824
32 2.405e–009 4.197e–008 11.047 2.824
64 7.772e–016 8.295e–015 22.271 2.824

Example  Consider the following nonlinear Volterra integral equation of the first kind:

∫ x



(
sin(x – t) + 

)
cos

(
u(t)

)
dt =

x sin x


+ sin x, x ∈ [, ],

with the exact solution u(x) = x. When cos(u(t)) = v(t) is utilized, this equation is trans-
formed into a linear Volterra integral equation of the second kind. On the basis of u(t) =
arccos(v(t)), the approximate solution of this equation is achieved.

Similarly, u = H–(v(t)) = arccos(v), v ∈ [, cos()], fulfills the Lipschitz condition with
respect to v according to the Lagrange theorem, Tables  and  present the exponential
convergence rate of described methods and show that the condition number of the discrete
coefficient matrices is uniformly bounded under infinity norm. As expected, the tables
show that the convergence rate of the DE Sinc Nyström method is much faster than that of
the SE Nyström method. Compared with the SE, DE Sinc Nyström method, and the Haar
wavelet method in Figure , the Haar wavelet method is more accurate than the SE Sinc
Nyström method and DE Sinc Nyström method when the integer N is small. However, the
proposed algorithms have a faster convergence speed than the Haar wavelet method [],
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Figure 5 Erroru(x) comparison between
methods of Example 3.

Figure 6 The numerical results and exact solutions of Example 3.

Table 7 The numerical results of the SE Sinc Nyström method for Example 4

N Errorv(x) Erroru(x) ρN Cond

4 4.079e–003 3.518e–003 ∗ 2.330
8 3.576e–004 2.783e–004 3.660 2.337
16 9.208e–006 1.611e–005 4.111 2.338
32 9.411e–008 2.283e–007 6.140 2.338
64 1.498e–010 3.041e–010 9.552 2.338

so they are very considerable. The values of the exact solution and approximate solution
with N =  for our methods are presented in Figure .

Example  Consider the following nonlinear Volterra integral equation of the first kind:

∫ x


ex+tu


 (t) dt = (x – )ex – ex, x ∈ [, ],

with the exact solution u(x) = x 
 . When the u 

 (t) = v(t) is utilized, this equation is
transformed into a linear Volterra integral equation of the second kind. On the basis of
u(t) = v 

 (t), the approximate solution of this equation is achieved.

Here u = H–(v(t)) = v 
 , v ∈ [, ], does not satisfy the Lipschitz condition with respect

to v. However, Tables  and  show that the results are in agreement with the previous
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Table 8 The numerical results of the DE Sinc Nyström method for Example 4

N Errorv(x) Erroru(x) ρN Cond

4 3.100e–002 2.895e–002 ∗ 2.339
8 1.912e–003 1.362e–004 4.410 2.338
16 1.420e–005 4.278e–005 4.992 2.338
32 8.818e–009 9.879e–0010 15.402 2.338
64 2.220e–016 3.053e–016 21.626 2.338

Figure 7 The numerical results and exact solutions of Example 4.

examples. In Figure , the curves of the exact solution and the approximated solution with
N =  for the proposed methods are plotted. This example suggests that the conditions of
Theorem . and Theorem . can be weaken, and we can draw the same conclusions.

6 Conclusion
In the present study, the SE and DE Nyström method are presented by converting non-
linear Volterra integral equations of the first kind into linear Volterra integral equations
of the second kind. The proposed methods are stable and avoid the ill-conditioning and
nonlinear iteration problems. The condition numbers have good reliability and efficiency.
Numerical results are in agreement with the theoretical analysis. It is obvious that the
convergence rate of the approximate solutions are exponential when the inverse function
of H(u(t)) satisfies the Lipschitz condition. In future work, we will utilize the proposed
methods to deal with the general nonlinear Volterra integral equations of the first kind
and nonlinear Volterra integral equation systems of the first kind.
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