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1 Introduction
The Halanay inequality was first introduced in [1] and many generalizations of this in-
equality have been obtained due to their significance in the analysis of delayed dynamical
systems [2-9], and especially in proving the global exponential stability of the equilib-
ria of mathematical models proposed in neural networks and biology with time delays
[8—11]. The original form of the Halanay inequality and some of its generalizations are for
continuous dynamical systems with only one unknown scalar function involved in the sys-
tem [1, 6, 9], i.e., the one-dimensional case. In [9], Halanay inequality was generalized to a
multi-dimensional form to deal with the stability of the equilibria of continuous dynamical
systems in neural networks with impulses.

Along with the development of Halanay-type inequalities for continuous-time dynam-
ical systems, discrete-time Halanay inequalities have also been established to handle the
stability of discrete dynamical systems with delays [12-20]. For example, the following

result was obtained in [15].

Theorem 1.1 (Theorem 1 in [15]) Let r > 0 be a natural number, and let {x(n)},>_, be a

sequence of real numbers satisfying the inequality

Ax(n) < —ax, + bmax{x(n),x(n -1),...,x(n - r)}, n>0, (1.1)
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where A is the forward difference operator and Ax(n) = x(n+1) —x(n). If0 <b < a <1, then
there exists a constant Ay € (0,1) such that

x(n) < maX{O,x(O),x(—l),...,x(—r)}kﬁ, n>0, (1.2)

where Mg is the smallest root in the interval (0,1) of the equation

My (@-1)A -b=0. (1.3)

Based on Theorem 1.1, different generalizations of discrete Halanay-type inequalities
have been developed [12, 13, 16, 19]. However, the generalizations are mostly dealing with
one-dimensional functions, such as the sequence {x(n)} in Theorem 1.1; while general-
izations of discrete Halanay-type inequalities for multi-dimensional sequences {X(n)} =
{(x1(n),%2(n), ..., %,(n))T} are hardly developed. Motivated by this, the first aim of our
present work is to develop certain multi-dimensional discrete Halanay-type inequalities.

On the other hand, the global stability of the equilibria of epidemic models is a key re-
search topic in the quantitative analysis of the transmission of infectious diseases. Much
research on this topic has been done on compartmental models of infectious diseases such
as influenza, malaria, dengue, cholera, etc. [21-25]. Usually, a compartmental infectious
disease model has a disease free equilibrium, which is globally asymptotically stable when
the basic reproduction number R, of the model is less than 1, and it has a positive equilib-
rium which is globally asymptotically stable when R, > 1 [26]. Time delays are frequently
involved in these infectious disease models [21-23, 27] and their presence poses great dif-
ficulty in stability analysis, especially in analyzing the global asymptotical stability of the
equilibria of these models. For infectious disease models with two or more delays involved,
the local asymptotical stability of the equilibrium can be obtained through the analysis of
the eigenvalues of the Jacobian matrix of the linearized model at the corresponding equi-
librium, but the global asymptotical stability of the equilibria of some of these infectious
disease models with several delays remains unsolved at present [22, 23]. Hence, another
aim of this work is to establish the global asymptotical stability of the disease free equi-
librium of a malaria transmission model with two delays. We shall tackle this by applying
the multi-dimensional discrete Halanay inequalities developed in this paper. Moreover, we
shall show that the disease free equilibrium of the model is globally asymptotically stable
when the basic reproduction number Ry is less than 1, which is well consistent with the
threshold property of the basic reproduction number.

The paper is organized as follows. In Section 2, we present two generalizations of The-
orem 1.1 to multi-dimensional case. Applications of these two generalizations are given
in Section 3 to obtain the global asymptotical stability of the disease free equilibrium of a
malaria transmission model with two delays. Finally, some concluding remarks are given
in Section 4.

2 Generalized discrete Halanay-type inequalities
In this section, we shall establish two generalizations of Theorem 1.1 to multi-dimensional
case. First, we introduce some notations as follows. Throughout, we denote

1={1,2,...,m},

S={-r,-r+1,...,-1,0,1,...} whereris a positive integer,
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Sy ={-r,-r+1,...,-1,0},

Sy ={ng—r,mg—r+1,...,np}.

Let X(n) = (x1(n), %3(n), ..., %,,(n))T where {x;(n)}, i € I is a real sequence. Define
[xi(n)]r = max{xi(n),xi(n =1),...,xi(n— r)}, iel,

and

[Xm)], = ([2(0)], [%200] ... [xm (D] )T

Moreover, as usual the forward difference operator A is defined by AX (n) = X(n+1) - X(n).
Let Y (n) = (y1(n),y2(n), ..., y(n))T. The notion X < (>) Y means x;(n) < (>) y;(n) fori el
and # € S. Let E = diag(1,1,...,1) be the unitary matrix of suitable order and §; be the
Kronecker symbol, i.e., §; = 1if i = j and §;; = 0 if otherwise.

Our first generalization of Theorem 1.1 is the following result.

Theorem 2.1 Let {X(n)},>_, be a nonnegative sequence satisfying

AX(n) <AX(n)+B[X(n)], n=0 (2.1)

V,
and the initial conditions (also known as initial strings in [15])

xi(s) = xES), iclseS, (2.2)

where A = (a;))mxm and B = (bjj)uxm are two matrices satisfying

aiz-1,  ay=0, i#j  b;=0, ) b;>0, ijel (2.3)
j=1
and
Y (aj+by) <0, i€l (2.4)
j=1

Then there exists A; € (0,1), i € I, such that

x;(n) < maX{O,xl(.S)})»f’, n>0,iel,
SESl

where A; € (0,1) is the root of the equation
m m
W= ag + )W =Y by =0, (2.5)

Jj=1 Jj=1

foreachiel.
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Proof Consider the following system:

AY(n) =AY (n) + B[Y (n)] (2.6)
with initial values
yi(s) =y, ielses, (2.7)
such that
(s) (s) :
x <y, ielseS. (2.8)
For each i € [, the ith component of (2.1) gives
m m
x(n+1) < Z(“if +8;)xi(n) + Z b,»j[x,'(n)]r, (2.9)
j=1 J=1
while the ith component of (2.6) is
yiln+1) =Y (az+85)y(m) + > _ byly(m)] . (2.10)

Jj=1 Jj=1

Noting that a; + 8; > 0, b; > 0, i,j € I (from (2.3)) and the initial values satisfy (2.8), by
comparison arguments [28] we get

xi(n) <yi(n), n=0. (2.11)

Now, define for each i €,

F,()L) = )\Hl - Z(&lij + (Sij))xr - Z bij~
j=1 j=1

We observe that F;()) is continuous in the interval [0,1] (with respect to A). Further, in
view of (2.3) and (2.4),

Fi(0)=-) b;<0
j=1
and
m m m
Fl(l) =1- Z(&llj + (Sij) - Zb,‘j = - Z(ﬂij + bij) > 0.
j=1 j=1 j=1

Consequently, there exists A; € (0,1) such that F;(A;) = 0, i.e., A; is a root of equation (2.5).
It is also noted that F;(A) = 0 is the characteristic equation of (2.10) when 0 < A < 1.
Hence, y;(n) = KA}, n > 0 is a solution of (2.10), where K is a constant. In particular, we
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set K = maXges, {O,xgs)} such that (2.8) is fulfilled for s € S;. Thus, it follows from (2.11) that
xi(n) <y;(n) = max{O,xES)}kf’, n>0,iel
SES]
The proof is complete. O
Corollary 2.2 Let {X(n)},>_, be a nonnegative sequence satisfying (2.1) and (2.2). Suppose
that A and B also satisfy (2.3) and (2.4). Then there exists K = (ki, ka, ..., k)T, wherek;,i € T
is a positive constant, and ) € (0,1) such that

X(n)<KA", n>0.

Proof Set k; = maxsesl{O,xf-s)}, i €l and A = max{Ay,Ay,..., A}, where A; has the same
meaning as in Theorem 2.1. It is immediate from Theorem 2.1 that X(n) < ICA", n> 0.

O
Corollary 2.3 Let {X(n)},>u,-r be a nonnegative sequence satisfying
AX(n) <AX(n)+B[X(n)], n=no (2.12)
and the initial conditions
x(s)=a", ielseS, (2.13)

where A = (@) mxm and B = (by)mxm are two matrices satisfying (2.3) and (2.4). Then there
exists K = (ki, ko, ..., k)T, where k; = maxsegz{O,xgs)}, iel,and ) € (0,1) such that

X(n) < KA, n>nyg.
Proof Set n—ny = n and it follows from Theorem 2.1 and Corollary 2.2 that
X(n) < KW', #=0,
ie, X(n) <A, n > nyg. O

In the sequel, we shall generalize Theorem 1.1 to another multi-dimensional case by
applying the theory of nonsingular M-matrix. The following lemma on nonsingular M-

matrix [29] will be needed later.

Lemma 2.4 [29] Suppose that the matrix C = (Cjj)mxm Satisfies ¢; <0, i #j, i,j € L. The
following statements are equivalent to C is a nonsingular M-matrix.
(1) All the successive principal minors of C are positive.
(2) c¢ii > 0 and there exists a positive vector z > 0 such that Cz > 0.
(3) C=D—M and p(D*M) <1, where M > 0, D = diag(d,, d>, ..., d,,) and p(D™'M) is
the spectral radius of the matrix D™*M.
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Remark 2.5 For a nonsingular M-matrix C, we denote
)= {z eR"Cz>0,z> O}.

The set I'(C) is not empty in view of (2) of Lemma 2.4. Also, if z € I'(C), then kz € I'(C)
for any constant k > 0.

The second generalization of Theorem 1.1 is stated as follows.

Theorem 2.6 Let {X(n)},-_, be a nonnegative sequence satisfying (2.1), where A = (a;}) mxm
and B = (bj)mxm are two matrices satisfying

a; > -1, a; 20, i#j by>0, ijel, (2.14)

and C = —(A + B) is a nonsingular M-matrix. Moreover, suppose the nonnegative sequence
{X(n)}>_r satisfies

X(s) <z), se§, (2.15)
where z = (21,22, ...,2m)" >0 and 0 < A < 1 is the solution of

(AN + NE+B-A"E)z<0. (2.16)
Then

X(n)<zA", n=>0. (2.17)

Proof Since C = —(A + B) is a nonsingular M-matrix, from (2) of Lemma 2.4 there exists
z > 0 such that —(4 + B)z > 0, or equivalently,

(A+B)z<0O. (2.18)

Noting that AA" + A"E + B— A"*'E = A + B when A = 1, it follows from (2.18) that (2.16) has
a solution z > 0 when A = 1. Consequently, (2.16) has a solution z > 0 when 0 < A <1 due
to the continuity.

We now claim that

X(n)<(L+e)zA" 2 Un) = (ul(n), us(n),..., um(n))T, n>0, (2.19)
for any € > 0 arbitrarily given, where z > 0 and A € (0,1) satisfy (2.16).
Suppose that (2.19) is not true, then there exist a positive integer 4, 1 < 7 < m, and a
positive integer N such that
x,(N) < up(N), % (N +1) > up(N +1) (2.20)

and

xi(n) <ui(n)=QQ+€)zA", -r<m<N,iel (2.21)
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Using (2.9) (when i = # and n = N) and (2.21), we find

an(N +1) <Y (ay + i) (N) + Y by [a(N)],
j=1 J=1

<> an + S)w(N) + Y by[w(N)],

Jj=1 Jj=1

m
Z(ah] + 8,1 + e)z,AN + Z by(1+ e)z,AN "
j=1 j=1

Z (an + S A" + bh,](l + e)z,AN 4
j=1
On the other hand, the #th component of (2.16) gives
m
Z apj + 5;,1 )\ + bh, r+15h1] <0,
j=1
or equivalently
Z (ah, + 514/ WA+ bh]] k’*lzh.
j=1

Using the above inequality in the earlier inequality, we get

m

X (N +1) < Z[(ah, +8)A" + bh,](l + e)z,AN 4
j=1

<Az 1+ AN =1+ €)zpAN T = uy(N + 1),

which contradicts the second inequality of (2.20). Therefore, (2.19) holds for #n > 0. Now
letting € — 0 in (2.19), we obtain

X(n) <zA", n>0.
The proof is complete. O

Corollary 2.7 Let {X(n)},>n,—r be a nonnegative sequence satisfying (2.12), where A =

(@) mxm and B = (bj)mxm are two matrices satisfying (2.14) and C = —(A + B) is a non-

singular M-matrix. Moreover, suppose the nonnegative sequence {X(n)},>n,-r Satisfies
X(s)<zA5, se€S,,

where z = (21,22, ...,2m)" >0 and 0 < A <1 satisfy (2.16). Then

X(n) <zA", n=>ny.
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Proof By setting 1 = n — ny, the result is an immediate consequence of Theorem 2.6. [

Remark 2.8 A similar version of Corollary 2.7 can be found in [20]. Under the assump-
tions

PQeR™™  p(P+Q)<1, (2.22)
it is established in Theorem 1 of [20] that if the nonnegative sequence {U(n)} satisfies

U(n) < PU(n) + QLI(n - r(n)), n> np, (2.23)
and

U(s) < zexp(—,u(s - no)), S=ng—T,09—T +1,...,Hg, (2.24)

where 7(n1) = (Ty)mxm> 0 < 7 < 7,i,j € I, T is a nonnegative integer and the constant 41 > 0,
the vector z > 0 are determined by

[exp(1) (P + Qexp(ut)) ~E]z <0,

then U(n) < zexp(—u(n — ng)), n > np.

Comparing (2.23) with (2.1), we seethat P= A+ Eand Q=B.Ifweset C=—-(A+B),D =
E,and M =E—(-(A+B)),then D'M =M = E+A + B = P+ Q. Hence, the condition p(P +
Q) < 1 is equivalent to the condition that —(A + B) is a nonsingular M-matrix (according
to (3) of Lemma 2.4).

The next theorem shows that the estimation of {X(#)} similar to (2.17) still holds without
the assumption (2.15), which imposes a condition on the initial values of (2.1).

Theorem 2.9 Let {X(n)},>_, be a nonnegative sequence satisfying (2.1) and (2.2). Suppose
that A and B also satisfy (2.14) and —(A + B) is a nonsingular M-matrix. Further, z > 0 and
0 < X <1 satisfy (2.16). Then there exists a constant @ > 0 such that

X(n) <wz)', n=>0. (2.25)

Proof As in the proof of Theorem 2.6, we can choose z = (21, 23, . . zm) T >0and A €(0,1)
satisfying (2.16). Noting the conditions of Theorem 2.6, we only need to show

X(s) <wz)®, seS. (2.26)

Setting

1

min;er{z;}’

w; = max {|x,»(s)
iel,seS;

b

it is easy to verify that (2.26) holds for @ = w;w,. Noting Remark 2.5, wz > 0 and X € (0,1)
also fulfill (2.16). Thus, (2.25) is obtained as in the proof of Theorem 2.6 by setting u;(n)
in (2.21) as u;(n) = (1 + €)wz;\". O
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Remark 2.10 The results of Theorems 2.1, 2.6, and 2.9 can be applied to obtain the global
exponential stability of the zero solution of (2.1). As such, we can make use of these the-
orems to analyze the global exponential stability [27, 30] of the equilibrium of a discrete
dynamical system with time delays. It is well known that the equilibrium is globally asymp-
totically stable if it is globally exponentially stable [30]. Hence, the global asymptotical
stability of the equilibria of some discrete dynamical systems with time delays may be es-
tablished via the results obtained in this section. We shall give such applications in the

next section.

3 Global asymptotical stability of equilibrium
In this section, we shall obtain the global stability of the disease free equilibrium of an
infectious disease model with two delays that describes malaria transmission. Our proofs
employ the generalizations of Halanay-type inequalities obtained in Section 2.
In [22], the following delayed Ross-Macdonald model was established to describe the
malaria transmission between human and mosquito:
dx

9 _yx + abmexp(—yT)(1 - a(t - ))y(t - 1),

dy (3.1)

7 =~y +acexp(—=uta)(1 = y(t — 12))x(t — 7).
In model (3.1), x(y) is the ratio of the number of infected human (mosquito) to the total
number of human (mosquito) population at time ¢ (days). The total number of human
(mosquito) population is H (M) and H (M) is a constant. Define m = M/H. Moreover, y is
the average recovery rate of human from malaria infection, u is the natural death rate of
mosquito, 4 is the average number of bites of a mosquito per human per day, b is the rate
of a susceptible human becoming infectious after being bitten by an infected mosquito, ¢
is the rate of a susceptible mosquito becoming infectious after it bites an infected human,
and 7; and 1, are the average incubation times of the parasites in the body of human and
mosquito, respectively. For more details of (3.1), one can refer to [22].

We now consider a discrete version of (3.1) as follows:

x(n +1) = x(n) — yx(n) + abmexp(—y )1 - x(n - n))y(n - ),

3.2
y(n +1) = y(n) — uy(n) + acexp(—ura)(1 — y(n — ry))x(n — ra). (32)

In model (3.2), n > 0 and x(n) (y(n)) is the ratio of the number of infected humans
(mosquitos) to the total number of humans (mosquitos) of the population on the nth day.
Moreover, r; and r, are now positive integers to reflect the incubation time of the parasites
in the body of human and mosquito, respectively. The implications of the other parame-
ters are the same as in (3.1) and a4, b, ¢, m, y, and u are all positive constants.

Denote r = max{ry, r,}. The initial values of (3.2) are
x(s) = x9, y(s) = y(s), s=-r,-r+1,...,0.
In view of the practical background of model (3.2), it is natural to assume that

0<x¥<1, 0<y(s)<1, s=-r,—r+1,...,0. (3.3)
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Remark 3.1 The basic reproduction number Ry of model (3.2) (refer to [22, 23]) is defined
as

2h
Ry = ﬂ, (3.4)
Y

where « = exp(—yr;) and 8 = exp(—ur;). If we denote Ry, = abma/y and Rgy = acB/u, then
Ry = Ro1Rps.

Remark 3.2 Since y is the recovery rate of human from malaria infection, it follows that
1/y is the average recovery time of human from the infection. As it takes 7-30 days for a
human to recover from the infection [22, 23], it is reasonable to assume that

O<y<l (3.5)

Moreover, since the natural lifespan of mosquito is 14-60 days [22, 23], it also makes sense
to assume that

O<u<l. (3.6)
Lemma 3.3 Suppose that (3.5), (3.6) are satisfied and

Roi<1,  Ry<l (3.7)
Then the solutions {x(n),y(n)} of (3.2) with (3.3) satisfy

0<x(n) <1, 0<y(n)<1l, n=0.

Proof We shall first prove that 0 < x(n) < 1 for 0 < n < r. Suppose that there exists 0 < Nj <
r such that x(N;) > 0 and x(N; + 1) < 0. From (3.2), noting (3.3) and (3.5) we find

x(N1 +1) = x(N7) — yx(Ny) + abma (1 —x(Ny — rl))y(Nl —-ry)

> (1-y)x(N1) >0,

which is a contradiction. Hence, x(n) >0 for 0 < n < r.
Next, suppose that there exists 0 < Nj < r such that x(N;) <1 and x(N; + 1) > 1. In view
of (3.3), (3.5), and (3.7), it follows from (3.2) that

x(Ny +1) = x(Ny) — yx(N3) + abma (1 —x(N, — rl))y(Nz -r)

<l-y+abmoa=1-y(1-abmaly)=1-y(1-Ry)<1.

This is a contradiction and hence x(n) <1forO<n <r.

Similarly, we can prove that 0 < y(n) <1 for 0 < n <r. By assuming that 0 < x(xn) <1 and
0 < y(n) <1 for (k — 1)r < n < kr, using a similar technique we can show that 0 < x(n) < 1
and 0 < y(n) <1 for kr < n < (k + 1)r. Hence, it is shown by induction that 0 < x(n) < 1 and
0<y(n) <1lforn=>0. O
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Remark 3.4 Lemma 3.3 gives sufficient conditions to guarantee that the solutions of (3.2)
with (3.3) are positive and bounded. As pointed out in [31], sometimes these sufficient
conditions may be quite rigorous. Indeed, noting Remark 3.1 we see that condition (3.7)
implies Ry < 1, but in fact numerical simulations show that solutions of (3.2) with (3.3) can
be positive and bounded even when R > 1. In view of this, we shall introduce a set 2 of
parameters that ensures the positivity and boundedness of the solutions of (3.2) with (3.3),
let

Q= {(a, b,c,m,y, i, r,7r2)|a, b,c,m,y, i, 1, ry are such that

solutions of (3.2) with (3.3) are positive and bounded}. (3.8)

The following lemma is about the existence of the equilibrium of model (3.2), which is
obtained by direct computation.

Lemma 3.5
(1) There exists only the disease free equilibrium Ey = (0,0) of (3.2) if Ry < 1.
(2) There exist two equilibria of (3.2) if Ry > 1, namely the disease free equilibrium E
and the positive equilibrium E* = (x*, y*), where
Ryp-1 Ry-1

‘e - . 3.9
* R() + R()1 Y R() + R()2 ( )

We shall now employ Theorem 2.1 to obtain the global asymptotical stability of the dis-
ease free equilibrium E, of model (3.2).

Theorem 3.6 Suppose that (3.5), (3.6), and (3.7) hold. Then the disease free equilibrium
Ey of (3.2) with (3.3) is globally asymptotically stable.

Proof We rewrite (3.2) as

Ax(n) = —yx(n) + abmay(n — r) — abmox(n — r)y(n —ry),
Ay () = —puy(m) + acBa(n — ry) — acBx(n — ra)y(n — ra).

Since the conditions of Lemma 3.3 are satisfied, we have x(x) > 0 and y(n) > 0 for n > —r.
Hence, we get

Ax(n) < —yx(n) + abmay(n —r),
Ay(n) < —py(n) + acBx(n —ry),

which clearly leads to

(3.10)

Ax(n) < —yx(n) + abma[y(n)];,
Ay(n) < —py(n) + acBlx(n)],,

for n> 0.
Comparing (3.10) with (2.1), we see that

A:(_y 0 ) B:(O “bm“). (3.11)
0 - acB 0



Wu and Wong Advances in Difference Equations (2016) 2016:113 Page 12 of 15

It is obvious that condition (2.3) is fulfilled. Next, noting from (3.7) that Ry, = abma/y <1

and Ry, = acB/u <1, we have

2

2
(ﬂlj + bl/') =-y + abmo < 0, Z(a2j + sz) =—u+ IZC,B <0.
=1 1

J

Hence, condition (2.4) is also satisfied. Now, by Theorem 2.1, there exist A1, A5 € (0,1) such
that

x(n) < kiA{, y(n) < korsy, (3.12)

for n > 0, where k; = max;es, {x9} and ky = MaXges, {y(s)}.

In view of (3.12), the zero solution of (3.2), which is the disease free equilibrium Ej, is
globally exponentially stable. Noting Remark 2.10, it follows that Ej, is also globally asymp-
totically stable. O

Remark 3.7 When the conditions of Theorem 3.6 are satisfied, noting (3.12) the expo-
nential convergence rate of the solutions of (3.2) with (3.3) to the disease free equilibrium

is min{—InA;,—InXy}.

Remark 3.8 Condition (3.7) implies that Ry = Ry1 R < 1, but Ry < 1 may not imply (3.7).
In the literature of compartmental infectious disease models, usually Ej is globally asymp-
totically stable when Ry < 1. This expected result is not obtained when Theorem 2.1 is ap-
plied to model (3.2). As such, in the sequel we shall apply Theorem 2.9 to model (3.2) to
see whether E, is globally asymptotically stable when Ry < 1.

Theorem 3.9 Suppose that (3.5), (3.6) are satisfied and
Ry <1 (3.13)

Then the disease free equilibrium Eqy of (3.2) with (3.3) is globally asymptotically stable
in Q.

Proof Noting the definition of Q (refer to (3.8)), (3.10) also holds true. With A and B de-
fined as in (3.11), we see that condition (2.14) is satisfied. Moreover, since

(A+B)= y —abma
—acf | ’

we have ¥ > 0 and det(—(4 + B)) = yu — a’?bcmaf = y (1 — Ry) > 0 due to (3.13), i.e., the
successive principal minors of —(A + B) are both positive. Therefore, according to (1) of
Lemma 2.4, —(A + B) is a nonsingular M-matrix. The conditions of Theorem 2.9 are all
satisfied, hence the disease free equilibrium Ej of (3.2) with (3.3) is globally exponentially
stable and consequently it is globally asymptotically stable in €2. O

We shall now give an example to illustrate Theorem 3.9 and Remark 3.4.
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Figure 1 The dynamics of Example 3.10. The solid 07
line is the variation of the infected human
population density and the dashed line is the
variation of the infected mosquito population.
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Example 3.10 Consider a special case of (3.2) (with day as the time unit)

x(n+1) =x(n) —0.07x(n) + 0.15 x 0.5
x 2exp(—0.07 x 30)(1 — x(n — 30))y(n — 30), (3.14)
y(n +1) = y(n) — 0.05y(n) + 0.15 x 0.5exp(—0.05 x 7)(1 — y(n — 7))x(n — 7).

Here, the parameters are

y =0.07, a=0.15, b=c=0.5, m=2,

wn=0.05, r =30, rp="7.

By direct computation, we have Ry = 0.2624, Ry, = 1.0570, and Ry = 0.2774. According
to Theorem 3.9, the disease free equilibrium E of (3.14) is globally asymptotically stable
since (3.5), (3.6), and (3.13) are satisfied. Indeed, the dynamics of Example 3.10 is depicted
in Figure 1 and we observe that both x(#) and y(n) tend to 0 as n — +00, i.e., the disease
free equilibrium Ej is globally asymptotically stable.

In this example, we note that (3.7) is not satisfied since Ry, > 1. However, it is observed
from Figure 1 that the solution of (3.14) is positive and bounded. This illustrates Re-
mark 3.4 and shows that even if (3.7) does not hold, the set 2 (see (3.8)) may not be empty.

4 Concluding remarks

Halanay-type inequalities, whether continuous or discrete, have been widely applied to
obtain the global exponential (asymptotical) stability of the equilibria of dynamical sys-
tems with several delays, especially dynamical systems of neural networks. In this paper,
we have derived two generalizations of multi-dimensional discrete Halanay-type inequali-
ties. Further, the generalizations are applied to a discrete malaria transmission model with
two delays. We have shown that the disease free equilibrium is globally asymptotically sta-
ble when the basic reproduction number Ry is less than 1, which is well consistent with
the threshold property of the basic reproduction number.

The global asymptotical stability of the equilibria of infectious disease models with
time delays is usually obtained via the construction of suitable Lyapunov functionals to-
gether with Razumikhin-type theorem and/or LaSalle invariant sets. However, a suitable
Lyapunov functional is somewhat difficult to construct for a delayed dynamical system.
Hence, it is reasonable to try other methods to obtain the global asymptotical stability of

equilibria of dynamical systems with time delays. From our present work, we have ob-
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served that it is direct and simple to obtain the global asymptotical stability of equilibria
of dynamical systems with time delays via Halanay-type inequalities.

When using Halanay-type inequalities established in this paper to obtain the global
asymptotical stability of the equilibrium of a discrete dynamical system with time delays,
the positivity of the solutions should be initially guaranteed. This can be proved for many
kinds of compartmental infectious disease models. Hence, it is direct to obtain the global
asymptotical stability of the disease free equilibria of dynamical systems with time delays
by applying Halanay-type inequalities. It is well known that, in order to obtain the global
asymptotical stability of the positive equilibrium (x*,y*) of a dynamical system with time
delays, the change of variables ¥ = x — x* and y = y — y* is usually applied to transfer the
global asymptotical stability of the positive equilibrium to the global asymptotical stability
of the zero solution of the system with respect to x and y. However, after the change of
variables, the positivity of ¥ and y cannot be guaranteed. Hence, if one intends to employ
Halanay-type inequalities to obtain the global asymptotical stability of the positive equi-
librium, new techniques are needed to deal with x and y. This remains as future work.
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