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Abstract
In this paper, we are interested in the eigenvalues and its algebraic multiplicities of a
fractional linear boundary value problem with mixed set of Neumann and Dirichlet
boundary conditions. The research results are then applied to consider the
sign-changing solutions of the corresponding nonlinear problem by fixed point index
and Leray-Schauder degree. To date, no paper has appeared in the literature which
discusses sign-changing solutions of fractional boundary value problems. This paper
attempts to fill this gap in the literature.

MSC: 26A33; 34A08; 34B09

Keywords: eigenvalues; fractional differential equations; sign-changing solutions;
fixed point index; Leray-Schauder degree

1 Introduction
With the development of science and technology, researchers have paid much attention
to the fractional differential equations, it is extensively applied in various sciences, such
as physics, mechanics, chemistry, engineering, astronomy, etc. There are a lot of research
papers about the fractional differential equation boundary value problems; see [–] and
the references therein. Most of them are devoted to the existence and multiplicity of pos-
itive solutions; see [, , –]. For example, in [], the author considered the existence of
positive solutions for a class of nonlinear boundary value problems of Caputo fractional
equations with integral boundary conditions,

⎧
⎨

⎩

cDα
t y(t) + f (y(t)) = ,  < t < ,

y() = y′′() = , y() = λ
∫ 

 y(s) ds.

In [], the author considered the existence and multiplicity of positive solutions for a non-
linear boundary value problem involving Caputo’s derivative

⎧
⎨

⎩

cDα
t y(t) = f (t, y(t)), t ∈ (, ),

y() + y′() = , y() + y′() = .
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To the best of the author’s knowledge, although sign-changing solutions of integer bound-
ary value problems with different conditions are extensively studied by computing the al-
gebraic multiplicities of eigenvalues, see for example [–] and the references therein,
to date, no paper has appeared in the literature which discusses sign-changing solutions
of fractional boundary value problems due to the intrinsic distinction between the eigen-
values of fractional problems and the integer problems. For example, the eigenvalues of
fractional differential equations have no periodicity.

Motivated by the above papers, first, we investigate the following eigenvalue problem
with the mixed set of Neumann and Dirichlet boundary conditions,

⎧
⎨

⎩

cDα
t u(t) + λu(t) = , t ∈ (, ),

u′() = , u() = .
(.)

Then we establish some existence results of sign-changing solutions for the following non-
linear fractional boundary value problem with the same boundary conditions:

⎧
⎨

⎩

cDα
t u(t) + f (u(t)) = , t ∈ (, ),

u′() = , u() = ,
(.)

where  < α <  is a real number and cDα
t is the Caputo fractional derivative, f : R �→ R.

For convenience in the presentation, throughout this paper, let

β = lim
x→

f (x)
x

, β∞ = lim
x→∞

f (x)
x

.

And we always assume the following conditions are satisfied:
(H) f (x) ∈ C(R,R), f (θ ) = θ , xf (x) >  for all x ∈R \ {θ}.
(H) There exist two positive integers n and n. And n, n may be equal, with

λn < β < λn+, λn < β∞ < λn+,

where  < λ < λ < · · · < λnα are the eigenvalues of (.), nα is the number of
eigenvalues.

(H) There exists a positive constant number C >  such that |f (x)| < �(α)C for all x
with |x| ≤ C.

We shall organize the rest of this paper as follows. In Section , some basic definitions
and preliminaries are given. Furthermore the eigenvalues and its algebraic multiplicities
of (.) are considered. In Section , the sign-changing solutions of (.) are considered.
An example will be given to illustrate the application in Section .

2 Some basic definitions and preliminaries
Definition . The Caputo fractional derivative of order α >  for the function y :
(, +∞) → R is defined as

cDα
t y(t) =


�(m – α)

∫ t



y(m)(s)
(t – s)α–m+ ds,

where m –  < α ≤ m, and y(m)(t) exists.
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Definition . The Riemann-Liouville fractional integral of order α for the function f is
defined as

Iα
+f (t) =


�(α)

∫ t


(t – s)α–f (s) ds, α > ,

provided that the right side is point-wise defined on (,∞).

Definition . The Mittag-Leffler function with two parameters is defined by the series
expansion

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α > ,β > , z ∈ C,

which is analytic on the whole complex plane.

Now we investigate the eigenvalue problem (.). From the Laplace transform of the
Caputo fractional derivative []

L
{cDα

t u(t)
}

= sαL
{

u(t)
}

–
m–∑

i=

sα–i–u(i)(), m –  < α ≤ m,

and u′() = , we have

L
{cDα

t u(t) + λu(t)
}

= sαL
{

u(t)
}

– sα–u() + λL
{

u(t)
}

= .

Hence

L
{

u(t)
}

= u()
sα–

sα + λ
.

From the inverse Laplace transform of the Mittag-Leffler function []

Eα,
(
–λtα

)
= L–

{
sα–

sα + λ

}

,

we get

u(t) = u()Eα,
(
–λtα

)
.

By u() = , we know

Eα,(–λ) = .

Hence λ is the eigenvalue of (.) if and only if λ is a solution of Eα,(–x) = , and for all
nonzero constants C ∈R, u(t) = CEα,(–λtα) are the eigenfunctions corresponding eigen-
value λ.
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Then we consider the inverse problem of (.). It follows from the definition of the Ca-
puto fractional derivative that u is an eigenfunction of (.) corresponding to the eigen-
value λ, if and only if u is a solution of the integral equation

u(t) =
∫ 


λG(t, s)u(s) ds, (.)

where

G(t, s) =

⎧
⎨

⎩

(–s)α––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,
(–s)α–

�(α) ,  ≤ t ≤ s ≤ .
(.)

Define the operator T as follows:

(Tu)(t) =
∫ t



( – s)α– – (t – s)α–

�(α)
u(s) ds +

∫ 

t

( – s)α–

�(α)
u(s) ds.

Therefore, we know that λ �=  is an eigenvalue of (.) if and only if 
λ

is an eigenvalue
of operator T . That is, 

λ
is an eigenvalue of operator T if and only if λ is a solution of

Eα,(–x) = . And u(t) = CEα,(–λtα) (C �= ) are the eigenfunctions corresponding to the
eigenvalue 

λ
.

Let

λ < λ < · · · < λnα

be the sequence of solutions to the equation Eα,(–x) = . From [], we see that λj (j =
, , . . . , nα) are positive and nα is finite. By computing, we can get

n. = n. = n. = n. = , n. = , n. = , n. = , . . . .

That is, when α = ., ., ., ., the operator T has one eigenvalue, when α = ., T has
three eigenvalues, when α = ., T has five eigenvalues, when α = ., T has nine eigen-
values, and so on. Furthermore we will consider the algebraic multiplicity of 

λ
.

Lemma . Assume 
λ

is the eigenvalue of T , that is, Eα,(–λ) = . Furthermore
E()

α,(–λ) �= . Then the algebraic multiplicity of eigenvalue 
λ

for T is equal to .

Proof It is obvious that

ker(I – λT) ⊆ ker(I – λT).

Let u ∈ ker(I – λT), if u /∈ ker(I – λT), then there exists a nonzero constant C such that

(
(I – λT)u

)
(t) = CEα,

(
–λtα

)
, t ∈ (, ),
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since CEα,(–λtα) (C �= ) are the eigenfunctions of operator T corresponding to the eigen-
value 

λ
. By direct computation, we have

⎧
⎨

⎩

Dαu(t) + λu(t) = –CλEα,(–λtα), t ∈ (, ),

u′() = , u() = .
(.)

From the Laplace transform of the Caputo fractional derivative [],

L
{

Dαu(t)
}

= sαL
{

u(t)
}

–
m–∑

i=

sα–i–u(i)(), m –  < α ≤ m,

the Laplace transform of the Mittag-Leffler function [],

L
{

tμ–Eα,μ
(
–λtα

)}
=

sα–μ

sα + λ
,

and u′() = , we have

sαL
{

u(t)
}

– sα–u() + λL
{

u(t)
}

= –
Cλsα–

sα + λ
.

Hence

L
{

u(t)
}

= u()
sα–

sα + λ
–

Cλsα–

(sα + λ) .

From the inverse Laplace transform of the Mittag-Leffler function [],

tmρ+β–E(m)
ρ,β

(
–λtρ

)
= L–

{
m!sρ–β

(sρ + λ)m+

}

with E(m)
ρ,β (z) =

dm

dzm Eρ,β (z),

we can obtain

u(t) = u()Eα,
(
–λtα

)
– CλtαE()

α,
(
–λtα

)
. (.)

Let u() = , then we get

E()
α,(–λ) = ,

which is a contradiction. Hence u ∈ ker(I – λT), that is,

ker(I – λT) ⊆ ker(I – λT).

Therefore

ker(I – λT) = ker(I – λT).

By

dim ker

(

λ

I – T
)

= dim ker(I – λT) = dim ker(I – λT) = dim ker

(

λ

I – T
)

,
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we see that the algebraic multiplicity of the eigenvalue 
λ

is equal to . This completes the
proof. �

Lemma . Assume 
λ

is the eigenvalue of T , that is, Eα,(–λ) = . Furthermore E()
α,(–λ) =

E()
α,(–λ) = , E()

α,(–λ) �= . Then the algebraic multiplicity of the positive eigenvalue 
λ

for T
is equal to .

Proof By Lemma ., we know that, if E()
α,(–λ) = , then

ker(I – λT)
� ker(I – λT).

It is obvious that

ker(I – λT) ⊆ ker(I – λT) ⊆ ker(I – λT).

Then we need to show

ker(I – λT) ⊆ ker(I – λT).

Let u ∈ ker(I – λT), if u /∈ ker(I – λT), then there exists a nonzero constant C such that

(
(I – λT)u

)
(t) = CEα,

(
–λtα

)
, t ∈ (, ).

By direct computation, we have

⎧
⎨

⎩

Dα(Dαu(t) + λu(t)) + λ(Dαu(t) + λu(t)) = CλEα,(–λtα), t ∈ (, ),

u′() = , u() = .
(.)

Let v = Dαu(t) + λu(t), by Lemma ., we see that

Dαu(t) + λu(t) = v(t) = v()Eα,
(
–λtα

)
+ v′()tEα,

(
–λtα

)
+ CλtαE()

α,
(
–λtα

)
. (.)

From the Laplace transform of the Caputo fractional derivative, the Laplace transform of
the Mittag-Leffler function [, ] and u′() = , we have

sαL
{

u(t)
}

– sα–u() + λkL
{

u(t)
}

= v()
sα–

sα + λ
+ v′()

sα–

sα + λ
+

Cλsα–

(sα + λ) .

Hence

L
{

u(t)
}

= u()
sα–

sα + λ
+ v()

sα–

(sα + λ) + v′()
sα–

(sα + λ) +
Cλsα–

(sα + λ) .

From the inverse Laplace transform of the Mittag-Leffler function [], we can obtain

u(t) = u()Eα,
(
–λtα

)
+ v()tαE()

α,
(
–λtα

)
+ v′()tα+E()

α,
(
–λtα

)

+ CλtαE()
α,

(
–λtα

)
. (.)
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Let u() = , then we get

E()
α,(–λ) = ,

which is a contradiction. Hence

ker(I – λT) ⊆ ker(I – λT).

Therefore

ker(I – λT) = ker(I – λT).

That is, the algebraic multiplicity of the eigenvalue 
λ

is equal to . This completes the
proof. �

Similarly to Lemma ., Lemma ., we can study the algebraic multiplicity of eigenvalue 
λ

for operator T by Laplace transforms. Then we will consider the sign-changing solutions
of (.) by the algebraic multiplicity of the eigenvalue 

λ
for the operator T .

3 The existence of sign-changing solutions
Consider the Banach space

E =
{

u ∈ C[, ] : u′() = , u() = 
}

with the norm ‖u‖ = max{‖u‖∞,‖u′‖∞}, where ‖u‖∞ = max≤t≤ |u(t)|. Let

P =
{

u ∈ E : u(t) ≥ ,∀t ∈ [, ]
}

be a cone of E. Define operators F and B as follows:

(Fu)(t) = f
(
u(t)

)
, t ∈ (, ), u ∈ E

and

B = T ◦ F .

Then u is a solution of (.) if and only if u is a solution of the operator equation

u = Bu.

By (H), we can see that B, T are completely continuous.

Lemma . Assume that (H) hold, then the operator B is Fréchet differentiable at θ and
∞, and B′(θ ) = βT , B′(∞) = β∞T .
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Proof From β = limx→
f (x)

x , we have ∀ε > , ∃δ > , ∀ < |x| < δ, and we see that

∣
∣
∣
∣
f (x)

x
– β

∣
∣
∣
∣ < ε,

that is, |f (x) – βx| < ε|x|. Assume that ‖u‖∞ ≤ δ, then by (H), we have

∣
∣(Bu – Bθ – βTu)(t)

∣
∣ =

∣
∣
(
T(Fu – β)u

)
(t)

∣
∣ < ε‖u‖∞

∫ 


G(t, s) ds

< ε‖u‖
∫ 



( – s)α–

�(α)
ds =

‖u‖
�(α + )

ε.

That implies

‖Bu – Bθ – βTu‖∞ <
‖u‖

�(α + )
ε, ∀u ∈ E.

Similarly, we can show that

∥
∥(Bu – Bθ – βTu)′(t)

∥
∥∞ <

‖u‖
�(α)

ε.

Hence

∥
∥Bu – Bθ – βTu

∥
∥ < max

{


�(α + )
,


�(α)

}

‖u‖ε =
‖u‖
�(α)

ε.

Consequently

lim‖u‖→

‖Bu – Bθ – βTu‖
‖u‖ = . (.)

This means that B is Fréchet differentiable at θ , and B′(θ ) = βT .
From β∞ = limx→∞ f (x)

x , we have ∀ε > ; let N > , when |x| > N , we have

∣
∣
∣
∣
f (x)

x
– β∞

∣
∣
∣
∣ < ε,

that is, |f (x) – β∞x| < ε|x|. Make M = max|x|≤N |f (x) – β∞x|, then we have

∣
∣f (x) – β∞x

∣
∣ < ε|x| + M.

Hence, assume that ‖u‖∞ > N , by (H), we see that

∣
∣(Bu – β∞Tu)(t)

∣
∣ =

∣
∣T(Fu – β∞u)(t)

∣
∣ <

(
ε‖u‖∞ + M

)
∫ t


G(t, s) ds

<
(
ε‖u‖ + M

)
∫ 



( – s)α–

�(α)
ds =


�(α + )

(
ε‖u‖ + M

)
.

That implies that

‖Bu – β∞Tu‖∞ <


�(α + )
(
ε‖u‖ + M

)
, u ∈ E.
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Similarly, we can show that

∥
∥(Bu – β∞Tu)′

∥
∥∞ <


�(α)

(
ε‖u‖ + M

)
, u ∈ E.

Hence

‖Bu – β∞Tu‖ <


�(α)
(
ε‖u‖ + M

)
.

Consequently

lim‖u‖→∞
‖Bu – β∞Tu‖

‖u‖ = . (.)

Therefore B is Fréchet differentiable at ∞, and B′(∞) = β∞T . �

Lemma . Assume that (H) hold, u ∈ P \ {θ} is a solution of (.), then u ∈ P̊.

Proof If u ∈ P \ {θ} is a solution of (.), then

u(t) =
∫ 


G(t, s)f

(
u(s)

)
ds

=
∫ t



( – s)α– – (t – s)α–

�(α)
f
(
u(s)

)
ds +

∫ 

t

( – s)α–

�(α)
f
(
u(s)

)
ds,

u′(t) = –


�(α)

∫ t


(α – )(t – s)α–f

(
u(s)

)
ds.

It is obvious that

u′() = , u() = , u() > , u′() < , u′(t) < .

From u′() <  we learn that there exist ε > , τ > , such that

u′(t) < –τ, ∀t ∈ [ – ε, ]. (.)

From u() = , u′(t) < , ∀t ∈ (, ] we learn that there exists τ > , such that

u(t) > τ, ∀t ∈ [,  – ε]. (.)

Let τ = min(τ, τ), then if ‖x – u‖ < τ for any x ∈ E, we can get x(t) ≥ , t ∈ [, ] by (.),
(.), that is, x ∈ P. Consequently B(u, τ ) ⊂ P and u ∈ P̊. �

Lemma . ([]) Let P be a solid cone of real Banach space E, � be a relatively bounded
open set of P, A : P �→ P be a completely continuous operator. If all fixed points of A are an
interior point of P, there exists an open subset O of E such that O ⊂ � and deg(I – A, O, θ ) =
i(A,�, P).

Theorem . Suppose that (H)-(H) hold,  < λ < λ < · · · < λnα are the eigenvalues of
(.). Furthermore E()

α,(–λj) �= , where j = , , . . . , max{n, n}. Then the boundary value
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problem (.) has at least two sign-changing solutions, two positive solutions and two neg-
ative solutions.

Proof It follows from the definition of B that u is a solution of (.) if and only if u is the
fixed point of the operator B. Then by (H), we have, for any u ∈ E with ‖u‖ = C,

∣
∣(Bu)(t)

∣
∣ =

∣
∣
∣
∣–

∫ t



(t – s)α–

�(α)
f
(
u(s)

)
ds +

∫ 



( – s)α–

�(α)
f
(
u(s)

)
ds

∣
∣
∣
∣

< �(α)C

∫ 



( – s)α–

�(α)
ds

< C,

∣
∣(Bu)′(t)

∣
∣ =

∣
∣
∣
∣–


�(α)

∫ t


(α – )(t – s)α–f

(
u(s)

)
ds

∣
∣
∣
∣

< �(α)C
α – 
�(α)

∫ 


( – s)α– ds

= C.

Therefore ‖Bu‖ < C. By (H) and G(t, s) ≥ , we have B(P) ⊂ P. Hence

i
(
B, P ∩ B(θ , C), P

)
= . (.)

By Lemma ., we see that

deg
(
I – B, B(θ , C), θ

)
= . (.)

By Lemma ., we can learn that B′(θ ) = βT . Hence β
λj

(j = , , . . . , nα) are the eigenvalues
of the operator B′(θ ). By (H), we know that β

λ
> . Hence  is not an eigenvalue of B′(θ ).

Furthermore, u(t) = CEα,(–λtα) (C �= ) is an eigenfunction of B′(θ ) corresponding to
the eigenvalue λ. And Eα,(–λtα) �=  for any t ∈ (, ), since λ is the smallest positive
solution of Eα,(–x) = . Hence we can choose the suitable C to ensure u(t) ≥ . Therefore,
by Theorem ., in [], we know that there exist a small enough r and a large enough
R such that

deg
(
I – B, U(θ , r), θ

)
= (–)k , (.)

deg
(
I – B, U(θ , R), θ

)
= (–)k , (.)

where k is the sum of the algebraic multiplicities of the real eigenvalues of B′(θ ) which are
larger than , k is the sum of the algebraic multiplicities of the real eigenvalues of B′(∞)
which are larger than .

By Lemma .. in [], we see that there exist two constants r, R ( < r < C < R)
such that for any r, R ( < r < r < C < R < R),

i
(
B, P ∩ U(θ , r), P

)
= , (.)

i
(
B, P ∩ U(θ , R), P

)
= . (.)



Zhao and An Advances in Difference Equations  (2016) 2016:109 Page 11 of 14

Hence, by (.), (.), (.), we see that

i
(
B, P ∩ (

U(θ , R) \ U(θ , C)
)
, P

)
=  –  = –, (.)

i
(
B, P ∩ (

U(θ , C) \ U(θ , r)
)
, P

)
=  –  = . (.)

Therefore the operator B has at least two fixed points

u ∈ P ∩ (
U(θ , R) \ U(θ , C)

)
, u ∈ P ∩ (

U(θ , C) \ U(θ , r)
)
.

That is, u and u are positive solutions of the boundary value problem (.) and r <
‖u‖ ≤ C and C < ‖u‖ ≤ R.

By (H), we have uf (u) >  for all u ∈ R \ {θ}. Similarly, we see that boundary value
problem (.) has two negative solutions u, u ∈ –P with

–u ∈ P ∩ (
U(θ , R) \ U(θ , C)

)
, –u ∈ P ∩ (

U(θ , C) \ U(θ , r)
)

and r < ‖u‖ ≤ C, C < ‖u‖ ≤ R.
By (.), (.), and Lemma .. there exist two open subsets O, O of E

O ⊂ P ∩ (
U(θ , C) \ U(θ , r)

)
, O ⊂ P ∩ (

U(θ , R) \ U(θ , C)
)
,

such that

deg(I – B, O, θ ) = , (.)

deg(I – B, O, θ ) = –. (.)

Similarly, there exist two open subsets O, O of E

O ⊂ –P ∩ (
U(θ , C) \ U(θ , r)

)
, O ⊂ –P ∩ (

U(θ , R) \ U(θ , C)
)
,

such that

deg(I – B, O, θ ) = , (.)

deg(I – B, O, θ ) = –, (.)

by (H).
By (H) and Lemma ., the number of eigenvalues of the operator B′(θ ) = βK which

are larger than  is n. From

E()
α,(–λj) �= ,

j = , , . . . , max{n, n} and Lemma . we see that the algebraic multiplicity of positive
eigenvalue β

λn
have algebraic multiplicity one. Hence k = n, and

deg
(
I – B, U(θ , r), θ

)
= (–)k = (–)n = . (.)
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Similarly we can see that

deg
(
I – B, U(θ , R), θ

)
= (–)k = (–)n = . (.)

From (.), (.), (.), and (.) we see that

deg
(
I – B, U(θ , C) \ (

O ∪ O ∪ U(θ , r)
)
, θ

)
=  –  –  –  = –. (.)

By (.), we know B has at least one fixed point u ∈ U(θ , C) \ (O ∪ O ∪ U(θ , r)).
That is, boundary value problem (.) has a sign-changing solution u. Similarly, we get

another different solution u ∈ U(θ , C) \ (O ∪ O ∪ U(θ , C)) by (.), (.), (.), and
(.). This completes the proof. �

According to the method used in the proof of Theorem ., we can give the following
corollaries.

Corollary . Let (H)-(H) hold,  < λ < λ < · · · < λnα are the eigenvalues of (.), there
exists a positive integer n such that λn < β < λn+ or λn < β∞ < λn+ and E()

α,(–λj) �=
, where j = , , . . . , n. Then the boundary value problem (.) have at least one sign-
changing solution, one positive solution and one negative solution.

Corollary . Let (H)-(H) hold, λ is the eigenvalue of (.), E()
α,(–λ) �= .

() If β∞ < λ < β or β < λ < β∞, then the boundary value problem (.) has at least
one positive solution and one negative solution.

() If β > λ, β∞ > λ, then the boundary value problem (.) has at least two positive
solutions and two negative solutions.

4 Example
Consider the following fractional differential equation:

⎧
⎨

⎩

cD.
x u(t) + f (u(t)) = , t ∈ (, ),

u′() = , u() = ,
(.)

where

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

– 
 , u ≤ – 

 ,

u, – 
 < u < 

 ,

 , 

 ≤ u.

(.)

We can find that
() β = limu→

f (u)
u = ;

() f (u) : R �→ R, f (θ ) = θ , uf (u) >  for all t ∈ (, ), u ∈R \ {θ};
() from [, ], we see that E.,(–x) =  has three zero points, x = ., x = .,

x = ., and E()
α,(–x) �= , E()

α,(–x) �= ;
() λ < β < λ;
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Table 1 Sign-changing solutions u1, u4, positive solution u2, negative solution u3

t u1 u2 u3 u4

0.0 –0.1025 0.3772 –0.3772 0.1025
0.1 –0.0910 0.3657 –0.3657 0.0910
0.2 –0.0692 0.3439 –0.3439 0.0692
0.3 –0.0411 0.3158 –0.3158 0.0411
0.4 –0.0077 0.2824 –0.2824 0.0077
0.5 0.0293 0.2446 –0.2446 –0.0293
0.6 0.0449 0.2028 –0.2028 –0.0449
0.7 0.0455 0.1573 –0.1573 –0.0455
0.8 0.0370 0.1084 –0.1084 –0.0370
0.9 0.0214 0.0564 –0.0564 –0.0214
1.0 0.0000 0.0000 0.0000 0.0000

Figure 1 Sign-changing solutions u1, u4, positive solution u2, negative solution u3.

() let C = , when – 
 < u < 

 , we have

∣
∣f (u)

∣
∣ = |u| ≤ 


< �(.)

when u ≤ – 
 or 

 ≤ u, we have

∣
∣f (u)

∣
∣ =




< �(.).

By Corollary ., we see that problem (.) has at least one sign-changing solution
u, one positive solution u, one negative solution u. By f (–u) = –f (u), we see that
u = –u is another sign-changing solution of (.). The numerical results of u, u,
u and u are shown in Table , the graphs of u, u, u and u are shown in Figure .

5 Conclusion
In the paper, the existence of sign-changing solutions for a fractional boundary value prob-
lem is considered by the eigenvalues. Some new results as regards the eigenvalues and
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their algebraic multiplicities are established. Finally, an example is presented to illustrate
the application.
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