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Abstract

We study the qualitative behavior of a smoking model in which the population is
divided into five classes, that is, non-smokers, smokers, people who temporarily quit
smoking, people who permanently quit smoking, and people who are associated
with illness due to smoking. The global asymptotic stability of the unique positive
equilibrium point is presented. More precisely, a graph-theoretic method is used to
prove the global stability of the unique positive equilibrium point.

Keywords: epidemic model; local and global stability; Lyapunov function;
graph-theoretic method

1 Introduction

Smoking is one of the main causes of health problems and continues to be one of the
world’s most significant health challenges. It is the leading cause of preventable death,
and it is estimated to kill more than 5 million people worldwide each year, and this num-
ber is expected to grow. According to the World Health Organization report on the global
tobacco epidemic [1], tobacco use kills or disables many people in their most productive
years, which denies families their primary wage-earners, consumes family budgets, raises
the cost of health care and hinders economic development. Smoking or tobacco is a known
or probable cause of deaths from cancers of the oral cavity, larynx, lung, esophagus, blad-
der, pancreas, renal pelvis, stomach, and cervix. Smoking is also a cause of heart disease,
strokes, peripheral vascular diseases, chronic obstructive lung diseases, and other respi-
ratory diseases, and low-birth weight babies [2].

Exerting more pressure for immediate intervention and public policy making are the
reported increases in tobacco and drug use by young people. The Surgeon General reports
thatin 1991 the average age when smokers tried a cigarette for the first time was 14.5 years,
and the average age when they became daily smokers was 17.7 years. The observed trend
from 1975 to 1992 of relevant data confirm that adolescence is the primary time during
which tobacco use develops [3]. Smoking among adolescents is also connected to social
factors. Adolescents whose families and friends smoke are more likely to start smoking
earlier than their counterparts.

The enormous public health burden related with smoking urges one to study the dynam-
ics of smoking in a community, intended at determining realistic methods for preventing
this habit. Mathematical modeling has been used extensively to address questions of pub-
lic health importance, dating back to the seminal work of Bernoulli (on modeling the dy-
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namics of smallpox) in 1760 [4], Kermack and McKendrick [5-7] and those reported in
more recent literature (such as in [8—10] and the references therein); not much has been
analyzed in terms of the mathematical modeling of human social behavior.

In 2000, Castillo-Garsow et al. [11] for the first time proposed a simple mathematical
model for giving up smoking. They consider a system with a total constant population
which is divided into three classes: potential smokers, that is, people who do not smoke
yet but might become smokers in the future (P), smokers (S), and people (former smok-
ers) who have quit smoking permanently (Q). Sharomi and Gumel developed mathemat-
ical models by introducing mild and chain classes [12]. In their work they presented the
development and public health impact of smoking-related illnesses. Zaman [13] extended
the work of Castillo-Garsow et al. [12] and developed a model taking into account the oc-
casional smokers compartment in the given smoking model and presented its qualitative
behavior.

The model presented in [14] studied the dynamics of a given smoking model. In this
work, the population was divided in four subclasses: potential smokers, occasional smok-
ers, smokers, and quit smokers. In this paper, we modified this model by including the
following features:

+ Smokers who temporarily quit smoking and return back to smoking class.

+ A class of smokers associated with some illness.

+ The additional death rate of the smoking-related illness class.

The rest of the paper is organized as follows. In Section 2, we present a formulation of the
modified mathematical model. The existence of endemic equilibrium and its local stabil-
ity is presented in Section 3. In Section 4, we use a graph-theoretic method to show the
global stability of the endemic equilibrium. An estimation of the parameters and numeri-
cal results are discussed in Section 5. Finally, we give our conclusion.

2 Formulation of model
The schematic diagram of the proposed model is shown in Figure 1.
The description of the variables and the parameters is given in Table 1.
The analytical expression of the above model, shown in the flow diagram, is

dp

ikl Bf(P,S) - yP, (2.1)

%:ﬂf(P,S)—(y+8+e)S+;X, (2.2)
X

= = 3A-mS—(y + X, (2.3)

ay =8nS—yY. (2.4)

E =ono—yr, :

Figure 1 Flow diagram of smoking model.
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Table 1 Description of variables and parameters

Parameter Description

Potential smokers

Smokers

Smokers who temporarily quit smoking

Smokers who permanently quit smoking

Class of smokers associated with some illness

The recruitment rate of the non-smoking (potential smoking) class from the larger embed-
ding population

The transmission rate of non-smokers into smoking class

The natural death rate

The rate at which smokers temporarily quit smoking

The rate at which smokers permanently quit smoking. It is assumed that 0 <7 < 1
Developing rate of smoking-related illness of the smokers

The rate at which temporarily quit smokers return back to smoking class

The additional death rate of the smoking-related illness class

QR N <X WD

> >
SGY"D:
|
=

SEV VRGN

dz
T eS—(y +9)Z. (2.5)

Our aim in this paper is to discuss the qualitative behavior of above model by taking
f(P,S)=~/PS.

In this case the system (2.1)-(2.5) can be rewritten as

% =a—BVPS—-yP, (2.6)
ds

E: x/P_S—(y+8+e)S+§X, (2.7)
ax

I =81 -nS~-(y +5)X, (2.8)
Y suS—yy (2.9)
ag O TrE ’
az

T =eS—-(y +9)Z. (2.10)

Assume that system (2.6)-(2.10) has non-negative initial conditions, then every solution
(P(2),S(t), X(t), Y(2), Z(t)) of (2.6)-(2.10) has the positivity property, i.e., P(t) > 0, S(¢) > 0,
X()>0,Y(t)>0,and Z(¢) > 0.

Consider the following equation:

N()=P(2) + S(t) + X(2) + Y (¢) + Z(¢).

Hence, we obtain

aN N-Z9
—=a - - 7Z0.
dt 4
Then it follows that
dN
— <a-yN, (2.11)

dt
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with N(0) = P(0) + S(0) + X(0) + Y(0) + Z(0). Then from (2.11), it follows that

lim supN(¢) <

t—0o0

X |IR

3 Endemic equilibrium and its local stability

An endemic equilibrium is one in which there are variables corresponding to the pres-
ence of the disease in the population that are non-zero. Local stability of an equilibrium
point means that if we put the system somewhere near the point then it will move to the
equilibrium point in some time. Global stability means that the system will come to the
equilibrium point from any possible starting point (i.e., there is no ‘nearby’ condition). In
an even more physical interpretation, if an endemic equilibrium is locally stable then all
epidemiological situations not so much different from the given stable equilibrium will
(with time) evolve to (or transform into) the equilibrium point. Also it means that the
equilibria are stable to small perturbations, i.e., if we push the situation a bit away from
the equilibrium point then the situation will return on its own (from the physicist’s point
of view, it means that the equilibrium may be a stable situation in real life, because the
real world always is somewhat noisy). Global stability of an equilibrium point in this case
may be described as ‘the inevitable fate of the epidemic process regardless of its start-
ing situation’ But the caveat should be considered that this ‘inevitability’ holds as long
as the world strictly follows the underlying mathematical model of the epidemic pro-

cess.
Let E = (P*,S*, X*,Y*, Z*) be an equilibrium point of (2.6)-(2.10), then

b AP ryG e +EGn+e)
By + )+ v+ v+ +e)+L(n+e)
. _ ap?(y +¢)?
Yr+y@+c+e)+C@n+e)B2y + ) +y (2 + v+ +€) +L(8n +¢€))
. aps(1-n)(y +¢)

TP ry@H )L+ B+ ) 4y (P y B+ L)+ (0 +e)
ap’sn(y +¢)?
Y2 +y@+C+e)+i@n+e)B(y + ) +y(2+y(+L+e)+L(n+e€))’
. ap®e(y +¢)?
NPy @)+ LB+ )BAy + ) +y (2 +y(B+ L +e) + (BN +e))

Y*=

Hence, (P*,S*, X*, Y*, Z*) is the unique positive equilibrium point of (2.6)-(2.10).
The feasibleregion I" = {(P,S,X,Y,Z) € R3 : P+S+X+Y +Z < %} is positively invariant
with respect to (2.6)-(2.10). Furthermore, (P*, S*, X*, Y*,Z*) € int(I") [15].

Theorem 3.1 The unique positive equilibrium point of (2.6)-(2.10) is locally asymptoti-
cally stable.



Din et al. Advances in Difference Equations (2016) 2016:96 Page 5 of 12

Proof The Jacobian matrix [ (P*,S*, X*, Y*,Z*) associated with (P*,S* X*,Y*,Z*) is
given by

]M(P*,S*,X*, Y*,Z*)

BYS* BvP*
—2\/?_—)/ J—_zﬁ 0 0 0
’;\/1% ‘;/%—(y+8+e) e 0
- 0 §(1-n) -(r+¢) 0 0
0 on 0 -y 0
0 € 0 0 —(y+0)

Furthermore, the characteristic polynomial of Jy(P* S*, X* Y*,Z*) about (P* S%
X*,Y*,Z*) is given by

CA) =R +y)A+y+3)QMQ), (3.1)
where
Qy)=23+ar? +br+c (3.2)
with
. B(S* - PY)
a—3y+5+§+72 Do +¢€,

b= (P'(25"(3y* + 27 (3 + £ + )+ (81 +€) - B2y + OIVP'SY)
+ BS VP S 2y 48+ L + e))
/(2P*S*),
and

c= (ﬂS*vP*S*(y2 +y(@+C+€)+(n+e))
£y P S (Y2 +y (64 + )+ £+ €) - Bly + OVPS?))

/(2P*S*).

It follows from (3.1) that A; = —y and X, = —(y + ) are two eigenvalues of the Jacobian
matrix Jp(P*, §*, X*,Y*, Z*), and its remaining eigenvalues are the roots of (3.1). Further-

more, after some tedious calculations, one can show that
a>0, b>0, c>0, ab > c.

Hence, according to the Hurwitz criterion, the unique positive equilibrium point of (2.6)-

(2.10) has local asymptotical stability. O
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4 Global stability

In order to prove the global stability of unique endemic equilibrium, we use a graph-
theoretic method. One can find this method in [16, 17]. Arguing as in [15], we will study
some basic results related to the graph-theoretic method.

A directed graph, or digraph, G, consists of a set of vertices V(G), a set of arcs A(G), and
a function which assigns each arc A an ordered pair of vertices (i, /). We call i the tail of A,
j the head of A, and i, j the ends of A. If there is an arc with tail i and head j, then we let
(i,7) denote such an arc, and we say that this arc is directed from i to j. The indegree d (i)
of vertex i is the number of arcs (/,i), [ € V. The outdegree d(i) of vertex i is the number
of arcs (i,1), [ € V. Moreover, assume that H is a spanning set of G having the same vertex
sets, then we call H a subdigraph of G. If we assign a positive weight to each arc, then the
digraph G is said to be weighted. The weight W (H) of a subdigraph H is the product of
the weights on all its arcs.

A rooted graph, or simply a tree, is a subdigraph, denoted by T of G, and it is a single
connected component in which the indegree of one vertex is zero, whereas each of the
remaining vertices has indegree one. On the other hand, a directed path P is a subdigraph
with distinct vertices denoted by iy, i,..., i such that its arcs are of the form (i,;, i;;41),
wherem =1,2,...,k—1. Moreover, we denote a directed cycle by C, and it is the subdigraph
obtained from such a path P by adding the arc (i, i1).

Let G be a weighted digraph having # vertices. Next, we consider an #n x n weighted
matrix denoted by M = (a;) such that a; > 0 equal to the weight of arc (j, i) if it exists
and 0 otherwise. We denote such a weighted digraph by (G, M). A digraph G is strongly
connected if, for any pair of distinct vertices i, j, there exists a directed path from i to j.
A weighted digraph (G, M) is strongly connected if and only if the weight matrix M is
irreducible. The Laplacian matrix L = (;;) of (G, M) is defined as

l _ﬂijr i #]1
ij= )

D i, 1=k
Lemma 4.1 (Kirchhoff’s matrix tree theorem) For n > 2, assume that c; is the cofactor of
liinL. Then c; = ZTGTI, W(T),i=1,2,...,n, where T; is the set of all spanning trees T of
(G, M) that are rooted at vertex i. Moreover, if (G, M) is strongly connected, then c; > 0 for

1<i<n.
Moreover, arguing as in [15, 18], we have the following results.

Lemma4.2 Letc; be as given in Lemma 4.1. Then ZZ].:I ciaiiFi(X) = ZZ;‘:I ciaiiFj(X), where
Fi(X) is a collection of functions with X = (xy,...,%,) € R", and 1 <i<n.

Lemma 4.3 [15] Let c; be as given in Lemma 4.1. Let a;; > 0, and d{,(j) = 1 for some 1 <

o . n
L,j < n, then c;ay = Y ), ¢idjk.

Theorem 4.4 The unique positive equilibrium point of system (2.6)-(2.10) is globally
asymptotically stable.
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Proof Using the graph-theoretic method developed in [15], first we construct the Lya-
punov function V(¢). For this purpose, we set

Vi=P-P"-P*1 P Vo=8-8§"-8"1 S
=P-P - n—, =S-5" - n—,
1 P+ 2 S*

X Y
Vg:X—X*—X*lnF, V4:Y—Y*—Y*1nF,

and
s * Z
Vs=Z-2"-Z IHE'
Differentiation w.r.t. ¢ gives
Py
Vi=(1-—)P,
P
! P*
Vi= (1 - F)(a - BVPS - yP),

Vi=p <1——>(«/P*_S* \/_)+V<1—%)(P -P),

) — VPS (P - P*)?
Vi=pVEs (“‘)( ‘W)‘V P

(P—P*)2

— /P* [ S /P* /S / /S S
+/3 PS ( S* S* S* _?_ /P*S*)
. ([P [3 /p* [s PS  PS
VlSIB PS < F §—11’1 ? §+1n P*S*——,I)*_S*)

=idji G12.

V-

Similarly we obtain

S\ .,
V2’=<1—§>S,
V, = (1—S>(,3«/_ (y +8+€)S+X),

| PS | PS [P [P S | S*
) A/ P*S* - In,/——-/——/—=+In,/—
Vy < BV PES < s In s +1In P P S +1In S)

(X _ X _Xs xS
X e T e st e

=:a23Ga3 + a5 Gos,

! X* !
vi=(1-5 )X,

Vs = <1— %)(8(1—77)5— (v +0)X),
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Figure 2 Weighted-diagraph constructed for an2 N an p
system (2.6)-(2.10). 1 b 2 < 3

ass

>
asa

SX* SX* S
§* §&*X S*X S*

S
VéSS(l—n)S*[—— +1n —In—

=: azsGss,

4 Y* U
vi=(1-5)v

! Y*
Vv, = <1 - 7)[5;75— yYl,

s SsSr* S Y*j|

S
V,<nSl—-In—-——+In——
S* S St Y S*Y

=:auGa,

U Z* !
Vi=(1-% )2,
z

Vi= (1 - %)[GS— (y + z?)Z],

S S Sz S z*
Vi<eS | —-In—-——+In——
S* S S Z St Z

=:a54Gs4.

The associated weighted digraph has five vertices and two cycles (see Figure 2). Along
each cycle Giy + Gy + Gsa + Gos = 0 and Gz + Gag + Gss + G35 + Gaz = 0. By Theo-
rem 3.5 in [15], there exists ¢;, 1 <i <5, such that V = Zle ¢;V; is a Lyapunov function
for (2.6)-(2.10). The relations between ¢;’s can be derived from Theorems 3.3 and 3.4
of [15]: d*(1) =1 implies cqaq = c1a12, d*(2) = 1 implies cjayy = ca(ass + ass), d*(3) =1
implies cyay3 = c3ass, and d*(4) = 1 implies csasq = cqaq;. Therefore V = Zil ¢V =
i+ (ﬂfpf—g_zx*) Vo + 8(1_77)(55;5—;%)(*) V3 + ;irz f;—:VAL + g\/f;::\/s. We can easily verify that
{E} is the only invariant set in int(€2), where V' = 0, therefore, E is globally asymptotically
stable in int(2). O

Physically the global stability of unique endemic equilibrium means that if smokers con-
tinue to spread the disease in the population, whatever the initial population will be, ul-
timately the population approaches a constant level. The constant level means that the

transition in different classes of the population stops.

5 Numerical simulations and discussion
In this section the model is solved by using a Runge-Kutta fourth order scheme. The values
of some of the parameters in the model are dictated by reality, e.g. the death rates of the



Din et al. Advances in Difference Equations (2016) 2016:96

Figure 3 The plot shows the variation of total 500
population with « = 0.8, = 0.0005, 450
y =0.0000391, § = 0.0000913, n = 0.000001,
€ =0.00458, ¢ =0.002, § = 0.0457.
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. . 0 . . . .
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Time Time

== .
0 1000 2000

(a) (b)

Figure 4 Endemic levels of S and X for different values of o.

humans and the rate at which smokers quit smoking. The values of the parameters deter-
mined by nature are y = 0.0000391 per day, corresponding to a life expectancy of humans
of 70 years and § = 0.0000913 per day, corresponding to an average duration of smoking
of 30 years. The variation of the total population is shown in Figure 3. From this figure
we see that the population approaches a unique endemic equilibrium whenever the re-
productive number exceeds unity and the value of Ry is 93.33. It means that when disease
persists and the smokers continue to infect potential smokers even then the population
approaches the constant level.

The endemic level of smokers and temporarily quit smokers can be decreased or in-
creased by decreasing or increasing the value of the different parameters. Figures 4, 5, 6,
7, 8, and 9 represent endemic levels of smokers and temporary quit smokers for different
values of the parameter. We observe that increasing the values of §, the endemic level of
temporary quit smokers increases. It means that the smokers enter in the temporary quit
smoking class at the first moment. It can also be observed that by increasing the factor n
the endemic level of temporary quit smokers decreases. These observations suggest that
enhancing the awareness in the population about the menace of smoking can motivate the
smokers and temporary quit smokers to enter in the permanently quit smoking class. In

this way we can reduce this endemic disease.

Page 9 of 12
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Figure 5 Endemic levels of S and X for different values of 8.
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Figure 6 Endemic levels of S and X for different values of y.

6 Conclusion

In this work we modified the model by taking into account smokers who temporarily quit
smoking, a class of smokers associated with some illness, and the additional death rate
of the smoking-related illness class. We first established the local stability of the endemic
equilibrium by using a Hurwitz criterion and then used a graph-theoretic approach to
prove the global stability. The typical solution of the system is obtained and showed that
the population approaches the endemic level. It has also been observed that the endemic
level of smokers and temporarily quit smokers is decreased by increasing the factor 7. It
means that the endemic level of smokers could be decreased through education and treat-
ment campaigns to minimize the number of smokers and maximize the number of quit
smokers in a community. The main objective of dynamical systems theory is to predict
the global behavior of a system based on the knowledge of its present state. An approach
to this problem consists of determining the possible global behavior of the system and
determining which conditions on real parameters lead to this long-term behavior. In the
case of nonlinear dynamical systems, it is very crucial to discuss the global behavior of
the system. Particularly, the condition for global stability in population biology is a very
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Figure 7 Endemic levels of S and X for different values of §.
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Figure 8 Endemic levels of S and X for different values of €.
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Figure 9 Endemic levels of S and X for different values of 7.
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interesting mathematical problem. Therefore, it is very important to find conditions which
may guarantee the global stability of the unique positive equilibrium point of the given
system. In the paper, we prove the conditions for the global asymptotic stability of the

unique positive equilibrium point for system (2.6)-(2.10).
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