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Abstract
In this paper, we consider an iterative learning control (ILC) problem for a class of
multiinput-multioutput (MIMO) second-order hyperbolic distributed parameter
systems with uncertainties. A P-type ILC scheme is proposed in the iteration
procedure for distributed systems with an initial deviation in the state. A convergence
of tracking error with respect to the iteration index can be guaranteed in the sense of
L2 norm. Feasibility in theory of the iterative learning algorithm with difference
method is proposed. Numerical simulation results are presented to illustrate the
effectiveness of the proposed ILC approach.
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1 Introduction
ILC is an intelligent control methodology for repetitive processes and tasks over a finite
interval. ILC was first formulated mathematically by Arimoto et al. []. In the last three
decades, it has been constantly studied and widely applied in various engineering prac-
tice, such as robotics, freeway traffic control, biomedical engineering, industrial process
control, et cetera [–]. The major benefit of ILC are completely tracking feasible refer-
ence trajectories (or evolutional profiles) for that complex systems include uncertainty
or nonlinear. It can be achieved only based on the input and output signals [–]. It is
a truly model-free method motivated by the human trial-and-error experience in prac-
tice.

Despite ILC has been widely investigated for finite-dimensional systems, research
work of related to spatial temporal processes are quiet few and even less using infinite-
dimensional framework. Qu [] proposed an iterative learning algorithm for boundary
control of a stretched moving string, which is a pioneer work of extending the ILC frame-
work to distributed parameter systems. Tension control system is studied in [] by using
the PD-type learning algorithm. Both P-type and D-type iterative learning algorithms
based on the operator semigroup theory are designed for one-dimensional distributed
parameter systems governed by parabolic PDEs in [] and have been extended to a class
of impulsive first-order distributed parameter systems in []. In [], a steady state ILC
scheme is proposed for single-input-single-output nonlinear PDEs. A D-type anticipa-
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tory ILC scheme is applied to the boundary control of a class of inhomogeneous heat
equations in [], where the heat flux at one side is the control input, whereas the tem-
perature measurement at the other side is the control output. The learning convergence
of ILC is guaranteed by transforming the inhomogeneous heat equation into its integral
form and exploiting the properties of the embedded Jacobi theta functions. In [], for
applied convenience, using Crank-Nicholson discretization, ILC for a heat equation is de-
signed, where the control allows the selection of a finite number of points for sensing and
actuation. Recently, a frequency domain design and analysis framework of ILC for inho-
mogeneous distributed parameter systems are proposed in []. However, these works
did not involve MIMO second-order hyperbolic distributed parameter systems.

The control problem of hyperbolic distributed parameter systems has been frequently
encountered in many dynamic processes, for example, wave transportation, fluid dynam-
ics, elastic vibration. In [], a P-type ILC algorithm is proposed for a first-order hyper-
bolic distributed parameter system arising in a nonisothermal tubular reactor using a set
of ordinary differential equations (ODEs) for model approximation. In addition, ILC prob-
lem is considered in [] for a first-order strict hyperbolic distributed parameter system
in a Hilbert space, where convergence conditions are given based on P-type algorithms
and require the initial state value to be identical.

In this paper, an ILC problem is considered for a class of MIMO second-order hyper-
bolic distributed parameter systems with uncertainties. A P-type ILC scheme is intro-
duced, and a sufficient condition for tracking error convergence in the sense of L norm
is given. The conditions do not require analytical solutions but only bounds and an ap-
propriate norm space assumption for uncertainties of the system coefficients matrix. The
proposed control scheme is the first work on extension to MIMO second-order hyperbolic
distributed parameter systems with admissible initial state error. On the other hand, the
convergence analysis is more complex than for finite-dimensional systems because it in-
volves time, space, and the iterative domain. We do not simplify the infinite-dimensional
systems to finite-dimensional systems or replace them with discrete-time equivalences
(see []). Only in simulation, in order to illustrate the effectiveness of the presented ILC
approach, we used the forward difference method to discretize the infinite-dimensional
systems.

Notation The superscript ‘T’ denotes the matrix transposition; I and  denote the iden-
tity matrix and zero matrix of appropriate dimensions, respectively. For an n-dimensional
constant vector q = (q, q, . . . , qn)T, its Euclid norm is defined as ‖q‖ =

√∑n
i= q

i . The
spectrum norm of an n × n-order square matrix A is defined as ‖A‖ =

√
λmax(ATA),

where λmax(·) (λmin(·)) represents the maximum (minimum) eigenvalue. Let L(�) be the
set of measurable functions q defined on a bounded domain � ∈ Rm such that ‖q‖

L =∫
�

|q(x)| dx < ∞. If qi(x) ∈ L(�) (i = , , . . . , k) (for convenience, we denote L(�) as
L(�; R)), then we write q(x) = (q(x), . . . , qn(x)) ∈ Rn ∩L(�), and ‖q‖

L =
∫
�

qT(x)q(x) dx.
For w(x, t) : �×[, T] → Rm such that w(·, t) ∈ Rm ∩L(�), t ∈ [, T], given λ > , its (L;λ)
norm is defined as

‖w‖(L;λ) = sup
≤t≤T

{∥∥w(·, t)
∥∥

L(�)e
–λt}.
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2 ILC system description
We consider the following MIMO second-order hyperbolic distributed parameter system
governed by partial differential equations:

{
∂q(x,t)

∂t = D�q(x, t) – A(t) ∂q(x,t)
∂t + B(t)u(x, t),

y(x, t) = C(t)q(x, t) + G(t)u(x, t),
()

where (x, t) ∈ � × [, T], that is, x, t denote the space and time variables, respectively,
T is given, � is a bounded open subset of Rm with smooth boundary ∂�, q(·, ·) ∈ Rn,
u(·, ·) ∈ Ru, and y(·, ·) ∈ Ry are the state vector, input vector, and output vector of the
systems, respectively, D is a bounded positive constant diagonal matrix, that is, D =
diag{d, d, . . . , dn},  < pi ≤ di < ∞ (i = , , . . . , n), and pi are known, � =

∑m
i=

∂

∂x
i

is the
Laplacian operator defined over �, A(t) is a bounded and positive definite matrix for all
t ∈ [, T], and B(t), C(t), and G(t) are the bounded time-varying uncertain matrices of
appropriate dimensions.

The initial and boundary conditions of () are given as

q(x, t) = , (x, t) ∈ ∂� × [, T], ()

q(x, ) = ϕ(x),
∂q(x, t)

∂t

∣∣∣∣
t=

= ψ(x). ()

The control target is to determine an input vector ud(x, t) such that the output vector y(x, t)
is capable tracking a desired feasible trajectory yd(x, t), namely seeking a corresponding
desired input ud(x, t) such that the actual output of the system (),

y∗(x, t) = C(t)qd(x, t) + G(t)ud(x, t),

approximates the desired output yd(x, t). Because in the system there exists uncertainty,
it is difficult to obtain a complete tracking, so we will gradually gain the control sequence
uk(x, t), using the ILC method, such that

lim
k→∞

uk(x, t) = ud(x, t),

where the kth iteration control input satisfies

{
∂qk (x,t)

∂t = D�qk(x, t) – A(t) ∂qk (x,t)
∂t + B(t)uk(x, t),

yk(x, t) = C(t)qk(x, t) + G(t)uk(x, t).
()

Assumption . We assume that there exists a unique bounded classic solution q(x, t) for
system (). Thus, for a desired output yd(x, t), there exists a unique ud(x, t) such that

{
∂qd(x,t)

∂t = D�qd(x, t) – A(t) ∂qd(x,t)
∂t + B(t)ud(x, t),

yd(x, t) = C(t)qd(x, t) + G(t)ud(x, t),
()

satisfying the initial and boundary conditions

qd(x, t) = , (x, t) ∈ ∂� × [, T], ()



Dai et al. Advances in Difference Equations  (2016) 2016:94 Page 4 of 13

qd(x, ) = qd(x),
∂qd(x, t)

∂t

∣∣∣∣
t=

= q̇d(x), x ∈ �, ()

where qd(x, t) is the desired state, and (qd(x), q̇d(x)) is the initial value of the desired state.

Assumption . In a learning process, we assume the following boundary and initial con-
ditions:

qk(x, t) = , (x, t) ∈ ∂� × [, T], ()

qk(x, ) = ϕk(x),
∂qk(x, )

∂t
= ψk(x), x ∈ �. ()

The functions ϕk(x), ψk(x) satisfy

∥∥∥∥
∂ϕk+

∂x
–

∂ϕk(x)
∂x

∥∥∥∥


L(�)
≤ lα

k , ‖ψk+ – ψk‖
L(�) ≤ lβ

k , ()

where l, l are constants, and α,β ∈ [, ).

Remark . Assumption . is a necessary condition for ILC method. Assumption .
means that, in the initial state, there may exist an error and the identical initial condition
in ILC systems () is not required. On the other hand, from practical point of view, in
iterations, the initial condition reset should be closer and closer to the initial value of the
desired state, so condition () is reasonable.

3 ILC design and convergence analysis
In this paper, we employ the following P-type ILC law:

uk+(x, t) = uk(x, t) + 	(t)ek(x, t), ()

where 	(t) is the learning gain.
For a brief presentation, let

ek+(x, t) = yd(x, t) – yk+(x, t),

q̄k(x, t) = qk+(x, t) – qk(x, t),

ūk(x, t) = uk+(x, t) – uk(x, t),

where ek+(x, t) is the tracking error of the (k + )th iteration. Then the control target can
be rewritten as

lim
k→∞

∥∥ek(·, t)
∥∥

L(�) = , ∀t ∈ [, T]. ()

Remark . The ILC law () is distributed, that is, it depends on both time and space.
although many distributed systems require that only boundary control can be used as
physical constraint, but distributed sensors/actuators can be effectively applied in recent
developments in supporting material science and technologies [], such as piezoelectric
ceramics.
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We need the following technical lemmas, which are widely used in the proof of the main
theorem.

Lemma . ([]) Let A ∈ Rn×m, B ∈ Rn×l , ζ ∈ Rm, η ∈ Rl . Then we have

ζ TATBη ≤ 

(
ζ TATAζ + ηTBTBη

)
. ()

Lemma . ([]) Let a nonnegative real series {ak}∞k= satisfy

ak+ ≤ rak + zk , ()

where  ≤ r <  and limk→∞ zk = . Then we have

lim
k→∞

ak = . ()

Theorem . Consider the ILC updating law () applied to the repetitive system () under
(), () and satisfying Assumptions . and .. If the gain matrix 	(t) satisfies

∥∥I – G(t)	(t)
∥∥ ≤ ρ ∈ [, ), ρ < , ()

then the tracking error converges to zero in the sense of L norm for all t ∈ [, T] as k → ∞,
that is,

lim
k→∞

∥∥ek(·, t)
∥∥

L(�) = , ∀t ∈ [, T]. ()

Proof According to the learning law (), we have

ek+(x, t) = ek(x, t) – yk+(x, t) + yk(x, t)

= ek(x, t) – G(t)
(
uk+(x, t) – uk(x, t)

)
– C(t)

(
qk+(x, t) – qk(x, t)

)

=
(
I – G(t)	(t)

)
ek(x, t) + C(t)

(
qk+(x, t) – qk(x, t)

)

� êk(x, t) + q̂k(x, t), ()

where

êk(x, t) �
(
I – G(t)	(t)

)
ek(x, t), q̂k(x, t) � C(t)

(
qk+(x, t) – qk(x, t)

)
.

Then, by Lemma . we have

eT
k+(x, t)ek+(x, t) =

(
êT

k (x, t) + q̂T
k (x, t)

)(
êk(x, t) + q̂k(x, t)

)

≤ 
[
êT

k (x, t)êk(x, t) + q̂T
k (x, t)q̂k(x, t)

]

≤ λG	eT
k (x, t)ek(x, t) + λCq̄T

k (x, t)q̄k(x, t), ()

where

λG	 = max
≤t≤T

{∥∥I – G(t)	(t)
∥∥}, λC = max

≤t≤T

{∥∥C(t)
∥∥}.
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From () and from

∂qk+(x, t)
∂t = D�qk+(x, t) – A(t)

∂qk+(x, t)
∂t

+ B(t)uk+(x, t) ()

we have

∂q̄k(x, t)
∂t = D�q̄k(x, t) – A(t)

∂q̄k(x, t)
∂t

+ B(t)ūk(x, t). ()

We define

∂q̄k(x, t)
∂t � ¨̄qk(x, t),

∂q̄k(x, t)
∂t

� ˙̄qk(x, t).

Then by () we obtain


∫

�

˙̄qT
k (x, t) ¨̄qT

k (x, t) dx = 
∫

�

˙̄qT
k (x, t)

[
D�q̄k(x, t) – A(t) ˙̄qk(x, t)

+ B(t)ūk(x, t)
]

dx

= 
∫

�

˙̄qT
k (x, t)D�q̄k(x, t) dx

– 
∫

�

˙̄qT
k (x, t)A(t) ˙̄qk(x, t) dx

+ 
∫

�

˙̄qT
k (x, t)B(t)ūk(x, t) dx

�
∑

i=

Ii, ()

where

I = 
∫

�

˙̄qT
k (x, t)D�q̄k(x, t) dx, I = –

∫

�

˙̄qT
k (x, t)A(t) ˙̄qk(x, t) dx,

I = 
∫

�

˙̄qT
k (x, t)B(t)ūk(x, t) dx.

Note that


∫

�

˙̄qT
k (x, t) ¨̄qT

k (x, t) dx =
d(‖ ˙̄qk(·, t)‖

L(�))
dt

. ()

Using the boundary condition and noting that D = diag{d, d, . . . , dn},  < pi ≤ di < ∞
(i = , , . . . , n), and pi are known, we have

I = –
n∑

i=

∫

�

∇ ˙̄qT
ki(x, t)di∇q̄ki(x, t) dx

≤ –λmin(D)
d(‖∇q̄k(·, t)‖

L(�))
dt

. ()
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Meanwhile, because

I ≤ –λmin(A)
∥∥ ˙̄qk(·, t)

∥∥
L(�), ()

using Lemma . again for I, we get

I ≤ ∥∥ ˙̄qk(·, t)
∥∥

L(�) + λB
∥∥ūk(·, t)

∥∥
L(�). ()

So from () and ()-() we obtain

d(‖ ˙̄qk(·, t)‖
L(�))

dt
≤ –λmin(D)

d‖∇q̄k(·, t)‖
L(�)

dt
– λmin(A)

∥∥ ˙̄qk(·, t)
∥∥

L(�)

+
∥∥ ˙̄qk(·, t)

∥∥
L(�) + λB

∥∥ūk(·, t)
∥∥

L(�), ()

that is,

d(‖ ˙̄qk(·, t)‖
L(�) + λmin(D)‖∇q̄k(·, t)‖

L(�))
dt

≤ –λmin(A)
∥∥ ˙̄qk(·, t)

∥∥
L(�) +

∥∥ ˙̄qk(·, t)
∥∥

L(�) + λB
∥∥ūk(·, t)

∥∥
L(�).

Because A(t) is positive definite matrix for all t ∈ [, T], we get

d(‖ ˙̄qk(·, t)‖
L(�) + λmin(D)‖∇q̄k(·, t)‖

L(�))
dt

≤ ∥∥ ˙̄qk(·, t)
∥∥

L(�) + λB
∥∥ūk(·, t)

∥∥
L(�)

≤ (∥∥ ˙̄qk(·, t)
∥∥

L(�) + λmin(D)
∥∥∇q̄k(·, t)

∥∥
L(�)

)
+ λB

∥∥ūk(·, t)
∥∥

L(�). ()

By the Bellman-Gronwall inequality we have

∥∥ ˙̄qk(·, t)
∥∥

L(�) + λmin(D)
∥∥∇q̄k(·, t)

∥∥
L(�)

≤ (∥∥ ˙̄qk(·, )
∥∥

L(�) + λmin(D)
∥∥∇q̄k(·, )

∥∥
L(�)

)
et + λB

∫ t


e(t–s)∥∥ūk(·, s)

∥∥
L(�) ds

≤ (
λmin(D)lα

k + lβ
k)et + λB

∫ t


e(t–s)∥∥ūk(·, s)

∥∥
L(�) ds. ()

Due to the Poincaré inequality, there exists a constant c = c(�) such that

∥∥q̄k(·, t)
∥∥

L(�) ≤ c
∥∥∇q̄k(·, t)

∥∥
L(�). ()

Therefore, by () and () we have

∥∥q̄k(·, t)
∥∥

L(�) ≤ c

λmin(D)
(
λmin(D)lα

k + lβ
k)et

+
cλB

λmin(D)

∫ t


e(t–s)∥∥ūk(·, s)

∥∥
L(�) ds. ()
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Choosing a sufficiently large constant λ >  and multiplying both sides of () by e–λt , we
have

∥∥q̄k(·, t)
∥∥

L(�)e
–λt ≤ c

λmin(D)
(
λmin(D)lα

k + lβ
k)e–(λ–)t

+
cλB

λmin(D)

∫ t


e–(λ–)(t–s)∥∥ūk(·, s)

∥∥
L(�)e

–λs ds

≤ c

λmin(D)
(
λmin(D)lα

k + lβ
k)

+
cλB

λmin(D)
‖ūk‖(L;λ)

∫ t


e–(λ–)(t–s) ds

≤ c

λmin(D)
(
λmin(D)lα

k + lβ
k)

+
cλB

λmin(D)(λ – )
‖ūk‖(L;λ). ()

On the other hand, according to the P-type ILC law (), we have

∥∥uk+(·, t) – uk(·, t)
∥∥

L(�) ≤ λmax
(
	T (t)	(t)

)∥∥ek(·, t)
∥∥

L(�). ()

Letting λ	 = max≤t≤T {λmax(	T (t)	(t))}, we have

‖uk+ – uk‖(L;λ) ≤ λ	‖ek‖(L;λ) ()

and also

∥∥q̄k(·, t)
∥∥

L(�)e
–λt ≤ c

λmin(D)
(
λmin(D)lα

k + lβ
k)

+
cλBλ	

λmin(D)(λ – )
‖ūk‖

(L;λ). ()

From (), (), and () we have

‖ek+‖(L;λ) ≤
(

λG	 +
cλCλ	λB

λmin(D)(λ – )

)
‖ek‖(L;λ)

+
cλC

λmin(D)
(
λmin(D)lα

k + lβ
k). ()

Then, by (), we can select a suitable large λ such that

λ >  and λG	 +
cλCλ	λB

λmin(D)(λ – )
< . ()

Let zk = cλC
λmin(D) (λmin(D)lα

k + lβ
k). Then by Lemma . and ()-() we have

lim
k→∞

‖ek+‖(L;λ) = . ()

Finally, by the inequality

‖ek‖(L;λ) ≤ sup
≤t≤T

∥∥ek(·, t)
∥∥

L(�) ≤ λT‖ek‖(L;λ) ()
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we have the convergence

lim
k→∞

∥∥ek(·, t)
∥∥

L(�) = , t ∈ [, T]. ()

This completes the proof of Theorem .. �

Remark . In Theorem ., we must point out that () requires G(t) to be a nonsingular
matrix (or regular matrix), that is, there exists a direct channel in between the output and
input for systems (). We will consider the case G(t) =  in the future.

4 Numerical simulations
In order to illustrate the effectiveness of the proposed ILC scheme, we give the following
specific numerical example:

{
∂q(x,t)

∂t = D�q(x, t) – A(t) ∂q(x,t)
∂t + B(t)u(x, t),

y(x, t) = C(t)q(x, t) + G(t)u(x, t),
()

where

q(x, t) =

[
q(x, t)
q(x, t)

]
, u(x, t) =

[
u(x, t)
u(x, t)

]
, y(x, t) =

[
y(x, t)
y(x, t)

]
,

D =

[
 
 

]
, A(t) =

[
. – e–t 

 .

]
, B =

[
/ 

. .

]
,

C =

[
. 

 .

]
, G =

[
 .
 

]
, 	 =

[
. 

 .

]
,

and (x, t) ∈ [, ] × [, ]. The desired evolutionary profile vector is given as the iterative
learning:

yd(x, t) =
(
yd(x, t), yd(x, t)

)
=

(
–

(
e–t – 

)
sinπx, – sinπ t sin πx

)
.

Both the initial state profiles are ϕ(x) = .x, ϕ(x) = . sin x, so ψ(x) = ψ(x) = , and
the input value of the controlling at the beginning of learning are set to be  and α = β = 
in (). Then the condition of Theorem . is satisfied. that is, ‖I – G	‖ = . < .. We
use the following forward difference method:

∂qk(x, t)
∂x =

q(xi–, tj) – q(xi, tj) + q(xi+, tj)
h ,

∂qk(x, t)
∂t =

q(xi, tj–) – q(xi, tj) + q(xi, tj+)
τ  ,

∂qk(x, t)
∂t

=
q(xi, tj+) – q(xi, tj)

τ
,

y(xi, tj) = C(ti)q(xi, tj) + G(ti)u(xi, tj),

where h, τ are space and time sizes, respectively, and (xi, tj) is discrete point.
The iterative learning process is the following:
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Figure 1 Desired surface yd1(x, t).

Figure 2 Desired surface yd2(x, t).

• Step . Iterative number k =  (for convenience, the iterative time begins from ).
.. Let control input u(x, t) =  with q(, t) =  = q(, t), q(x, ), ∂q(x,)

∂t , A(t),
B(t), D. Based on the second-order differential equations and above difference
method, we can solve () and obtain q(x, t).

.. By the output equation y(x, t) = C(t)q(x, t) + G(t)u(x, t) we calculate y(x, t).
.. Calculate e(x, t) = yd(x, t) – y(x, t).

• Step . Iterative number k = , u(x, t) = u(x, t) + 	(t)e(x, t).
• Step . Repeating Step , but with control input u(x, t) ( �= ), we obtain e(x, t).
• Step . At the kth iteration, if the tracking error ek(x, t) is less than the given error,

then end, else continue.
It should be pointed out that we did not need know (but require to be bounded) the

uncertain coefficients A(t), B(t), C(t), G(t) in practical process control; we only need re-
member the tracking error and calculate (offline) the next time control input uk+(x, t).

The simulation results obtained using this iterative learning algorithm and difference
method are shown in Figures -.

Figures  and  show the desired profile, Figures  and  show the relative profile at
the twentieth iteration, Figures  and  show the error curved surface, where eki(x, t) =
ydi(x, t) – yki(x, t), i = , , k = . Figure  is the curve chart describing the variation of the
maximum tracking error with iteration numbers. Numerically, in the twentieth iteration,
the absolute values of the maximum tracking error are . × – and . × –.
These simulation results demonstrate the efficacy of the ILC law ().

5 Conclusions
In this paper, a P-type ILC law is applied to a class of MIMO second-order hyperbolic PDEs
with dissipation and bounded coefficient uncertainty. We established sufficient conditions
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Figure 3 Output surface yk1(x, t).

Figure 4 Output surface yk2(x, t).

Figure 5 Error surface ek1(x, t).

Figure 6 Error surface ek2(x, t).



Dai et al. Advances in Difference Equations  (2016) 2016:94 Page 12 of 13

Figure 7 Max error-iterative number curve.

that guarantee the tracking error convergence in the sense of L norm. A simulation ex-
ample is given to illustrate the effectiveness of the proposed algorithm.
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