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Abstract
Sufficient oscillation conditions involving lim sup and lim inf for first-order differential
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1 Introduction
In this paper we consider the differential equation with several variable deviating argu-
ments of either delay

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

)
= , t ≥ , (.)

or advanced type

x′(t) –
m∑

i=

pi(t)x
(
σi(t)

)
= , t ≥ . (.)

Equations (.) and (.) are studied under the following assumptions: everywhere
pi(t) ≥ ,  ≤ i ≤ m, t ≥ , τi(t),  ≤ i ≤ m, are Lebesgue measurable functions satisfy-
ing

τi(t) ≤ t, ∀t ≥  and lim
t→∞ τi(t) = ∞,  ≤ i ≤ m, (.)

and

σi(t) ≥ t, t ≥ ,  ≤ i ≤ m, (.)
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respectively. In addition, we consider the initial condition for (.)

x(t) = ϕ(t), t ≤ , (.)

where ϕ : (–∞, ] →R is a bounded Borel measurable function.

Definition  A solution of (.), (.) is an absolutely continuous on [,∞) function sat-
isfying (.) for almost all t ≥  and (.) for all t ≤ . By a solution of (.) we mean an
absolutely continuous on [,∞) function satisfying (.) for almost all t ≥ .

In the special case m =  equations (.) and (.) reduce to the form

x′(t) + p(t)x
(
τ (t)

)
= , t ≥ , (.)

and

x′(t) – p(t)x
(
σ (t)

)
= , t ≥ , (.)

respectively.

Definition  A solution x(t) of (.) (or (.)) is oscillatory if it is neither eventually posi-
tive nor eventually negative. If there exists an eventually positive or an eventually negative
solution, the equation is nonoscillatory. An equation is oscillatory if all its solutions oscil-
late.

In the last few decades, oscillatory behavior and stability of first-order differential equa-
tions with deviating arguments have been extensively studied; see, for example, papers
[–] and references cited therein. For the general oscillation theory of differential equa-
tions the reader is referred to the monographs [–].

In , Ladde [] and in , Ladas and Stavroulakis [] proved that if

lim inf
t→∞

∫ t

τmax(t)

m∑

i=

pi(s) ds >

e

, (.)

where τmax(t) = max≤i≤m{τi(t)}, then all solutions of (.) oscillate, while if

lim inf
t→∞

∫ σmin(t)

t

m∑

i=

pi(s) ds >

e

, (.)

where σmin(t) = min≤i≤m{σi(t)}, then all solutions of (.) oscillate. See also [], Theo-
rem .., and [], Theorem ′.

In , Hunt and Yorke [] proved that if t – τi(t) ≤ τ for some τ > ,  ≤ i ≤ m, and

lim inf
t→∞

m∑

i=

pi(t)
(
t – τi(t)

)
>


e

, (.)

then all solutions of (.) oscillate.
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In , Zhou [] proved that if σi(t) – t ≤ σ for some σ > ,  ≤ i ≤ m, and

lim inf
t→∞

m∑

i=

pi(t)
(
σi(t) – t

)
>


e

, (.)

then all solutions of (.) oscillate. See also this result in the monograph [], Corol-
lary ...

For differential equation (.) with one delay, in  Braverman and Karpuz [] estab-
lished the following theorem in the case that the argument τ (t) is non-monotone and g(t)
is defined as

g(t) = sup
s≤t

τ (s), t ≥ .

Theorem  Assume that (.) holds and

lim sup
t→∞

∫ t

g(t)
p(s) exp

{∫ g(t)

τ (s)
p(ξ ) dξ

}
ds > . (.)

Then all solutions of (.) oscillate.

In , Theorem  was improved by Stavroulakis [] as follows.

Theorem  Assume that (.) holds; we have

 < α := lim inf
t→∞

∫ t

τ (t)
p(s) ds ≤ 

e

and

lim sup
t→∞

∫ t

g(t)
p(s) exp

{∫ g(t)

τ (s)
p(ξ ) dξ

}
ds >  –

 – α –
√

 – α – α


.

Then all solutions of (.) oscillate.

In , Chatzarakis and Öcalan [] established the following theorem in the case that
the arguments σi(t),  ≤ i ≤ m are non-monotone and ρi(t) = infs≥t σi(s), t ≥ , ρ(t) =
min≤i≤m ρi(t), t ≥ .

Theorem  Assume that (.) holds, and either

lim sup
t→∞

∫ ρ(t)

t

m∑

i=

pi(s) exp

{ m∑

j=

∫ σi(s)

ρi(t)
pj(ξ ) dξ

}
ds > , (.)

or

lim inf
t→∞

∫ ρ(t)

t

m∑

i=

pi(s) exp

{ m∑

j=

∫ σi(s)

ρi(t)
pj(ξ ) dξ

}
ds >


e

. (.)

Then all solutions of (.) oscillate.
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In addition to purely mathematical interest, consideration of non-monotone arguments
is important, since it approximates the natural phenomena described by equations of the
type of (.) or (.). In fact, there are always natural disturbances (e.g. noise in communi-
cation systems) that affect all the parameters of the equation and therefore monotone ar-
guments will generally become non-monotone. In view of this, it is interesting to consider
the case where the arguments (delays and advances) are non-monotone. In the present
paper we obtain sufficient oscillation conditions involving lim sup and lim inf.

2 Main results
In this section, we establish sufficient oscillation conditions for (.) and (.) satisfying
(.) and (.), respectively. The method we apply is based on the iterative construction of
solution estimates and repetitive application of the Grönwall inequality. It also uses some
ideas of [], where some oscillation results for a differential equation with a single delay
were established.

2.1 Delay equations
Let

gi(t) = sup
≤s≤t

τi(s), t ≥ , (.)

and

g(t) = max
≤i≤m

gi(t), t ≥ . (.)

As follows from their definitions, the functions gi(t),  ≤ i ≤ m and g(t) are non-decreasing
Lebesgue measurable functions satisfying g(t) ≤ t, gi(t) ≤ t,  ≤ i ≤ m for all t ≥ .

The following lemma provides an estimation for a rate of decay for a positive solution.
Such estimates are a basis for most oscillation conditions.

Lemma  Assume that x(t) is a positive solution of (.). Denote

a(t, s) := exp

{∫ t

s

m∑

i=

pi(ζ ) dζ

}
(.)

and

ar+(t, s) := exp

{∫ t

s

m∑

i=

pi(ζ )ar
(
ζ , τi(ζ )

)
dζ

}
, r ∈N. (.)

Then

x(t)ar(t, s) ≤ x(s),  ≤ s ≤ t. (.)

Proof The function x(t) is a positive solution of (.) for any t, so

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤ , t ≥ ,
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which means that the solution x(t) is monotonically decreasing. Thus x(τi(t)) ≥ x(t) and

x′(t) + x(t)
m∑

i=

pi(t) ≤ , t ≥ .

Applying the Grönwall inequality, we obtain

x(t) ≤ x(s) exp

{
–

∫ t

s

m∑

i=

pi(ζ ) dζ

}
,  ≤ s ≤ t,

or

x(t) exp

{∫ t

s

m∑

i=

pi(ζ ) dζ

}
≤ x(s),  ≤ s ≤ t,

that is, estimate (.) is valid for r = .
Next, let us proceed to the induction step: assume that (.) holds for some r > , then

x(t)ar
(
t, τi(t)

) ≤ x
(
τi(t)

)
. (.)

Substituting (.) into (.) leads to the estimate

x′(t) + x(t)
m∑

i=

pi(t)ar
(
t, τi(t)

) ≤ .

Again, applying the Grönwall inequality, we have

x(t) ≤ x(s) exp

{
–

∫ t

s

m∑

i=

pi(ζ )ar
(
ζ , τi(ζ )

)
dζ

}
,

or

x(t) exp

{∫ t

s

m∑

i=

pi(ζ )ar
(
ζ , τi(ζ )

)
dζ

}
≤ x(s),

that is,

x(t)ar+(t, s) ≤ x(s),

which completes the induction step and the proof of the lemma. �

Let us illustrate how the estimate developed in Lemma  works in the case of au-
tonomous equations. The series of estimates is evaluated using computer tools, which
recently became an efficient method in computer-assisted proofs []. We suggest that,
similarly, a computer algebra can be used to construct the estimate iterates and, ideally,
the limit estimate. The example below illustrates the procedure.
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Example  The equation

x′(t) + αe–αx(t – ) = , t ≥ ,α ≥ 

has an exact nonoscillatory solution e–αt . For α = . the exact rate of decay (up to the
sixth digit after the decimal point) is x(t +) ≈ .x(t), while a–

 (t, t –) ≈ .,
a–

 (t, t – ) ≈ ., a–
 (t, t – ) ≈ ., a–

 (t, t – ) ≈ .. The largest value
of the coefficient of /e is attained at α = ; it is well known that it is the maximal coeffi-
cient when the equation is still nonoscillatory. The decay of the estimate x(t + ) ≤ 

e x(t) ≈
.x(t) is the slowest: a–

 (t, t – ) ≈ ., a–
 (t, t – ) ≈ ., a–

 (t, t – ) ≈
., a–

(t, t – ) ≈ ., a–
(t, t – ) ≈ ., a–

,(t, t – ) ≈ ..

Theorem  Let pi(t) ≥ ,  ≤ i ≤ m, and g(t) be defined by (.), while ar(t, s) by (.),
(.). If (.) holds and for some r ∈N

lim sup
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ > , (.)

then all solutions of (.) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (.). Since –x(t) is also a solution of (.), we can consider only the case when the
solution x(t) is eventually positive. Then there exists t >  such that x(t) >  and x(τi(t)) >
, for all t ≥ t. Thus, from (.) we have

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤ , for all t ≥ t,

which means that x(t) is an eventually non-increasing positive function.
Integrating (.) from g(t) to t, and using the fact that the function x is non-increasing,

while the function g defined by (.) is non-decreasing, and taking into account that

τi(t) ≤ g(t) and x
(
τi(s)

) ≥ x
(
g(t)

)
ar

(
g(t), τi(s)

)
,

we obtain, for sufficiently large t,

x
(
g(t)

)
= x(t) +

∫ t

g(t)

m∑

i=

pi(ζ )x
(
τi(ζ )

)
dζ

>
∫ t

g(t)

m∑

i=

pi(ζ )x
(
τi(ζ )

)
dζ

≥ x
(
g(t)

)∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ .

Hence

x
(
g(t)

)
[

 –
∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ

]
≥ ,
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which implies

lim sup
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≤ .

The last inequality contradicts (.), and the proof is complete. �

The following example illustrates the significance of the condition limt→∞ τi(t) = ∞,
 ≤ i ≤ m, in Theorem .

Example  Consider the delay differential equation (.) with

p(t) ≡ , τ (t) =

⎧
⎨

⎩
–, if t ∈ [k, k + ),

t, if t ∈ [k + , k + ),
k ∈N = {, , , . . . }.

By (.), we find

g(t) = sup
≤s≤t

τ (s) =

⎧
⎨

⎩
[t], if t ∈ [k, k + ),

t, if t ∈ [k + , k + ),
k ∈N.

If t = k + ., then g(t) = [t] = k and

∫ t

g(t)
p(ζ ) dζ =

∫ k+.

g(k+.)
p(ζ ) dζ = 

∫ k+.

k
dζ = . > ,

which means that (.) is satisfied for any r.
However, equation (.) has a nonoscillatory solution

x(t) = ϕ(t) = t + , t ∈ [–, ], x(t) =

⎧
⎨

⎩
e–[t], if t ∈ [k, k + ),

e–(t–k–), if t ∈ [k + , k + ),

which illustrates the significance of the condition limt→∞ τ (t) = ∞ in Theorem .

In , Yu et al. [] proved the following result.

Lemma  In addition to the hypothesis (.), assume that g(t) is defined by (.),

 < α := lim inf
t→∞

∫ t

g(t)

m∑

i=

pi(s) ds ≤ 
e

, (.)

and x(t) is an eventually positive solution of (.). Then

lim inf
t→∞

x(t)
x(g(t))

≥  – α –
√

 – α – α


. (.)

Based on inequality (.), we establish the following theorem.
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Theorem  Assume that pi(t) ≥ ,  ≤ i ≤ m, g(t) is defined by (.), ar(t, s) by (.), (.)
and (.) holds. If for some r ∈N

lim sup
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ >  –

 – α –
√

 – α – α


, (.)

then all solutions of (.) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (.). Then, as in the proof of Theorem , we obtain, for sufficiently large t,

x
(
g(t)

)
= x(t) +

∫ t

g(t)

m∑

i=

pi(ζ )x
(
τi(ζ )

)
dζ

≥ x(t) + x
(
g(t)

)∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ .

That is,

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≤  –

x(t)
x(g(t))

,

which gives

lim sup
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≤  – lim inf

t→∞
x(t)

x(g(t))
.

Taking into account that (.) holds, the last inequality leads to

lim sup
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≤  –

 – α –
√

 – α – α


,

which contradicts condition (.).
The proof of the theorem is complete. �

Next, let us proceed to an oscillation condition involving lim inf.

Theorem  Assume that pi(t) ≥ ,  ≤ i ≤ m, (.) holds and ar(t, s) are defined by (.),
(.). If for some r ∈N

lim inf
t→∞

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ >


e

, (.)

then all solutions of (.) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (.). Similarly to the proof of Theorem , we can confine our discussion only to
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the case of x(t) being eventually positive. Then there exists t >  such that x(t) >  and
x(τi(t)) >  for all t ≥ t. Thus, from (.) we have

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤ , for all t ≥ t,

which means that x(t) is an eventually non-increasing positive function.
For t ≥ t, (.) can be rewritten as

x′(t)
x(t)

+
m∑

i=

pi(t)
x(τi(t))

x(t)
= , for all t ≥ t.

Integrating from g(t) to t gives

ln

(
x(t)

x(g(t))

)
+

∫ t

g(t)

m∑

i=

pi(ζ )
x(τi(ζ ))

x(ζ )
dζ =  for all t ≥ t ≥ t.

Since g(t) ≥ τi(ζ ), by Lemma  we have x(τi(ζ )) ≥ ar(g(t), τi(ζ ))x(g(t)), and therefore

ln

(
x(t)

x(g(t))

)
+

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)x(g(t))
x(ζ )

dζ ≤ .

In view of x(g(t)) ≥ x(ζ ), the last inequality becomes

ln

(
x(t)

x(g(t))

)
+

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≤ . (.)

Also, from (.) it follows that there exists a constant c >  such that for some t ≥ t

∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≥ c >


e

, t ≥ t ≥ t. (.)

Combining inequalities (.) and (.), we obtain

ln

(
x(t)

x(g(t))

)
+ c ≤ , t ≥ t.

Thus

x(g(t))
x(t)

≥ ec ≥ ec > ,

which implies for some t ≥ t ≥ t

(ec)x(t) ≤ x
(
g(t)

)
.

Repeating the above argument leads to a new estimate x(g(t))/x(t) > (ec), for t large
enough. Continuing by induction, we get

x(g(t))
x(t)

≥ (ec)k , for sufficiently large t,
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where ec > . As ec > , there is k ∈ N satisfying k > (ln() – ln(c))/( + ln(c)) such that for
t large enough

x(g(t))
x(t)

≥ (ec)k >

c . (.)

Further, integrating (.) from g(t) to t yields

x
(
g(t)

)
– x(t) –

∫ t

g(t)

m∑

i=

pi(ζ )x
(
τi(ζ )

)
dζ = .

Inequality (.) in Lemma  used in the above equality leads to the differential inequality

x
(
g(t)

)
– x(t) – x

(
g(t)

)∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≥ .

The strict inequality is valid if we omit x(t) >  in the left-hand side:

x
(
g(t)

)
[

 –
∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ

]
> .

From (.), for large enough t,

 < c ≤
∫ t

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ < . (.)

Taking the integral on [g(t), t], which is not less than c, we split the interval into two parts
where integrals are not less than c/, let tm ∈ (g(t), t) be the splitting point:

∫ tm

g(t)

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≥ c


,

∫ t

tm

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≥ c


.

Since g(t) ≤ g(tm) in the first integral, we obtain

∫ tm

g(t)

m∑

i=

pi(ζ )ar
(
g(tm), τi(ζ )

)
dζ ≥ c


,

∫ t

tm

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ ≥ c


. (.)

Integrating (.) from tm to t, along with incorporating the inequality x(τi(ζ )) ≥ ar(g(t),
τi(ζ ))x(g(t)), gives

–x(tm) + x(t) + x
(
g(t)

)∫ t

tm

m∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

) ≤ .

Together with the second inequality in (.), this implies

x(tm) ≥ c


x
(
g(t)

)
. (.)

By Lemma  we have x(τi(ζ )) ≥ ar(g(t), τi(ζ ))x(g(t)).
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Similarly, integration of (.) from g(t) to tm with a subsequent application of Lemma 
leads to

x(tm) – x
(
g(t)

)
+ x

(
g(tm)

)∫ tm

g(t)

m∑

i=

pi(ζ )ar
(
g(tm), τi(ζ )

)
dζ ≤ ,

which together with the first inequality in (.) yields

x
(
g(t)

) ≥ c


x
(
g(tm)

)
. (.)

Inequalities (.) and (.) imply

x
(
g(tm)

) ≤ 
c

x
(
g(t)

) ≤ 
c x(tm),

which contradicts (.). Thus, all solutions of (.) oscillate. �

As non-oscillation of (.) is equivalent to the existence of a positive or a negative solu-
tion of the relevant differentiation inequalities (see, for example, [], Theorem ., p. ),
Theorems , , and  lead to the following result.

Theorem  Assume that all the conditions of anyone of Theorems ,  and  hold. Then
(i) the differential inequality

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

) ≤ , t ≥ ,

has no eventually positive solutions;
(ii) the differential inequality

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

) ≥ , t ≥ ,

has no eventually negative solutions.

2.2 Advanced equations
Similar oscillation theorems for the (dual) advanced differential equation (.) can be de-
rived easily. The proofs of these theorems are omitted, since they are quite similar to the
proofs for the delay equation (.).

Denote

ρi(t) = inf
s≥t

σi(s), t ≥ , (.)

and

ρ(t) = min
≤i≤m

ρi(t), t ≥ . (.)

Clearly, the functions ρ(t), ρi(t),  ≤ i ≤ m, are Lebesgue measurable non-decreasing and
ρ(t) ≥ t, ρi(t) ≥ t,  ≤ i ≤ m for all t ≥ .
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Theorem  Assume that pi(t) ≥ ,  ≤ i ≤ m, (.) holds, ρ(t) is defined by (.) and by
the br(t, s) we denote

b(t, s) := exp

{∫ s

t

m∑

i=

pi(ζ ) dζ

}
(.)

and

br+(t, s) := exp

{∫ s

t

m∑

i=

pi(ζ )br
(
ζ ,σi(ζ )

)
dζ

}
, r ∈N. (.)

If for some r ∈N

lim sup
t→∞

∫ ρ(t)

t

m∑

i=

pi(ζ )br
(
ρ(t),σi(ζ )

)
dζ > , (.)

then all solutions of (.) oscillate.

We would like to mention that Lemma  can be extended to the advanced type differ-
ential equation (.) (cf. [], Section ..).

Lemma  In addition to the hypothesis (.), assume that ρ(t) is defined by (.),

 < α := lim inf
t→∞

∫ ρ(t)

t

m∑

i=

pi(s) ds ≤ 
e

, (.)

and x(t) is an eventually positive solution of (.). Then

lim inf
t→∞

x(t)
x(ρ(t))

≥  – α –
√

 – α – α


.

Based on the above inequality, we establish the following theorem.

Theorem  Assume that pi(t) ≥ ,  ≤ i ≤ m, (.) is satisfied, ρ(t) is defined by (.),
br(t, s) by (.) and (.), and (.) holds. If for some r ∈N

lim sup
t→∞

∫ ρ(t)

t

m∑

i=

pi(ζ )br
(
ρ(t),σi(ζ )

)
dζ >  –

 – α –
√

 – α – α


, (.)

then all solutions of (.) oscillate.

Theorem  Assume that pi(t) ≥ ,  ≤ i ≤ m, (.) holds, ρ(t) is defined by (.), br(t, s)
are defined in (.), (.). If for some r ∈N

lim inf
t→∞

m∑

i=

∫ ρ(t)

t
pi(ζ )br

(
ρ(t),σi(ζ )

)
dζ >


e

, (.)

then all solutions of (.) oscillate.
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A slight modification in the proofs of Theorems ,  and  leads to the following result
as regards advanced differential inequalities.

Theorem  Assume that all the conditions of any of Theorems , , and  hold. Then
(i) the differential inequality

x′(t) –
m∑

i=

pi(t)x
(
σi(t)

) ≥ , t ≥ ,

has no eventually positive solutions;
(ii) the differential inequality

x′(t) –
m∑

i=

pi(t)x
(
σi(t)

) ≤ , t ≥ ,

has no eventually negative solutions.

3 Examples
In this section we provide two examples illustrating Theorems  and . Similarly, examples
to illustrate the other main results of the paper can be constructed.

Example  Consider the delay differential equation

x′(t) +


e
x
(
τ(t)

)
+


.e

x
(
τ(t)

)
= , t ≥ , (.)

where (see Figure (a))

τ(t) =

⎧
⎨

⎩
–t + k + , if t ∈ [k + , k + ],

t – k – , if t ∈ [k + , k + ],
and

τ(t) = τ(t) – ., k ∈ N = {, , , . . . }.

Figure 1 The graphs of (a) τi(t) and (b) gi(t).
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By (.), we see (Figure (b)) that

g(t) = sup
s≤t

τ(s) =

⎧
⎨

⎩
k, if t ∈ [k + , k + /],

t – k – , if t ∈ [k + /, k + ],
k ∈N

and

g(t) = sup
s≤t

τ(s) = g(t) – ..

Therefore, in view of (.), we have

g(t) = max
≤i≤

{
gi(t)

}
= g(t).

Define the function fr : [, +∞) → (, +∞) as

fr(t) =
∫ t

g(t)

∑

i=

pi(ζ )ar
(
g(t), τi(ζ )

)
dζ .

Now, at t = k + , k ∈N, we have g(t = k + ) = k + . Thus

f(t = k + )

=
∫ k+

k+

∑

i=

pi(ζ )a
(
k + , τi(ζ )

)
dζ

=
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)]
dζ

=


e

∫ k+

k+
exp

{∫ k+

τ(ζ )

(
p(ξ ) + p(ξ )

)
dξ

}
dζ

+


.e

∫ k+

k+
exp

{∫ k+

τ(ζ )

(
p(ξ ) + p(ξ )

)
dξ

}
dζ

=


e

∫ k+

k+
exp

{
.

.e

∫ k+

–ζ+k+
dξ

}
dζ +


.e

∫ k+

k+
exp

{
.

.e

∫ k+

–ζ+k+.
dξ

}
dζ

=


e

∫ k+

k+
exp

{
.

.e
(ζ – k + )

}
dζ +


.e

∫ k+

k+
exp

{
.

.e
(ζ – k + .)

}
dζ

=



[
exp

{
.

.e
· 

}
– exp

{
.

.e
· 

}]
+




[
exp

{
.

.e
· .

}
– exp

{
.

.e
· .

}]

� .

and therefore

lim sup
t→∞

f(t) � . > .

That is, condition (.) of Theorem  is satisfied for r = , and therefore all solutions of
(.) oscillate.
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Observe, however, that

lim inf
t→∞

∫ t

τmax(t)

m∑

i=

pi(s) ds = lim inf
t→∞

∫ t

τ(t)

∑

i=

pi(s) ds

=
(


e

+


.e

)
lim inf

t→∞
(
t – τ(t)

)
=

.
.e

·  <

e

,

lim inf
t→∞

m∑

i=

pi(t)
(
t – τi(t)

)
= lim inf

t→∞

[


e
(
t – τ(t)

)
+


.e

(
t – τ(t)

)]

=


e
·  +


.e

· . =

e

,

and therefore none of conditions (.) and (.) is satisfied.

Example  Consider the advanced differential equation

x′(t) –



x
(
σ(t)

)
–




x
(
σ(t)

)
= , t ≥ , (.)

where (see Figure (a))

σ(t) =

⎧
⎨

⎩
t – k – , if t ∈ [k + , k + ],

–t + k + , if t ∈ [k + , k + ],
and

σ(t) = σ(t) + ., k ∈N.

By (.), we see (Figure (b)) that

ρ(t) := inf
t≤s

σ(s) =

⎧
⎨

⎩
t – k – , if t ∈ [k + , k + .],

k + , if t ∈ [k + ., k + ],
k ∈N

Figure 2 The graphs of (a) σi(t) and (b) ρi(t).
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and

ρ(t) = inf
t≤s

σ(s) = ρ(t) + ..

Therefore, (.) gives

ρ(t) = min
≤i≤

{
ρi(t)

}
= ρ(t) =

⎧
⎨

⎩
t – k – , if t ∈ [k + , k + .],

k + , if t ∈ [k + ., k + ],
k ∈N.

Define the function fr : [, +∞) → (, +∞) as

fr(t) =
∫ ρ(t)

t

∑

i=

pi(ζ )br
(
ρ(t),σi(ζ )

)
dζ .

Now, at t = k + , k ∈N, we have ρ(t = k + ) = k + . Thus

f(t = k + )

=
∫ k+

k+

∑

i=

pi(ζ )b
(
k + ,σi(ζ )

)
dζ

=
∫ k+

k+

[
p(ζ )b

(
k + ,σ(ζ )

)
+ p(ζ )b

(
k + ,σ(ζ )

)]
dζ

=




∫ k+

k+
exp

{




∫ ζ–k–

k+
dξ

}
dζ +




∫ k+

k+
exp

{




∫ ζ–k–.

k+
dξ

}
dζ

=




∫ k+

k+
exp

{



(ζ – k – )

}
dζ +




∫ k+

k+
exp

{



(ζ – k – .)

}
dζ

=


[
exp(.) – 

]
+



[
exp(.) – exp(.)

] � .,

f(t = k + )

=
∫ k+

k+

∑

i=

pi(ζ )b
(
k + ,σi(ζ )

)
dζ

=
∫ k+

k+

[
p(ζ )b

(
k + ,σ(ζ )

)
+ p(ζ )b

(
k + ,σ(ζ )

)]
dζ

=




∫ k+

k+
b

(
k + ,σ(ζ )

)
dζ +




∫ k+

k+
b

(
k + ,σ(ζ )

)
dζ

=




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



b

(
k + ,σ(ξ )

)
+




b
(
k + ,σ(ξ )

)]
dξ

}
dζ

+




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



b

(
k + ,σ(ξ )

)
+




b
(
k + ,σ(ξ )

)]
dξ

}
dζ

=




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(




∫ σ(ξ )

k+
du

)
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+



exp

(




∫ σ(ξ )

k+
du

)]
dξ

}
dζ

+




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(




∫ σ(ξ )

k+
du

)

+



exp

(




∫ σ(ξ )

k+
du

)]
dξ

}
dζ

=




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(



(
σ(ξ ) – k – 

))

+



exp

(



(
σ(ξ ) – k – 

))]
dξ

}
dζ

+




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(



(
σ(ξ ) – k – 

))

+



exp

(



(
σ(ξ ) – k – 

))]
dξ

}
dζ

=




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(



(–ξ + k + )

)

+



exp

(



(–ξ + k + .)

)]
dξ

}
dζ

+




∫ k+

k+
exp

{∫ σ(ζ )

k+

[



exp

(



(–ξ + k + )

)

+



exp

(



(–ξ + k + .)

)]
dξ

}
dζ

=




∫ k+

k+
exp

{
– 

 [exp( 
 (–ζ + k + )) – exp(.)]

– 
 [exp( 

 (–ζ + k + .)) – exp(.)]

}
dζ

+




∫ k+

k+
exp

{
– 

 [exp( 
 (–ζ + k + .)) – exp(.)]

– 
 [exp( 

 (–ζ + k + .)) – exp(.)]

}
dζ

� . > .

Thus condition (.) of Theorem  is satisfied for r = , and therefore all solutions of (.)
oscillate.

Observe, however, that

lim inf
t→∞

m∑

i=

∫ σmin(t)

t
pi(s) ds = lim inf

t→∞

∑

i=

∫ σ(t)

t
pi(s) ds

=
(




+




)
lim inf

t→∞
(
σ(t) – t

)
=




<

e

,

lim inf
t→∞

m∑

i=

pi(t)
(
σi(t) – t

)
= lim inf

t→∞

[



(
σ(t) – t

)
+




(
σ(t) – t

)]

=



·  +




· . = . <

e

,

and therefore none of conditions (.) and (.) is satisfied.
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